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Abstract
Given a precovering (also called contravariantly finitedsslF there are three
natural approaches to a homological dimension with respec¢t: One based on
Ext functors relative to=, one based oifF-resolutions, and one based on Schanuel
classes relative t6. In general these approaches do not give the same resuhisin t
paper we study relations between the three approaches,atodave give necessary
and sufficient conditions for them to agree.

1. Introduction

The fact that the category of modules over any rRRdas enough projectives is a
cornerstone in classical homological algebra. The exigtesf enough projective mod-
ules has three important consequences:

e For every moduleA, andn = 0 one can define the Exunctor,

EthR(_i A):

with well-known properties, see [4, Chapter V].
e Every moduleM admits aprojective resolution cf. [4, Chapter VI:

) Py Po M 0.

e Every moduleM represents a projective equivalence claby,[and to this one
can associate itSchanuel class

S([M]) = [Ker =],

where: P — M is any epimorphism and is projective. One can also consider
the iterated Schanuel mag®'(—) for n = 0, see Schanuel's lemma [14, Chapter 4,
Theorem A].
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The three fundamental types of objects described above-fdBxtors, projective reso-
lutions, and Schanuel classes—are linked together asynicebne could hope for, in
the sense of the following well-known result (see [4, ChapteProposition 2.1]):

Theorem A. For any R-module M and any integer re 0 the following condi-
tions are equivalent
(Em.n) ExtEY(M, A) =0 for all R-modules A
(Rm.n) There exists a projective resolution for M of length n

0 Pn o Po M 0.

(Sw.n) S"([M]) =[0].

The equivalent conditions of this theorem define what it rsefor M to have pro-
jective dimension< n. Note how the conditions above are labelled according to the
mnemonic rules: E” for Ext, “R” for Resolution, and S’ for Schanuel.

In relative homological algebra, one substitutes the ctdgsrojective modules by
any otherprecoveringclassF, see 2.2. The fact tha& is precovering allows for well-
defined constructions (see [8, Chapter 8] and [9, Lemma 21£2])

e Ext functors_Ext(—, A) relative toF;

e F-resolutions, -+ — F, - F; - Fp — 0; and

e Schanuel mapsF(—) relative toF.

The study of relative homological algebra goes back to [10}, &nd there is much
literature on the subject. Just to mention a few example®ci@prelative Ext functors
(or cohomology theories) have been studied in e.g. [2, 7,183, and special relative
resolutions and precovers have been investigated in €.§,[8, 12]. Relative Schanuel
classes appear in e.g. [9, 16].

One could hope that there might exist a@mVersion” of Theorem A, indeed, one
would need such a theorem to have a rich and flexible notiomdf-dimension. Un-
fortunately, Theorem A fails for a general precovering slels The aim of this paper is
to understand, for a given precovering cl&sthe different kind of obstructions which
keep theF-version of Theorem A from being true. Our results can be sanzed in
the following diagram:

(E)

Lemma 5.3, Corollary 5.5, Lemma 3.3, Theorem 3.9,

Example 5.2 Proposition 3.8

Proposition 5.1
Proposition 3.1

Theorem 4.4, Example 4.2

(S (R).

Theorem 4.8, Example 4.7
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For example, this diagram tells that for a general precageglassF, information
about the implication:

(*) (Rm.n) = (Su,n) for all modulesM and all integersr = 0

can be found in Theorem 4.8 which, in fact, asserts thatgq equivalent to the prop-
erty that every mond--precover is an isomorphism. Furthermore, 4.7 gives exasnpl
of classesF for which (x) fails.

The paper is organized as follows: Section 2 is preliminarg eecalls the defini-
tions of Ext functors, resolutions, and Schanuel classéls smspect td=. In Section 3
we investigate the relationship betwedn) (and [R); in Section 4 the one betweelRR)
and (), and in Section 5 the one betwee8) @nd E), as illustrated above.

2. Preliminaries

SETUP 2.1. ThroughoutR will be a ring, and all modules will be lefR-modules.
We write Mod R for the category of (left)R-modules, andAb for the category of
abelian groupsF will be any precovering class of modules, cf. 2.2 below, Wwhion-
tains 0 and is closed under isomorphism and finite direct sums

PRECOVERING CLASSES2.2. For definitions and results on precovering classes
we generally follow [8, Chapter 5 and 8]. We mention here mgew notions which
will be important for this paper.

