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Abstract
Given a precovering (also called contravariantly finite) class F there are three

natural approaches to a homological dimension with respectto F: One based on
Ext functors relative toF, one based onF-resolutions, and one based on Schanuel
classes relative toF. In general these approaches do not give the same result. In this
paper we study relations between the three approaches above, and we give necessary
and sufficient conditions for them to agree.

1. Introduction

The fact that the category of modules over any ringR has enough projectives is a
cornerstone in classical homological algebra. The existence of enough projective mod-
ules has three important consequences:
• For every moduleA, and n > 0 one can define the Extfunctor,

ExtnR(�, A),

with well-known properties, see [4, Chapter V].
• Every moduleM admits aprojective resolution, cf. [4, Chapter V]:

� � � !P2 !P1 !P0 !M !0.

• Every moduleM represents a projective equivalence class [M], and to this one
can associate itsSchanuel class,

S([M]) = [Ker � ],

where � : P ! M is any epimorphism andP is projective. One can also consider
the iterated Schanuel mapsSn(�) for n > 0, see Schanuel’s lemma [14, Chapter 4,
Theorem A].
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The three fundamental types of objects described above—Extfunctors, projective reso-
lutions, and Schanuel classes—are linked together as nicely as one could hope for, in
the sense of the following well-known result (see [4, Chapter V, Proposition 2.1]):

Theorem A. For any R-module M, and any integer n> 0 the following condi-
tions are equivalent:
(EM,n) Extn+1

R (M, A) = 0 for all R–modules A.
(RM,n) There exists a projective resolution for M of length n,

0 !Pn !� � � !P0 !M !0.

(SM,n) Sn([M]) = [0].

The equivalent conditions of this theorem define what it means for M to have pro-
jective dimension6 n. Note how the conditions above are labelled according to the
mnemonic rules: “E” for Ext, “ R” for Resolution, and “S” for Schanuel.

In relative homological algebra, one substitutes the classof projective modules by
any otherprecoveringclassF, see 2.2. The fact thatF is precovering allows for well-
defined constructions (see [8, Chapter 8] and [9, Lemma 2.2])of:
• Ext functors ExtnF(�, A) relative toF;
• F-resolutions, � � � ! F2! F1! F0! 0; and
• Schanuel mapsSn

F (�) relative toF.
The study of relative homological algebra goes back to [10, 11], and there is much
literature on the subject. Just to mention a few examples: Special relative Ext functors
(or cohomology theories) have been studied in e.g. [2, 7, 13,15], and special relative
resolutions and precovers have been investigated in e.g. [3, 5, 6, 12]. Relative Schanuel
classes appear in e.g. [9, 16].

One could hope that there might exist an “F-version” of Theorem A, indeed, one
would need such a theorem to have a rich and flexible notion of an F-dimension. Un-
fortunately, Theorem A fails for a general precovering class F! The aim of this paper is
to understand, for a given precovering classF, the different kind of obstructions which
keep theF-version of Theorem A from being true. Our results can be summarized in
the following diagram:
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For example, this diagram tells that for a general precovering classF, information
about the implication:

(RM,n) ) (SM,n) for all modulesM and all integersn > 0(�)
can be found in Theorem 4.8 which, in fact, asserts that (�) is equivalent to the prop-
erty that every monoF-precover is an isomorphism. Furthermore, 4.7 gives examples
of classesF for which (�) fails.

The paper is organized as follows: Section 2 is preliminary and recalls the defini-
tions of Ext functors, resolutions, and Schanuel classes with respect toF. In Section 3
we investigate the relationship between (E) and (R); in Section 4 the one between (R)
and (S), and in Section 5 the one between (S) and (E), as illustrated above.

2. Preliminaries

SETUP 2.1. Throughout,R will be a ring, and all modules will be leftR-modules.
We write Mod R for the category of (left)R-modules, andAb for the category of
abelian groups.F will be any precovering class of modules, cf. 2.2 below, which con-
tains 0 and is closed under isomorphism and finite direct sums.

