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Abstract
We confirm R.H. Fox’s trapezoidal conjecture for alternating knots of genus two

by a method different from P. Ozsváth and Z. Szab́o’s one. As an application, we
determine the alternating knots of genus two whose Alexander polynomials have
minimal coefficients equal to one or two.

1. Introduction

An integer polynomial f (t) =
Pm

n=0 antn is trapezoidalif it has the following four
properties.
(i) The coefficientsa0, a1, : : : , am are nonzero and have the same sign.
(ii) tm f (t�1) = f (t).
(iii) 0 < ja0j � ja1j � � � � � ja[m=2]j.
(iv) If ai = ai +1 for somei , then ai = a j for every j = i , i + 1, : : : , [m=2].
Let [ f (t)]� be the coefficient oft� in a polynomial f (t). Let

maxdegf (t) = maxf� j [ f (t)]� 6= 0g,
mindeg f (t) = minf� j [ f (t)]� 6= 0g,
span f (t) = maxdegf (t)�mindeg f (t).

Throughout this paper, we suppose that every link is oriented. Let 1L (t) 2 Z[t , t�1]
be the Alexander polynomial of a linkL in S3 = R3 [ f1g. We suppose thatL is
non-split and alternating. Then the coefficients of the polynomial1L (�t) are nonzero
and have the same sign, and span1L (t) = 2g(L) + �(L) � 1 [3], [12]. Here�(L) is
the number of the components ofL and g(L) is the genus ofL. In this paper, we
adopt the normalization for the Alexander polynomial1L (t) so that mindeg1L (t) = 0
and [1L ]0 is positive. R.H. Fox conjectured the following.
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Trapezoidal conjecture ([5]). If L is a non-split alternating link, then the nor-
malized Alexander polynomial1L (�t) is trapezoidal.

Trapezoidal conjecture is true for a non-split two-bridge link [6] and for a larger
class of algebraic alternating links [15]. Note that a two-bridge link is alternating and
algebraic.

Theorem 1.1. Trapezoidal conjecture is true for every alternating knot of genus� 2.

P. Ozsváth and Z. Szabó found out another property on the Alexander polynomials
of alternating knots by using Heegaard Floer homology [17]:Given a knotK , let bk

be thek-th coefficients of the symmetrized Alexander polynomial ofK , that is in the
form 1K (t) = b0 +

P
k>0 bk(tk + t�k) and satisfies1K (1) = 1. Let � = � (K ) be the

signature ofK , and Æ(p, q) = max(0,d(jpj � 2jqj)=4e) for integersp and q. Let ts(K )
denote the torsion coefficients defined byts(K ) =

P1
j =1 jbjsj+ j , wheres is an integer.

If K is an alternating knot, then the inequality

(1) (�1)s+�=2(ts(K )� Æ(� , s)) � 0

holds for any integers. By the inequality (1), they confirmed that the trapezoidal con-
jecture is true for alternating knots of genus two.

In this paper, we prove the trapezoidal conjecture for alternating knots of genus
two in a combinatorial way. Our tools for the proof are the method for calculating
the Alexander polynomial by using graphs due to R.H. Crowell[3] and the genera-
tors for knots of canonical genus two due to A. Stoimenow [18]. We explain these
tools in the sections 2 and 3. As an application of our combinatorial way, we deter-
mine the alternating knots of genus two which possess the Alexander polynomials1(t)
with [1(t)]0 = 1, or [1(t)]0 = 2. Then we give examples of the Alexander polynomials
which satisfy the trapezoidal property and Ozsváth-Szabó’s inequality (1) but are never
realized by alternating knots.

One of our interests is a characterization of the Alexander polynomials of alter-
nating knots. Our argument may allow to calculate the Alexander polynomials of al-
ternating knots of genus two in an accessible way (see the formula (3) in Lemma 4.5
and the generators in Lemma 3.1).