Let F be a class of modules. AR-precoverof a moduleM is a homomorphism
F — M with F € F, such that given any other homomorphigth— M with F’ € F
there exists a factorization,

If every module admits arF-precover therF is called precovering An (augmented)
F-resolutionof a moduleM is a complex (which is not necessarily exact),

P2 F 2 s Fp—2 s M 0,

with Fg, F1, Fo, ... €F, such that

R ) B F R B (R R B (R M) ——0

is exact for allF € F. WhenF is precovering, and’ : Mod R — Ab is a contravari-



722 H. HoLm

ant additive functor, then one can well-define th¢h right derived functor ofT rela-
tive to F,

RIT: Mod R — Ab.

One computes R (M) by taking a non-augmenteftresolution of M, applying T to
it, and then taking theé-th cohomology group of the resulting complex. For a module
A we write:

Ext}(—, A) = R Homg(—, A).

Note that we underline the Ext for good reasons: There is alswtion of apre-
envelopingclass. IfG is preenveloping then one can right derive the Hom functor in
the covariant variable with respect @ Thus for eachR-module B there are functors
Exia(B, —). However, in general,

Ext!(B, A) 2 Ext3(B, A)

even ifF =G is both precovering and preenveloping. For example, overitig R=7Z,
the class- = G = InjZ of injective (i.e. divisible)Z-modules is both precovering, cf. [8,
Theorem 5.4.1], and preenveloping. AFZ is injective asZ-module, it is trivial that

Exty, ,(Q/Z, Z) = 0,

however, for the classical Ext we have

EXty, ,(Q/Z, Z) = Homy(Q/Z, Q/Z) # 0.

F-EQUIVALENCE 2.3. Two modulesK and K’ are calledF-equivalent and we
write K =¢ K’, if there existF, F' e F with K® F' = K’ & F. We use K] =[K]¢
to denote theF-equivalence class containirg.

Now let M be any module. By the version of Schanuel's lemma found in [9,
Lemma 2.2], the kernels of any twe-precovers ofM are F-equivalent. Thus the class
[Kerg¢], whereg: F — M is any F-precover ofM, is a well-defined object depending
only on M. We write

Se(M) = [Ker ¢].

As F is closed under finite direct sums; cf. Setup 2.1, it is nodharsee thatSg(M)
only depends on the~-equivalence class oM, and hence we get the induced
Schanuel map:

Mod R/=¢ 2 Mod R/=k.

Forn > 0 we write S? for the n-fold composition ofS¢ with itself, and we sets? = id.
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This paper is all about studying relations between the d¢mmdi from the follow-
ing definition.

DEFINITION 2.4. For any moduléM and any integen > 0 we consider the con-
ditions:
(Em.n) Ext*(M, A) =0 for all modulesA.
(Rwm.n) There exists an (augmenteBjresolution of the form

0 Fn s Fo M 0.

(Sw.n) SE(IM]) =[0].

The conditions in Definition 2.4 are labelled according te thnemonic rules: E” for
Ext, “R” for Resolution, and S’ for Schanuel.

3. Relative Ext functors and resolutions

In this section we study how the Ext condition and the resmtutondition of Def-
inition 2.4 are related. It is straightforward, cf. Propgmsi 3.1 below, that the resolu-
tion condition implies the Ext condition. The converse i3,general, not true, but in
Theorem 3.9 we give a sufficient condition énfor this to happen.

Proposition 3.1. For any precovering clas§ we have
(Rm.n) = (Em,n) for all modules M and all integers g 0.

EXAMPLE 3.2. There exist precovering classes which are not closddrutirect
summands: LetR be a left Noetherian ring which is not Quasi-Frobenius, aatl s
D = R® E whereE # 0 is any injectiveR-module. LetF be the class of all modules
which are isomorphic tdd®) for some index setA (here D? = 0). Note thatF is
precovering as for example d@rprecover of a modulév is given by the natural map

D(HomR(D,M)) - M.