PRECOVERING CLASSES2.2. For definitions and results on precovering classes
we generally follow [8, Chapter 5 and 8]. We mention here justa few notions which
will be important for this paper.

Let F be a class of modules. AnF-precoverof a moduleM is a homomorphism
F ! M with F 2 F, such that given any other homomorphismF 0 ! M with F 0 2 F
there exists a factorization,

If every module admits anF-precover thenF is called precovering. An (augmented)
F-resolutionof a moduleM is a complex (which is not necessarily exact),

� � � !F2 !�2
F1 !�1

F0 !�0
M !0,

with F0, F1, F2, : : : 2 F, such that

� � � !(F , F2) !(F ,�2)
(F , F1) !(F ,�1)

(F , F0) !(F ,�0)
(F , M) !0

is exact for all F 2 F. When F is precovering, andT : Mod R! Ab is a contravari-
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ant additive functor, then one can well-define then-th right derived functor ofT rela-
tive to F,

Rn
FT : Mod R! Ab.

One computes RnFT(M) by taking a non-augmentedF-resolution of M, applying T to
it, and then taking then-th cohomology group of the resulting complex. For a module
A we write:

ExtnF(�, A) = Rn
F HomR(�, A).

Note that we underline the Ext for good reasons: There is alsoa notion of apre-
envelopingclass. If G is preenveloping then one can right derive the Hom functor in
the covariant variable with respect toG. Thus for eachR-module B there are functors
Ext

n
G(B, �). However, in general,

ExtnF(B, A) ≇ Ext
n
G(B, A)

even if F = G is both precovering and preenveloping. For example, over the ring R = Z,
the classF = G = InjZ of injective (i.e. divisible)Z-modules is both precovering, cf. [8,
Theorem 5.4.1], and preenveloping. AsQ=Z is injective asZ-module, it is trivial that

Ext1Inj Z(Q=Z, Z) = 0,

however, for the classical Ext we have

Ext
1
Inj Z(Q=Z, Z) �= HomZ(Q=Z, Q=Z) 6= 0.

F-EQUIVALENCE 2.3. Two modulesK and K 0 are calledF-equivalent, and we
write K �F K 0, if there existF , F 0 2 F with K � F 0 �= K 0 � F . We use [K ] = [ K ]F

to denote theF-equivalence class containingK .
Now let M be any module. By the version of Schanuel’s lemma found in [9,

Lemma 2.2], the kernels of any twoF-precovers ofM areF-equivalent. Thus the class
[Ker'], where' : F ! M is any F-precover ofM, is a well-defined object depending
only on M. We write

SF(M) = [Ker '].

As F is closed under finite direct sums; cf. Setup 2.1, it is not hard to see thatSF(M)
only depends on theF-equivalence class ofM, and hence we get the induced
Schanuel map:

Mod R=�F
SF�! Mod R=�F.

For n> 0 we writeSn
F for the n-fold composition ofSF with itself, and we setS0

F = id.



RELATIVE Ext GROUPS AND SCHANUEL CLASSES 723

This paper is all about studying relations between the conditions from the follow-
ing definition.

DEFINITION 2.4. For any moduleM and any integern > 0 we consider the con-
ditions:
(EM,n) Extn+1

F (M, A) = 0 for all modulesA.
(RM,n) There exists an (augmented)F-resolution of the form

0 !Fn !� � � !F0 !M !0.

(SM,n) Sn
F ([M]) = [0].

The conditions in Definition 2.4 are labelled according to the mnemonic rules: “E” for
Ext, “R” for Resolution, and “S” for Schanuel.

3. Relative Ext functors and resolutions

In this section we study how the Ext condition and the resolution condition of Def-
inition 2.4 are related. It is straightforward, cf. Proposition 3.1 below, that the resolu-
tion condition implies the Ext condition. The converse is, in general, not true, but in
Theorem 3.9 we give a sufficient condition onF for this to happen.

Proposition 3.1. For any precovering classF we have:

(RM,n) ) (EM,n) for all modules M and all integers n> 0.