2. Combinatorial method for calculating the Alexander polynomial

In this section, we review Crowell’s method for calculatingthe Alexander poly-
nomial of an alternating link by using certain planar graphs. The method is derived by
applying the matrix-tree theorem [1] to the Alexander matrix obtained from an alter-
nating link diagram. (For details, we refer the reader to [3].)
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Fig. 1. The alternating orientation and the weights of edges.

Fig. 2.

Let L be an alternating link. LetD be an alternating diagram ofL with m cross-
ings c1, : : : , cm. Suppose thatm � 2. We consider the underlying immersed graph of
a diagramD. We denote byV(D) the set of vertices, and byE(D) the set of edges.
We define orientations on the edges and a weight map of the edges as follows: For
i = 1, : : : , m, let ei (resp.e0i ) be the edge which is on the left (resp. right) side of the
crossingci when one is going along the overpath in the original orientation of L (see
Fig. 1). We define the orientation onei ande0i so that the vertexci is the terminal point
of both e1 ande2. We call this orientationalternating orientation. This is distinct from
the original orientation of the linkL. We define the weight map8: E(D)! f1, tg by8(ei ) = 1 and8(e0i ) = t . The alternating orientation and the weight map8 are well-
defined since the diagramD is alternating. We denote the graph with the alternating
orientation and the weight map8 by the same symbolD.

EXAMPLE 2.1. Let D be an alternating diagram depicted in Fig. 2, which rep-
resents the figure-eight knot. The graphD with the alternating orientation and the
weights is drawn in Fig. 2. The weights of edges are drawn in a rectangle respectively.

We choose a vertex, which we call root vertex and denote it byc0. A tree T � D
is a maximal rooted tree with root vertex c0 if V(T) = V(D), #E(T) = #V(T)� 1, and
every vertex without the root vertexc0 has a single incoming edge. LetT (D; c0) be
the set of all maximal rooted trees inD with root vertexc0 and W(T) the weight of
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Fig. 3.

a treeT defined byW(T) =
Q

e2E(T) 8(e). We define a polynomialP(D;c0)(t) by

P(D;c0)(t) =
X

T2T (D;c0)

W(T).

Then we obtain the following lemma.

Lemma 2.2 ([3]). Let 1L (t) be the normalized Alexander polynomial of an al-
ternating link L. Then we have

1L (�t)
.
= P(D;c0)(t),(2)

where“
.
=” means“ is equal to, up to multiplications by units of the Laurent polynomial

ring Z[t , t�1]” .

Note that the polynomialP = P(D;c0)(t) is independent of choices of a diagram and
a root vertex up to multiplications by units ofZ[t , t�1]. For a disconnected diagram
D, we haveP(D;c0)(t) = 0. We define the Alexander polynomial1D of a diagramD
as that of the linkL represented byD: 1D = 1L .

EXAMPLE 2.3. The normalized Alexander polynomial of the figure-eight knot,
substituted�t , is equal tot2 + 3t + 1. We choose the root vertexc0 2 V(D) as in
Fig. 3. The trees inT (D; c0) are drawn in Fig. 3. The monomial below a tree in
Fig. 3 indicates the weight of the tree.
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Fig. 4. A flype near the crossingc.

Fig. 5.

Fig. 6. t 02 move.

3. Generators for alternating knots of genus two

In 1992, W.W. Menasco and M.B. Thistlethwaite proved the statement, that re-
duced alternating diagrams of the same link must be transformable by flypes [11]. Here
a flype is the local move of a diagram shown in Fig. 4. Aclasp is a tangle of the form
in the Fig. 5. We have four types of clasps:positive parallel, positive reverse, negative

parallel, and negative reverseas shown in Fig. 5. At 02 move[18] is a local operation
on a diagram applied in a neighborhood of a crossing as shown in Fig. 6, which adds
a reverse clasp with the same sign as the crossing.

The following lemma was proved by A. Stoimenow.

Lemma 3.1 ([18], see also [2], pp. 112–113).Any alternating prime knot of genus

two possesses a diagram which is obtained byt 02 moves and flypes from one of the
diagram in Fig. 7 up to taking the mirror image.