To see thafF is not closed under direct summands we note thas a direct summand
of D € F. However, there exists no set for which E = D@,

The example above makes the following lemma relevant:
Lemma 3.3. A necessary condition fof to satisfy the implication
(Em,0) = (Rm,0) for all modules M

is that F is closed under direct summands
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Proof. Assume thaF is not closed under direct summands. Then there exists an
F € F and a direct summan®l of F with M ¢ F. We claim that Ey o) holds but
that (Ru,0) does not:

As M is a direct summand of, and asF is closed under finite direct sums,
cf. Setup 2.1, the abelian group B, A) is a direct summand of EXF, A) for
every moduleA. The latter is zero a§ € F, and hence also EXtM, A) = 0. Now
suppose for contradiction that there do existraresolution of M of length zero:

o

0 Fo M 0.

We claim thatd, must be an isomorphism (contradicting the fact thbat F). As M is
a direct summand oF there is an embedding M — F and a projectionz: F — M
with ¢ =idy. As do is anF-precover ofM, we get a factorization:

Fy——M
do

It follows that dg(pt) = 71 =idy, SO dg is epi and the sequence

0
(1) 0 Ker 9o Fo Tﬁt_ M——0

splits. By assumption, Hog{G, dp) is mono for allG € F, so by ) it follows that
Homg(G, Kerdp) =0 for all G € F. In particular,

Homg(Fo, Kerdp) =0,

and therefore Key = 0 since Kemy is a direct summand oFy. Consequentlydg is
an isomorphism. ]

Lemma 3.4. For a homomorphisny: F — M the following two conditions are
equivalent
(a) Every endomorphism:gM — M with gy = ¢ is an automorphism
(b) Every endomorphism:gM — M with gy = ¢ admits a left inverse

Proof. We only need to show that (b) implies (a): df = ¢ then (b) gives a
homomorphismw: M — M with vg =idy. Now

vp = vgy = idve =@,

so another application of (b) gives that alsdas a left inverse. As hasg as a right
inverse,v must be an automorphisms wittt! = g. ]
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DEeFINITION 3.5. A homomorphismp: F — M satisfying the equivalent condi-
tions of Lemma 3.4 is calledlmost epi(Auslander referred to these &t minimal
see [1, Chapter 1.2]). The precovering classs called precovering by almost epi-
morphismsif every module has ai-precover which is almost epi.

ExampPLE 3.6. Clearly, every epimorphism is almost epi but the cosweés, in
general, not true as for example

7357

is an almost epimorphism of abelian groups. It follows fromnmma 3.7 below that
if a precovering class contains all free modules, then itrecpvering by almost epi-
morphisms.

Lemma 3.7. If there exists an almost epi homomorphismF — M with F e F
then everyF-precover of M is almost epi

Proof. If §: F — M is any F-precover ofM then there exists a factorization,

7
v o,
v
v
F—
¢

12

S~

For any endomorphisng: M — M with g¢ = ¢ it follows that
9 =90V = oY =g,
and henceg must be an automorphism singeis almost epi. 0

The next proposition gives much more information than 3#&maely that there do
indeed exist module class&swhich are precovering by almost epimorphisms, without
every F-precover being epi. We postpone the proof of Propositidht8.the end of
this section.

Proposition 3.8. Consider the local ring R= Z/47Z. We denote the generator
2+47 of the maximal ideal by, and the residue class field/i) = F, by k Further-
more if F = Addk is the class of all direct summands of set-indexed coptsdat
copies of k then
(a) F is precovering by almost epimorphisp. Definition 3.5.

(b) R does not admit an efH-precover
(c) The exists mon&-precovers which are not isomorphisms
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The reason we are interested in classes which are precgvesinalmost epi-
morphisms is because of the next result:

Theorem 3.9. Assume thaF is closed under direct summands and is precovering
by almost epimorphismsThen

(Em.n) = (Rm,n) for all modules M and all integers g O.
Proof. First we deal with the case=0: Thus letM be any module, and assume
thatg&(M, A) =0 for all modulesA. We must prove the existence of &mresolution

of M of length zero,

0 Go M 0.

By assumption orF we can build anF-resolution of M by successively taking al-
most epiF-precoversyo, ¢1, 2, - - - :

0 0 0

A i
7/ 7/
’

K1/ A M
(/)2/'32& 0 %/yf’o\
--—)Fz Fl F()
N
Ky

M 0
S

0 0

We keep in mind that th&-precoversp, are not necessarily epi, and this is the reason
why some of the arrows in the diagram above have been dottpglyihg Hong(—, A),
for any moduleA, to the Hong(F, —) exact complex,