EXAMPLE 3.2. There exist precovering classes which are not closed under direct
summands: LetR be a left Noetherian ring which is not Quasi-Frobenius, and set
D = R� E where E 6= 0 is any injectiveR-module. LetF be the class of all modules
which are isomorphic toD(3) for some index set3 (here D∅ = 0). Note thatF is
precovering as for example anF-precover of a moduleM is given by the natural map

D(HomR(D,M)) ! M.

To see thatF is not closed under direct summands we note thatE is a direct summand
of D 2 F. However, there exists no set3 for which E �= D(3).

The example above makes the following lemma relevant:

Lemma 3.3. A necessary condition forF to satisfy the implication:

(EM,0) ) (RM,0) for all modules M,

is that F is closed under direct summands.
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Proof. Assume thatF is not closed under direct summands. Then there exists an
F 2 F and a direct summandM of F with M =2 F. We claim that (EM,0) holds but
that (RM,0) does not:

As M is a direct summand ofF , and asF is closed under finite direct sums,
cf. Setup 2.1, the abelian group Ext1

F(M, A) is a direct summand of Ext1
F(F , A) for

every moduleA. The latter is zero asF 2 F, and hence also Ext1
F(M, A) = 0. Now

suppose for contradiction that there do exist anF-resolution ofM of length zero:

0 !F0 !�0
M !0.

We claim that�0 must be an isomorphism (contradicting the fact thatM =2 F). As M is
a direct summand ofF there is an embedding�: M ! F and a projection� : F ! M
with �� = idM . As �0 is an F-precover ofM, we get a factorization:

It follows that �0('�) = �� = idM , so �0 is epi and the sequence

(†)

splits. By assumption, HomR(G, �0) is mono for all G 2 F, so by (†) it follows that
HomR(G, Ker�0) = 0 for all G 2 F. In particular,

HomR(F0, Ker�0) = 0,

and therefore Ker�0 = 0 since Ker�0 is a direct summand ofF0. Consequently,�0 is
an isomorphism.

Lemma 3.4. For a homomorphism' : F ! M the following two conditions are
equivalent:
(a) Every endomorphism g: M ! M with g' = ' is an automorphism.
(b) Every endomorphism g: M ! M with g' = ' admits a left inverse.

Proof. We only need to show that (b) implies (a): Ifg' = ' then (b) gives a
homomorphismv : M ! M with vg = idM . Now

v' = vg' = idM' = ',

so another application of (b) gives that alsov has a left inverse. Asv hasg as a right
inverse,v must be an automorphisms withv�1 = g.
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DEFINITION 3.5. A homomorphism' : F ! M satisfying the equivalent condi-
tions of Lemma 3.4 is calledalmost epi(Auslander referred to these asleft minimal,
see [1, Chapter 1.2]). The precovering classF is called precovering by almost epi-
morphismsif every module has anF-precover which is almost epi.

EXAMPLE 3.6. Clearly, every epimorphism is almost epi but the converse is, in
general, not true as for example

Z 2��! Z

is an almost epimorphism of abelian groups. It follows from Lemma 3.7 below that
if a precovering class contains all free modules, then it is precovering by almost epi-
morphisms.

Lemma 3.7. If there exists an almost epi homomorphism' : F ! M with F 2 F
then everyF-precover of M is almost epi.

Proof. If '̃ : F̃ ! M is any F-precover ofM then there exists a factorization,

For any endomorphismg : M ! M with g'̃ = '̃ it follows that

g' = g'̃ = '̃ = ',

and henceg must be an automorphism since' is almost epi.

The next proposition gives much more information than 3.6, namely that there do
indeed exist module classesF which are precovering by almost epimorphisms, without
every F-precover being epi. We postpone the proof of Proposition 3.8 to the end of
this section.