We denote byG2 the set of these knot diagrams and their mirror images. Special
alternating knots are drawn in the upper area divided by the broken line.
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Fig. 7.
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4. The trapezoidal conjecture for alternating knots of genus two

In this section, we give the proof of Theorem 1.1. A. Stoimenow conjectured a
restriction of the Alexander polynomials of alternating links [19]. We also confirm that
Stoimenow’s conjecture is true for alternating knots of genus � 2. We begin with the
following elementary lemma without a proof.

Lemma 4.1. Let f(t) and g(t) be positive trapezoidal polynomials. Then we
have the followings.
(i) The polynomial f(t)g(t) is positive trapezoidal.
(ii) If maxdegf (t) = maxdegg(t) and mindeg f (t) = mindegg(t), then the polynomial
f (t) + g(t) is positive trapezoidal.

4.1. Proof of Theorem 1.1 for a knot of genus one and a composite knot of
genus two. First, we prove Theorem 1.1 for two easy cases.

4.1.1. For a knot of genus one. The Alexander polynomial of a genus one knot
K is of the form1K (t) = a0 + a1t + a0t2 (a0, a1 2 Z). By 1K (1) = �1, we have
a1 = �2a0 � 1. Hence1K (�t) = a0 + (2a0 � 1)t + a0t2 is always trapezoidal.

4.1.2. For a composite knot of genus two. Let K1 ℄ K2 be a composite knot
of genus two. Notice that the genera ofK1 and K2 are equal to one and1K1℄K2 =1K11K2 holds. By Lemma 4.1,1K1℄K2(�t) is always trapezoidal.

4.2. Proof of Theorem 1.1 for a prime knot of genus two. First, we discuss
a relationship between the degree of the Alexander polynomial and a smoothing. A
smoothing is a local operation on a link diagram applied in a neighborhood of a cross-
ing as shown in Fig. 8.

A Seifert surfaceF is flattenedif it lies in R2 except in small neighborhoods of
the crossings where it is the surface show in Fig. 9. A diagramis special if its canon-
ical Seifert surface is flattened. We choose a checkerboard coloring of a special di-
agram D such that the black regions coincide the regions obtained bythe canonical
Seifert surface forD. Then, for a flattened Seifert surfaceF and the special diagram
D = �F, we have rankH1(F ; Z) = #fbounded white regions ofDg. Here H1(F ; Z) is
the first integral homology group ofF.

The following lemma was proved by M. Hirasawa [7].

Lemma 4.2 ([7]). Let D be a diagram of a link L, and F the canonical surface
for D. Then F is isotopic to a flattened Seifert surface for L. In addition, we can take
the isotopy which fixes neighborhoods of all crossings of D.

The following lemma show a relationship between the degree of the Alexander
polynomial and a smoothing.
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Fig. 8. Smoothing.

Fig. 9.

Lemma 4.3. Let D be a reduced alternating diagram of a link L and c a cross-
ing of D. Let D=c be the diagram obtained from D by smoothing the crossing c. Then
we have

span1D=c = span1D � 1.

Proof. Let F be the canonical Seifert surface forD. The canonical Seifert surface
for an alternating diagram has the minimal genus of the linkL [3], [12]. So we obtain

span1D = 2g(F) +�(L)� 1

= rankH1(F ; Z).

Let F̃ be the flattened surface obtained by an isotopy' which fixes the neighborhood
of the crossingc (cf. Lemma 4.2). Then we have

rankH1(F ; Z) = rankH1(F̃ ; Z).

Let D̃ be the special diagram determined by the surfaceF̃ . Then we have

rankH1(F̃ ; Z) = #fbounded white regions of̃Dg.
Let F 0 be the canonical Seifert surface forD=c. Set F̃ 0 = '(F 0), and D̃0 = � F̃ 0. By
the same argument forF, we obtain

span1D=c = #fbounded white regions ofgD=cg.
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Since the isotopy' fixes the neighborhood ofc, the following diagram commutes.