0 Ko Fo M 0,
induces by [8, Theorem 8.2.3 (2)] an exact sequence of vel&kt groups,
(+) Ex2(Fo, A) —— Ext2(Ko, A) ——Ext(M, A) = 0.
As Fp e F we haveL@(Fo, A) = Homg(Fg, A). Furthermore,
Ext2(Ko, A) = Ker Homg(dz, A) = {f € Homg(Fy, A) | T, =0},

andg is given byg — gd1 for g € Homg(Fo, A). Applying these considerations fo= Kg
and ¢; € Ext2(Ko, Ko), exactness of«) implies the existence of g € Homg(Fo, Ko)
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with ga; = ¢y, that is, gipp1 = 1. AS @1 is almost epi,gip: Ko — Kg must be an auto-
morphism, and hence the sequence

i
0—— Koz Fy—5 Fy/Ky ——>0
(gio)"'g

is split exact. In particularfo/Ko € F asF is closed under direct summands. It fol-
lows easily that the bypy: Fo — M induced homomorphisnpg: Fo/Kg — M is a
mono F-precover ofM, and thus

0—>F0/K0LM —0

is an F-resolution of M of length zero.
Forn > 0 we proceed by induction: If EX(M, —) = 0 then we take aR-precover
do: Fo — M of M. By [8, Theorem 8.2.3 (2)] the complex

() 0 Ker do Fo—2sM 0

induces a long exact sequence of relative Ext groups:

0 = Ex{(Fo, —) —— Extl(Ker dp, —) —— Ext™(M, —) = 0.

It follows that Exf(Kerds, —) = 0, so the induction hypothesis implies that Kgrad-
mits anF-resolution of lengthn — 1, say,

(€3] 0 Fn e F1 Ker do 0.
Gluing (i) onto () we get anF-resolution of M of lengthn. ]

Proof of Proposition 3.8. Note th& =7/47Z is a two-dimensionak-vector space
with basis{1,£}, so every element oR has a unique representation of the foarm b&
wherea, b € k = Fy.

Just as in Example 3.2 it follows th#& = Add k is precovering, but shortly we
shall prove this more directly. It is useful to observe that@anomorphismF — M
with F € F is anF-precover ofM if and only if every homomorphisrk — M admits
a factorization:

() P l
)4

F—M.

One important consequence of this is thaFjf— M; is a family of F-precovers then
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the coproduct] [; Fj — [[; M; is again anF-precover. For every € k there is an
R-linear map

¢c: kK— R, amr act,

and it is not hard to see that eveR-linear mapk — R has the formg; for some
¢ € k. Combining this with the commutative diagram

the observationt) implies thaty;: k — R is anF-precover ofR. Clearly, ¢1 is mono,
and since it is not epiR cannot be the homomorphic image of any module frem
This proves parts (b) and (c) of the proposition.

It remains to prove part (a), namely that evdRymodule admits an almost epi
F-precover. It is well-known that every module ovBr= 7Z/47 is isomorphic to one
of the formk(") @ R for suitable index set$ and J. Hence we only need to show
that the modulek) @ R has an almost epk-precover. By the observatiomn)(it
follows that

&) W=<id6(” w?”) kD
——mD
k) R

is an F-precover. To argue that is almost epi we let

I _( 811 812 1
k( ) 8 (821 gzz) k( )

O——m>D
RY) RY)

be any endomorphism withh = gp. We must prove thay is an automorphism. By
assumption,

%) idio OJ _ ( Oun O ) idwo OJ _ [ 9u 912</)§J)
0 <P£ ) 021 O 0 </)§ ) O21 922905”
In particular it follows thatg;; = idyy and go; =0, sog takes the form

_ ( ido 912>
g ( 0 g2/
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If we can prove thaty,: R®) — RO is an automorphism, theg must be an auto-
morphism as well with inverse

-1 _ ( idey  —012 055 )
g = -1 .
0 (7Y

To see thatgy, is an automorphism we use another relation frof), (namely that
<pf) = gzz(pf), or equivalently, @, — idR(J))(pf) = 0. Since Imp; = k& C R it is not
hard to see that

Opo — idrey = & f

for some homomorphisnf : R®) — R, Now, using thatR has characteristic two
and thatt2 = 0 it follows that:

0%, = (idro + £ )7 = idg) + 26 f + €22 = idro),
and thusgy, is an automorphism which is its own inverse. O

4. Relative resolutions and Schanuel maps

In this section we study how the resolution condition and $tohanuel condition
of Definition 2.4 are related. In general, neither of these wonditions imply the
other, however, in Theorems 4.4 and 4.8 we give necessarseifidient conditions
for this phenomenon to happen.

DEFINITION 4.1. We say thafF is weakly closed under direct summanifigor
any F € F and any direct summanil in F with F/M € F, the moduleM belongs toF.

EXAMPLE 4.2. There exist precovering classes which are not closekruset-
indexed coproducts: A trivial example can be constructeer @vfield R = k by letting
F be the class ok-vector spaces of dimension, say,RX¢. In fact, it is easy to see
that F is not weakly closed under direct summands either.