Proposition 3.8. Consider the local ring R= Z=4Z. We denote the generator
2+4Z of the maximal ideal by� , and the residue class field R=(� ) �= F2 by k. Further-
more, if F = Add k is the class of all direct summands of set-indexed coproducts of
copies of k, then:
(a) F is precovering by almost epimorphisms, cf. Definition 3.5.
(b) R does not admit an epiF-precover.
(c) The exists monoF-precovers which are not isomorphisms.
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The reason we are interested in classes which are precovering by almost epi-
morphisms is because of the next result:

Theorem 3.9. Assume thatF is closed under direct summands and is precovering
by almost epimorphisms. Then

(EM,n) ) (RM,n) for all modules M and all integers n> 0.

Proof. First we deal with the casen = 0: Thus letM be any module, and assume
that Ext1F(M, A) = 0 for all modulesA. We must prove the existence of anF-resolution
of M of length zero,

0 !G0 !M !0.

By assumption onF we can build anF-resolution of M by successively taking al-
most epiF-precovers'0, '1, '2, : : : :

We keep in mind that theF-precovers'n are not necessarily epi, and this is the reason
why some of the arrows in the diagram above have been dotted. Applying HomR(�, A),
for any moduleA, to the HomR(F, �) exact complex,

0 !K0 !F0 !M !0,

induces by [8, Theorem 8.2.3 (2)] an exact sequence of relative Ext groups,

Ext0F(F0, A) !q
Ext0F(K0, A) !Ext1F(M, A) = 0.(�)

As F0 2 F we have Ext0F(F0, A) = HomR(F0, A). Furthermore,

Ext0F(K0, A) = Ker HomR(�2, A) = f f 2 HomR(F1, A) j f �2 = 0g,
andq is given byg 7! g�1 for g 2 HomR(F0, A). Applying these considerations toA = K0

and'1 2 Ext0F(K0, K0), exactness of (�) implies the existence of ag 2 HomR(F0, K0)
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with g�1 = '1, that is,gi0'1 = '1. As '1 is almost epi,gi0 : K0! K0 must be an auto-
morphism, and hence the sequence

is split exact. In particular,F0=K0 2 F as F is closed under direct summands. It fol-
lows easily that the by'0 : F0 ! M induced homomorphism ¯'0 : F0=K0 ! M is a
mono F-precover ofM, and thus

0 !F0=K0 !'̄0
M !0

is an F-resolution ofM of length zero.
For n> 0 we proceed by induction: If Extn+1

F (M,�) = 0 then we take anF-precover�0 : F0! M of M. By [8, Theorem 8.2.3 (2)] the complex

0 !Ker �0 !F0 !�0
M !0(†)

induces a long exact sequence of relative Ext groups:

0 = ExtnF(F0, �) !ExtnF(Ker �0, �) !Extn+1
F (M, �) = 0.

It follows that ExtnF(Ker �0, �) = 0, so the induction hypothesis implies that Ker�0 ad-
mits anF-resolution of lengthn� 1, say,

0 !Fn !� � � !F1 !Ker �0 !0.(‡)

Gluing (‡) onto (†) we get anF-resolution ofM of length n.

Proof of Proposition 3.8. Note thatR = Z=4Z is a two-dimensionalk-vector space
with basisf1,�g, so every element ofR has a unique representation of the forma+b�
wherea, b 2 k �= F2.

Just as in Example 3.2 it follows thatF = Add k is precovering, but shortly we
shall prove this more directly. It is useful to observe that ahomomorphismF ! M
with F 2 F is an F-precover ofM if and only if every homomorphismk! M admits
a factorization:

(\)

One important consequence of this is that ifF j ! M j is a family of F-precovers then
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the coproduct̀ j F j ! `
j M j is again anF-precover. For everyc 2 k there is an

R-linear map

'c : k! R, a 7! ac� ,

and it is not hard to see that everyR-linear mapk ! R has the form'c for some
c 2 k. Combining this with the commutative diagram

the observation (\) implies that'1: k! R is anF-precover ofR. Clearly, '1 is mono,
and since it is not epi,R cannot be the homomorphic image of any module fromF.
This proves parts (b) and (c) of the proposition.