In a special diagram, a smoothing connect two white regions.Hence we have

#fbounded white regions of̃Dg � 1 = #fbounded white regions ofgD=cg.
Consequently, we obtain

span1D=c = #fbounded white regions ofgD=cg
= #fbounded white regions of̃Dg � 1

= span1D � 1.

We prepare notations fort 02 moves and smoothings on a diagram. LetD be a link

diagram andc1, c2, : : : , cm the crossings ofD. We denote byDc
k1
1 c

k2
2 ���ckm

m the diagram
obtained by applyingki -times t 02 moves atci for i = 1, 2,: : : , m. We often omit the

symbol cki
i if ki is equal to zero. We denote byD=ci1 � � � ci l the diagram obtained by

smoothing atci1, : : : , ci l .
By Lemma 3.1, for a proof of Theorem 1.1, it is sufficient to prove the following

lemma.

Lemma 4.4. Let D be a diagram in G2 and c1, : : : , cm the crossings of the dia-
gram D. Then1

Dc
k1
1 c

k2
2 ���ckm

m
(�t) is trapezoidal for any non-negative integers k1, : : : , km.

The following lemma is a key to prove Theorem 1.1, and then it provides an im-
portant fact to show our applications in Section 5.

Lemma 4.5. Let L be a non-split alternating link, D a reduced alternating dia-
gram of L, and c a crossing of the diagram D. Then we have the following formula:

1Dc(�t) = 1D(�t) + (1 + t)1D=c(�t).(3)

Proof. We can assume that the crossingc is positive sinceL� possesses the same
Alexander polynomial of the linkL, where L� means the mirror image of the linkL.
We denote byct , c0, c1 2 V(Dc) the three vertices in shown in Fig. 10 and denote by
et , e0, e1 2 E(Dc) the three edges in shown in the figure. We take a vertexct 2 V(Dc)



362 I.-D. JONG

Fig. 10.

Fig. 11. The edges drawn by broken line are not contained.

as a root vertex and classify the maximal rooted trees inDc into three types whether
each of the edgeset , e0 and e1 is contained or not (see Fig. 11):

Tb = fT 2 T(Dc;ct ) j et , e0 2 E(T)g,
Tt = fT 2 T(Dc;ct ) j et 2 E(T), e0 =2 E(T)g,
T1 = fT 2 T(Dc;ct ) j et =2 E(T), e0 2 E(T)g.

Note thatT (Dc; ct ) = Tb t Tt t T1. We can regard the trees inTb as the trees inT(D;c),
whose weights are multiplied byt . Hence we obtain

(4)
X
T2Tb

W(T) = t P(D,c).

Next we consider the polynomials obtained fromTt and T1. We can regard the trees
in Tt as the trees inT(D=c0;ct ), whose weights are multiplied byt (see Fig. 12). So we
obtain

(5)
X
T2Tt

W(T) = t P(Dc=c0).
By the same argument, we obtainX

T2T1

W(T) = P(Dc=c0)(6)
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Fig. 12.

Fig. 13.

(see Fig. 13). By the equations (4), (5) and (6), we have

P(Dc;ct ) =
X

T2T (Dc;ct )

W(T)

=
X
T2Tb

W(T) +
X
T2Tt

W(T) +
X
T2T1

W(T)

= t P(D;c) + t P(Dc=c0;ct ) + P(Dc=c0;ct )

= t P(D;c) + (1 + t)P(Dc=c0;ct ).

t 02 move preserves the genus of a canonical Seifert surface. So we obtain

spanP(Dc;ct ) = spant P(D;c).

Lemma 4.3 implies that

spanP(Dc=c0;ct ) = span(1 +t)P(D;c).



364 I.-D. JONG

By Lemma 2.2, we have

1Dc(�t)
.
= P(Dc;ct ),

1D(�t)
.
= P(D;c),

1D=c(�t)
.
= P(Dc=c0;ct ).