A little more natural is the precovering clagsfrom Example 3.2, which is not
closed under direct summands. Ads closed under set-indexed coproducts, it follows
from Proposition 4.3 below thek is not even weakly closed under direct summands.

Proposition 4.3. A precovering classk is closed under direct summands if and only
if Fis weakly closed under direct summands and closed undendeted(respectively
countablé coproducts inMod R.
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Proof. “If”: Let M be a direct summand d¥ € F, that is, there exists some mod-
ule M’ with F =M @ M’. Using Eilenberg’s swindle we consid&™ and note that

(%) Mg F® = @),

As F is closed under countable coproducE® e F, and then £) implies thatM e F
sinceF is weakly closed under direct summands.

“Only if”: If F is closed under direct summands then obviouslis also weakly
closed under direct summands. Sineds precovering and closed under direct sum-
mands, the argument in [8, proof of Theorem 5.4.1,=2]J1)] shows thatF is closed
under set-indexed coproducts. ]

The reason we are interested in classes which are weaklgcclosder direct sum-
mands is because of the next result.

Theorem 4.4. A precovering clas§ satisfies
(2) (Sv.n) = (Rw,n) for all modules M and all integers B0
if and only if F is weakly closed under direct summands

Proof. “Only if”: Let M be a direct summand of a modufewhereF,F/M € F.
As M@F/M = 04 F we see thaM is F-equivalent to 0, that isS2([M]) = [M] =[0].

Now the assumptiong] implies the existence of aR-resolution of M of length zero,

(%) 0 Fo % M 0.

As in the end of the proof of Lemma 3.3 we see thais an isomorphism, and hence
M = Fy € F as desired.

“If": We prove (t) by induction onn: Suppose thah = 0 and thatS2([M]) =
[M] =[0]. By definition there existF’, F € F with M@® F =0& F = F, and sinceF
is weakly closed under direct summands it follows thkgt=M € F. Thus 0— Fy =
M — 0 is anF-resolution ofM of length zero. The induction step is straightforward:
If n> 0 andSP([M]) =[0] then we take arF-precover

() 0 Ker 9 Fo—— M 0.

It follows that 82‘1([Ker8]) =[0], so the induction hypothesis implies the existente o
an F-resolution of Kew of lengthn— 1. Pasting this resolution together with) @ives
an F-resolution ofM of length n. O

DEFINITION 4.5. A (precovering) clas§ is said to beseparatingif for every
module M # 0 there exists a non-zero homomorphigm— M with F € F.
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Lemma 4.6. For a precovering clas$ the following hold
(a) If every monoF-precover is an isomorphism thénis separating
(b) If F is separating andd: A — B is a homomorphism such th&tomg(F, 9) is
mono for all Fe F, thend is mono

Proof. “(a)”: If M is a module with Hom(F, M) =0 for all F € F then the map
0 — M is a monoF-precover. Thus B> M is an isomorphism by assumption, that
is, M =0.

“(b)": Applying, for any F € F, the left exact functor Hog(F, —) to

0 Ker 3 A—>B

and using that Hom(F, 9) is mono, we get that Hog(F, Kerd) = 0. AsF is sepa-
rating it follows that Ke = 0, that is,d is mono. ]

EXAMPLE 4.7. In Proposition 3.8 we saw an example of a precoveringsdfa
for which there exist mon&-precovers which are not isomorphisms. We now give two
additional (more natural) examples:

(@) Let R be a commutative Noetherian ring which is not Artinian. Rsis Noether-
ian the classF = Inj R of injective R-modules is precovering by [8, Theorem 5.4.1].
However, asR is not Artinian, F is not separating by [16, Corollary 2.4.11], and
hence Lemma 4.6 (a) implies that there must exist mBrrecovers which are not
isomorphisms.

(b) Let R be a commutative integral domain, and consider for any neodllits tor-
sion submodule

Mt ={x e M | rx =0 for somer € R\ {0}}.

A module M is calledtorsionif Mt = M, and of course the torsion submodule of any
module is torsion. The torsion modules constitutes a prdoy class, in fact, given
a moduleM it is not hard to see that the inclusiaiy — M is a torsion precover
of M. In particular, 0 =Ry — R is a mono torsion precover dR which is not an
isomorphism.

The following result shows why we are interested in preciogeclasses for which
every mono precover is an isomorphism.