It remains to prove part (a), namely that everyR-module admits an almost epi
F-precover. It is well-known that every module overR = Z=4Z is isomorphic to one
of the form k(I ) � R(J) for suitable index setsI and J. Hence we only need to show
that the modulek(I ) � R(J) has an almost epiF-precover. By the observation (\) it
follows that

is an F-precover. To argue that' is almost epi we let

be any endomorphism with' = g'. We must prove thatg is an automorphism. By
assumption, 

idk(I ) 0
0 '(J)

1

!
=

�
g11 g12

g21 g22

� 
idk(I ) 0

0 '(J)
1

!
=

 
g11 g12'(J)

1

g21 g22'(J)
1

!
.(�)

In particular it follows thatg11 = idk(I ) and g21 = 0, so g takes the form

g =

�
idk(I ) g12

0 g22

�
.
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If we can prove thatg22: R(J) ! R(J) is an automorphism, theng must be an auto-
morphism as well with inverse

g�1 =

�
idk(I ) �g12 g�1

22

0 g�1
22

�
.

To see thatg22 is an automorphism we use another relation from (�), namely that'(J)
1 = g22'(J)

1 , or equivalently, (g22 � idR(J) )'(J)
1 = 0. Since Im'1 = k� � R it is not

hard to see that

g22� idR(J) = � f

for some homomorphismf : R(J) ! R(J). Now, using thatR has characteristic two
and that�2 = 0 it follows that:

g2
22 = (idR(J) + � f )2 = id2

R(J) + 2� f + �2 f 2 = idR(J) ,

and thusg22 is an automorphism which is its own inverse.

4. Relative resolutions and Schanuel maps

In this section we study how the resolution condition and theSchanuel condition
of Definition 2.4 are related. In general, neither of these two conditions imply the
other, however, in Theorems 4.4 and 4.8 we give necessary andsufficient conditions
for this phenomenon to happen.

DEFINITION 4.1. We say thatF is weakly closed under direct summandsif for
any F 2 F and any direct summandM in F with F=M 2 F, the moduleM belongs toF.

EXAMPLE 4.2. There exist precovering classes which are not closed under set-
indexed coproducts: A trivial example can be constructed over a field R = k by letting
F be the class ofk-vector spaces of dimension, say,6= �0. In fact, it is easy to see
that F is not weakly closed under direct summands either.

A little more natural is the precovering classF from Example 3.2, which is not
closed under direct summands. AsF is closed under set-indexed coproducts, it follows
from Proposition 4.3 below thatF is not even weakly closed under direct summands.

Proposition 4.3. A precovering classF is closed under direct summands if and only
if F is weakly closed under direct summands and closed under set-indexed(respectively,
countable) coproducts inMod R.
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Proof. “If”: Let M be a direct summand ofF 2 F, that is, there exists some mod-
ule M 0 with F = M � M 0. Using Eilenberg’s swindle we considerF (N) and note that

M � F (N) �= F (N).(�)
As F is closed under countable coproducts,F (N) 2 F, and then (�) implies thatM 2 F
sinceF is weakly closed under direct summands.

“Only if”: If F is closed under direct summands then obviouslyF is also weakly
closed under direct summands. SinceF is precovering and closed under direct sum-
mands, the argument in [8, proof of Theorem 5.4.1, (2)) (1)] shows thatF is closed
under set-indexed coproducts.

The reason we are interested in classes which are weakly closed under direct sum-
mands is because of the next result.

Theorem 4.4. A precovering classF satisfies:

(\) (SM,n) ) (RM,n) for all modules M and all integers n> 0

if and only if F is weakly closed under direct summands.

Proof. “Only if”: Let M be a direct summand of a moduleF whereF , F=M 2 F.
As M�F=M �= 0�F we see thatM is F-equivalent to 0, that is,S0

F([M]) = [ M] = [0].
Now the assumption (\) implies the existence of anF-resolution ofM of length zero,

(�) 0 !F0 !�0
M !0.

As in the end of the proof of Lemma 3.3 we see that�0 is an isomorphism, and hence
M �= F0 2 F as desired.

“If”: We prove (\) by induction onn: Suppose thatn = 0 and thatS0
F([M]) =

[M] = [0]. By definition there existF 0, F 2 F with M � F 0 �= 0� F �= F , and sinceF

is weakly closed under direct summands it follows thatF0 := M 2 F. Thus 0! F0
=�!