Consequently, we obtain the formula (3).

We have the following corollary which is obtained from Lemma4.5 immediately.

Corollary 4.6. Let D be a non-split reduced alternating diagram, c a crossing
of D, and 1D(�t) the normalized Alexander polynomial of D. Then [1D(�t)] i <
[1Dc(�t)] i for every i = 0, 1,: : : , maxdeg1(D;c).

Note that the formula (3) holds for a reducible alternating diagram since ifc is
reducible crossing, then we haveP(Dc=c0;ct ) = 0.

Let k =
Pm

i =0 ki . We start the proof of Lemma 4.4 by induction onk. If k = 0,
that is, k1 = k2 = � � � = km = 0, then we can confirm that1

Dc
k1
1 c

k2
2 ���ckm

m
(�t) is trapezoidal

for any D 2 G2:

151(�t) = 1 + t + t2 + t3 + t4,

162(�t) = 1 + 3t + 3t2 + 3t3 + t4,

163(�t) = 1 + 3t + 5t2 + 3t3 + t4,

175(�t) = 2 + 4t + 5t2 + 4t3 + 2t4,

176(�t) = 1 + 5t + 7t2 + 5t3 + t4,

177(�t) = 1 + 5t + 9t2 + 5t3 + t4,

1812(�t) = 1 + 7t + 13t2 + 7t3 + t4,

1814(�t) = 2 + 8t + 11t2 + 8t3 + 2t4,

1815(�t) = 3 + 8t + 11t2 + 8t3 + 3t4,

1923(�t) = 4 + 11t + 15t2 + 11t3 + 4t4,

1925(�t) = 3 + 12t + 17t2 + 12t3 + 3t4,

1938(�t) = 5 + 14t + 19t2 + 14t3 + 5t4,

1939(�t) = 3 + 14t + 21t2 + 14t3 + 3t4,

1941(�t) = 3 + 12t + 19t2 + 12t3 + 3t4,

11058(�t) = 3 + 16t + 27t2 + 16t3 + 3t4,

11097(�t) = 5 + 22t + 33t2 + 22t3 + 5t4,
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110101(�t) = 7 + 21t + 29t2 + 21t3 + 7t4,

110120(�t) = 8 + 26t + 37t2 + 26t3 + 8t4,

111123(�t) = 9 + 29t + 41t2 + 29t3 + 9t4,

111148(�t) = 7 + 29t + 43t2 + 29t3 + 7t4,

111329(�t) = 11 + 36t + 51t2 + 36t3 + 11t4,

1121097(�t) = 16 + 54t + 77t2 + 54t3 + 16t4,

1121202(�t) = 9 + 42t + 67t2 + 42t3 + 9t4,

1134233(�t) = 21 + 74t + 107t2 + 74t3 + 21t4.

Assuming that the claim is true for polynomials withk < n, we prove it for poly-
nomials withk = n.

By Lemma 4.5, for an integerj such thatk j 6= 0,

1
Dc

k1
1 c

k2
2 ���ckm

m
(�t) = 1

D
c
k1
1 c

k2
2 ���ck j �1

j ���ckm
m

(�t) + (1 + t)1
Dc

k1
1 c

k2
2 ���ckm

m=c j

(�t).

By the assumption, the polynomial1
D

c
k1
1 c

k2
2 ���ck j �1

j ���ckm
m

(�t) is trapezoidal. By Lemma 4.3,

we have

deg1
Dc

k1
1 c

k2
2 ���ckm

m=c j

(�t) = 3.

Notice that deg1
D

c
k1
1 c

k2
2 ���ck j �1

j ���ckm
m

(�t) = 4, deg(1 +t) = 1, and the polynomial 1 +t is

trapezoidal. By Lemma 4.1, it is sufficient to complete the proof that the polynomial1
Dc

k1
1 c

k2
2 ���ckm

m=c j

(�t) is trapezoidal.