Theorem 4.8. A precovering clas$ satisfies

®) (Rm,n) = (Su,n) for all modules M and all integers B0

if and only if every mond--precover is an isomorphism
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Proof. “Only if”: Any mono F-precoverg: Fp — M gives anF-resolution of
M of length zero, 0— Fy % M — 0. Thus our assumption implies th&ﬁ([M]) =
[M]=1[0]. In particular, M is a homomorphic image of some € F, and hence the
F-precoverp must be epi. Consequently, is an isomorphism.

“If”. We prove (b) by induction onn, beginning with the case = 0: Thus, as-
sume thatM admits anF-resolution of length zero, say,

(*) 0 Fo——M 0.

We must argue thas?([M]) = [0]. Actually, we prove something even stronger, namely
that M € F. Since ) is anF-resolution, Hong(F, 9) is an isomorphism for alF € F.
Hence our assumption and Lemma 4.6 (a) and (b) givesahd&l, — M is a mono
F-precover. Another application of our assumption then giveatd is an isomorphism,
and thusM = Fy e F.

The induction step is easy: Suppose thMatadmits anF-resolution of lengtm >
0, say,

0 0 Fr Fi— s Fo—2 s M 0.

We break up {) into two complexes,

1) 0 F, . Fi —2 s Kerdp 0,

@) 0 Ker o Fo—2 M 0,

where 3, is the co-restriction ofd; to Kerdo. It is not hard to see that (1) is an
F-resolution of Kedy, and hence the induction hypothesis gives tﬁ,&fl([Ker do)) =
[0]. By (2), Se([M]) = [Ker d], and it follows thatS{([M]) = SE‘lsp([M]) =1[0], as
desired. ]

5. Relative Schanuel maps and Ext functors

In this final section we compare the Schanuel condition aedBkt condition of
Definition 2.4. While it is true that the Schanuel conditionplies the Ext condition,
cf. Proposition 5.1, the converse is, in general, not trueLbsnma 5.3. However, in
Corollary 5.5 we give a sufficient condition for this to happe

Proposition 5.1. For any precovering clas§ we have
(Svn) = (Em,n) for all modules M and all integers B 0.

Proof. We use induction on. If SX([M]) = [0] then, in particular,M is a di-
rect summand of som& € F. As Ext(F, —) = 0 it follows that Ex¢(M, —) = 0.
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Now let n > 0 and assume tha$f([M]) = [0]. If ¢: F — M is an F-precover then
82*1([Ker<p]) =[0], and the induction hypothesis implies that Hxergp, —) = 0. By
[8, Theorem 8.3.2 (2)] there is an induced long exact seaienc

0 = Exii(Kergp, —) —— ExtI*(M, =) —— Ext™*(F, =) =0
from which the desired conclusion follows. O

ExAMPLE 5.2. We have already seen examples of classes where morav@rec
are not necessarily isomorphisms, cf. Proposition 3.8 axahiple 4.7.

Lemma 5.3. A necessary condition fof to satisfy the implication
(Em.0) = (Su,0) for all modules M
is that every mond--precover is an isomorphism

Proof. LetF — M be a monoF-precover. The Hom(F, —) exact complex 0
0—- F —> M — 0 gives a long exact sequence:

0 =Ex£(0, -) ——Extr(M, =) ——Ext}(F, -) =0,

from which it follows that Ext(M, —) = 0. By our assumptions we then gg([M]) =

[M] =1[0], in particular, M is a homomorphic image of some moduleRn Therefore

the monoF-precoverF — M must be surjective as well, and hence an isomorphism.
O

REMARK 5.4. In particular, the class from Proposition 3.8 satisfies the impli-
cation “(E) = (R)” but not “(E) = (9)", cf. Theorem 3.9 and Lemma 5.3.

Assuming the necessary condition from Lemma 5.3, the fotigwesult is an im-
mediate corollary of Theorems 3.9 and 4.8.

Corollary 5.5. Assume that every more-precover is an isomorphismthat F
is closed under direct summandand thatF is precovering by almost epimorphisms
Then

(Em.n) = (Su,n) for all modules M and all integers B 0.
REMARK 5.6. The dual notion of a precover is @eenvelopge see [8, Chap-

ter 6]. For apreenvelopingclassG, the reader can imagine how to construct Ext func-
tors, resolutions, and Schanuel maps relativéstosee also [8, Chapter 8].
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Not surprisingly, every result in this this paper has anegaé in this “preenveloping
context”. We leave it as an exercise for the interested retadeerify this claim.
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