An integer polynomial f (t) = a0 + a1t + a1t2 + a0t3 is trapezoidal if and only ifa0

and a1 have the same sign and 0< ja0j � ja1j. The following lemma completes the
proof of Lemma 4.4 for the eleven special alternating diagrams in G2.

Lemma 4.7 ([16]). Let 1L (�t) be the normalized Alexander polynomial of a
non-trivial, non-split special alternating link L. Then0< [1L (�t)]0 � [1L (�t)]1.

It remains that we show the polynomial1
Dc

k1
1 c

k2
2 ���ckm

m=c j

(�t) is trapezoidal for thirteen

non-special diagrams inG2.
For every crossingc of the diagramD in G2, the Alexander polynomial ofD is

of the form1D=c(t) = a0 � a1t + a1t2� a0t3 (a0, a1 2 Z).
Here, we consider another normalization of1D=c(t) via the Conway polynomialr(z) 2 Z[z]: t�3=21D=c(t) = rD=c(t�1=2 � t1=2) = rD=c(z)jz=t�1=2�t1=2.
Then we have

(7) a1 � a0 = 2a0 � lk(D=c)
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since (d=dt)1D=c(t)jt=1 =� lk(D=c) (see [9], pp. 83), where lk(D=c) is the linking num-
ber of D=c.

The coefficientsa0 anda1 are nonzero and have the same sign since the two com-
ponent link diagramD=c is alternating. We can easily confirm thatja0j � ja1j for
each crossing of every non-special generator. By applying single t 02 move, the absolute
value of the linking number is added no more than one andja0j is added at least one.
Considering the equation (7), this fact guarantees thatt 02 moves preserve the inequalityja0j � ja1j. Consequently, we have the polynomial1

Dc
k1
1 c

k2
2 ���ckm

m=c j

(�t) is trapezoidal.

Now we have completed the proof of Lemma 4.4.

4.3. Weakly Newton-like polynomial. A polynomial f (t) is weakly Newton-like
if [ f (t)] j�1[ f (t)] j +1 � [ f (t)] j

2 for j = mindeg f + 1, : : : , maxdegf � 1. A. Stoimenow
proposed the following conjecture.

Conjecture 4.8 ([19]). The Alexander polynomial of an alternating link is weakly
Newton-like.

Note that if the Alexander polynomial of an alternating link1(t) is weakly Newton-
like, then the polynomial1(�t) satisfies the condition (iv) in the trapezoidal property.
In this sense, Stoimenow’s conjecture is a natural strengthening of the trapezoidal con-
jecture. We confirm that Conjecture 4.8 is true for alternating knots of genus two. Let
K be an alternating knot of genus two. Then the normalized Alexander polynomial of
K is of the form1K (t) = a0� a1t + a2t2� a1t3 + a0t4 (a0, a1, a2 2 N). By 1(1) =�1,
we havea2 � 2(a1 � a0) = �1. Then we obtain

a1
2 � a0a2 = a1

2� a0(2(a1 � a0)� 1)

= a1
2� 2a0a1 + 2a0

2 � a0

= (a1 � a0)2 + a0(a0 � 1)

� 0.

The inequalitya2
1 � a2

2 is a consequence of Theorem 1.1.

5. Applications

In this section, we give the two complete lists of the alternating knots of genus
two with [1(t)]0 = 1, and with [1(t)]0 = 2.

5.1. Alternating fibered knots of genus two. The knots inG2 which possess
monic Alexander polynomials are just 51, 5�1, 62, 6�2, 63, 76, 7�6, 77, 7�7, and 812. Note
that the composite knotK1 ℄ K2 is alternating if and only ifK1 and K2 are alternating
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[10]. Composite alternating knots of genus two which possess monic Alexander poly-
nomials are only 31 ℄ 31, 31 ℄ 3�1, 3�1 ℄ 3�1, 31 ℄ 41, 3�1 ℄ 41, and 41 ℄ 41. By this fact and
Corollary 4.6, we obtain the complete list of the alternating knots of genus two with
[1(t)]0 = 1.

Theorem 5.1. The alternating knots of genus two with[1(t)]0 = 1 are just 51,
5�1, 62, 6�2, 63, 76, 7�6, 77, 7�7, 812, 31 ℄31, 31 ℄3�1, 3�1 ℄3�1, 31 ℄41, 3�1 ℄41, and 41 ℄41.

The normalized Alexander polynomials of these composite knots are as follows:

131℄31(t) = 1� 2t + 3t2� 2t3 + t4,

131℄41(t) = 1� 4t + 5t2� 4t3 + t4,

141℄41(t) = 1� 6t + 11t2� 6t3 + t4.

Therefore we obtain the following corollary.

Corollary 5.2. The normalized Alexander polynomials which satisfy the trape-
zoidal property

1� n1t + (2n1 � 1)t2 � n1t3 + t4 for n1 = 4 or n1 � 8,

1� n2t + (2n2 � 3)t2 � n2t3 + t4 for n2 � 6

are never realized by those of an alternating knot.

The following example shows that the trapezoidal property and Ozsváth-Szabó’s
inequality (1) are not enough to characterize the Alexanderpolynomials of alternating
knots.

EXAMPLE 5.3. The polynomial1(t) = 1�4t +7t2�4t3+t4 is the Alexander poly-
nomial of a knot which has the trapezoidal property. The solutions of the equation 1�
4t +7t2�4t3+t4 = 0 aret =

�
2
p

2+
pp

17� 1
�=(2p2)+

p�1
��p

2+
pp

17 + 1
�=(2p2)

�
,�

2
p

2�pp17� 1
�=(2p2)+

p�1
��p

2�pp17 + 1
�=(2p2)

�
, and their conjugates. We

denote them by�1, �2, �1, and �2 respectively. For a knotK , the number of zeros
of 1K (t) in fz 2 C n R j jzj = 1g, counted with multiplicity, is greater than or equal
to j� (K )j (see [8], pp. 161–162). Notice thatj�1j > 1 and j�2j < 1. Hence the sig-
nature of any knot which possesses this Alexander polynomial is equal to zero. The
polynomial1(t) = 1�4t + 7t2�4t3 + t4 satisfies Ozsváth-Szabó’s inequality (1). How-
ever, this polynomial is never realized by an alternating knot. Incidentally, the non-
alternating knot 944 possesses this polynomial.

An alternating link is fibered if and only if the Alexander polynomial of the link
is monic [14]. By Theorem 5.2, we obtain the following corollary.
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Fig. 14.

Corollary 5.4. The alternating fibered knots of genus two are just51, 5�1, 62, 6�2,
63, 76, 7�6, 77, 7�7, 812, 31 ℄ 31, 31 ℄ 3�1, 3�1 ℄ 3�1, 31 ℄ 41, 3�1 ℄ 41 and 41 ℄ 41.

We denote the set of the alternating fibered knots of genus twoby AF2.
K. Murasugi showed that the alternating prime knots of genus two, whose Alexander

polynomials are monic admit only the following knots: 51, 62, 63, 76, 77, 812 in [13]
(see also the review in AMS MathSciNet mathematical reviews onthe Web written by
R.H. Fox [4]). Our argument gives an alternative proof for this claim.

5.2. Alternating knots of genus two with [∆(t)]0 = 2. Next we discuss the
normalized Alexander polynomials of alternating knots of genus two with [1(t)]0 = 2.
The knots inG2 which possess the normalized Alexander polynomial with [1(t)]0 = 2
are just 75, 7�5, 814, and 8�14.

We name the crossings of the diagram inAF2 as shown in Fig. 14. Then, by Corol-
lary 4.6, we obtain each of the other alternating knots of genus two with [1]0 = 2
by applying oncet 02 move at a crossing of a diagram inAF2 as follows: 5c1

1 = 73,
6c1

2 = 811, 6c2
2 = 84, 6c3

2 = 86, 6c1
3 = 813, 6c2

3 = 88, 6c3
3 = 88, 6c4

3 = 813, 7c1
6 = 98, 7c2

6 = 921,
7c3

6 = 915, 7c4
6 = 912, 7c1

7 = 914, 7c2
7 = 914, 7c3

7 = 919, 7c4
7 = 937, 7c5

7 = 919, 8c1
12 = 1035,

8c2
12 = 1013, 8c3

12 = 1035, 8c4
12 = 1013.

Then we obtain the following theorem.

Theorem 5.5. The alternating prime knots of genus two with a0 = 2 are just the
following knots: 73, 75, 84, 86, 88, 811, 813, 814, 98, 912, 914, 915, 919, 921, 937,
1013, 1035, and their mirror images. The alternating composite knots of genus two
with a0 = 2 are just the following knots: 31 ℄ 52, 3�1 ℄ 52, 31 ℄ 5�2, 3�1 ℄ 5�2, 31 ℄ 61,
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3�1 ℄ 61, 31 ℄ 6�1, 3�1 ℄ 6�1, 41 ℄ 52, 41 ℄ 5�2, 41 ℄ 61, and 41 ℄ 6�1.

The Alexander polynomials of these knots are given below:

173(t) = 2� 3t + 3t2 � 3t3 + 2t4,

175(t) = 2� 4t + 5t2 � 4t3 + 2t4,

184(t) = 2� 5t + 5t2 � 5t3 + 2t4,

186(t) = 2� 6t + 7t2 � 6t3 + 2t4,

188(t) = 2� 6t + 9t2 � 6t3 + 2t4,

1811(t) = 2� 7t + 9t2 � 7t3 + 2t4,

1813(t) = 2� 7t + 11t2 � 7t3 + 2t4,

1814(t) = 2� 8t + 11t2 � 8t3 + 2t4,

198(t) = 2� 8t + 11t2 � 8t3 + 2t4,

1912(t) = 2� 9t + 13t2 � 9t3 + 2t4,

1914(t) = 2� 9t + 15t2 � 9t3 + 2t4,

1915(t) = 2� 10t + 15t2� 10t3 + 2t4,

1919(t) = 2� 10t + 17t2� 10t3 + 2t4,

1921(t) = 2� 11t + 17t2� 11t3 + 2t4,

1937(t) = 2� 11t + 19t2� 11t3 + 2t4,

11013(t) = 2� 13t + 23t2� 13t3 + 2t4,

11035(t) = 2� 12t + 21t2� 12t3 + 2t4,

131℄52(t) = 2� 5t + 7t2 � 5t3 + 2t4,

131℄61(t) = 2� 7t + 9t2 � 7t3 + 2t4,

141℄52(t) = 2� 9t + 13t2 � 9t3 + 2t4,

141℄61(t) = 2� 11t + 19t2� 11t3 + 2t4.

Then we obtain the following corollary.

Corollary 5.6. The Alexander polynomials which satisfy the trapezoidal property

2�m1t + (2m1 � 3)t2 �m1t3 + 2t4 for m1 = 8 or m1 � 14,

2�m2t + (2m2 � 5)t2 �m2t3 + 2t4 for m2 � 12

are never realized by those of an alternating knot.
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EXAMPLE 5.7. The polynomial1(t) = 2� 8t + 13t2� 8t3 + 2t4 is the Alexander
polynomial of a knot which has the trapezoidal property. Thesolutions of the equation

2�8t +13t2�8t3 +2t4 = 0 aret =
�
4+
pp

33� 1
�Æ

4+
p�1

��p
2+
pp

33 + 1
�Æ

4
�
,
�
4�pp

33� 1
�Æ

4 +
p�1

��p
2�pp33 + 1

�Æ
4
�
, and its conjugates. By the same argument

as Example 5.3, the signature of a knot which possesses this Alexander polynomial is
equal to zero. This polynomial satisfies Ozsváth-Szabó’s inequality (1). However, this
polynomial is never realized by an alternating knot. Incidentally, the non-alternating
knot 10146 possesses this polynomial.
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