M ! 0 is anF-resolution ofM of length zero. The induction step is straightforward:
If n > 0 andSn

F ([M]) = [0] then we take anF-precover

(†) 0 !Ker � !F0 !� M !0.

It follows that Sn�1
F ([Ker �]) = [0], so the induction hypothesis implies the existence of

an F-resolution of Ker� of length n�1. Pasting this resolution together with (†) gives
an F-resolution ofM of length n.

DEFINITION 4.5. A (precovering) classF is said to beseparating if for every
module M 6= 0 there exists a non-zero homomorphismF ! M with F 2 F.
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Lemma 4.6. For a precovering classF the following hold:
(a) If every monoF-precover is an isomorphism thenF is separating.
(b) If F is separating and� : A! B is a homomorphism such thatHomR(F , �) is
mono for all F2 F, then � is mono.

Proof. “(a)”: If M is a module with HomR(F , M) = 0 for all F 2 F then the map
0! M is a monoF-precover. Thus 0! M is an isomorphism by assumption, that
is, M = 0.

“(b)”: Applying, for any F 2 F, the left exact functor HomR(F , �) to

0 !Ker � !A !� B

and using that HomR(F , �) is mono, we get that HomR(F , Ker�) = 0. As F is sepa-
rating it follows that Ker� = 0, that is,� is mono.

EXAMPLE 4.7. In Proposition 3.8 we saw an example of a precovering class F
for which there exist monoF-precovers which are not isomorphisms. We now give two
additional (more natural) examples:
(a) Let R be a commutative Noetherian ring which is not Artinian. AsR is Noether-
ian the classF = Inj R of injective R-modules is precovering by [8, Theorem 5.4.1].
However, asR is not Artinian, F is not separating by [16, Corollary 2.4.11], and
hence Lemma 4.6 (a) implies that there must exist monoF-precovers which are not
isomorphisms.
(b) Let R be a commutative integral domain, and consider for any module M its tor-
sion submodule,

MT = fx 2 M j r x = 0 for somer 2 R n f0gg.
A module M is called torsion if MT = M, and of course the torsion submodule of any
module is torsion. The torsion modules constitutes a precovering class, in fact, given
a module M it is not hard to see that the inclusionMT ! M is a torsion precover
of M. In particular, 0 =RT ! R is a mono torsion precover ofR which is not an
isomorphism.

The following result shows why we are interested in precovering classes for which
every mono precover is an isomorphism.

Theorem 4.8. A precovering classF satisfies:

(RM,n) ) (SM,n) for all modules M and all integers n> 0([)
if and only if every monoF-precover is an isomorphism.
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Proof. “Only if”: Any mono F-precover' : F0 ! M gives anF-resolution of

M of length zero, 0! F0
'! M ! 0. Thus our assumption implies thatS0

F([M]) =
[M] = [0]. In particular, M is a homomorphic image of someF 2 F, and hence the
F-precover' must be epi. Consequently,' is an isomorphism.

“If”: We prove ([) by induction onn, beginning with the casen = 0: Thus, as-
sume thatM admits anF-resolution of length zero, say,

0 !F0 !� M !0.(�)
We must argue thatS0

F([M]) = [0]. Actually, we prove something even stronger, namely
that M 2 F. Since (�) is anF-resolution, HomR(F , �) is an isomorphism for allF 2 F.
Hence our assumption and Lemma 4.6 (a) and (b) gives that� : F0 ! M is a mono
F-precover. Another application of our assumption then gives that� is an isomorphism,
and thusM �= F0 2 F.

The induction step is easy: Suppose thatM admits anF-resolution of lengthn >
0, say,

0 !Fn !� � � !F1 !�1
F0 !�0

M !0.(†)

We break up (†) into two complexes,

0 !Fn !� � � !F1 !�̂1 Ker �0 !0,(1)

0 !Ker �0 !F0 !�0
M !0,(2)

where �̂1 is the co-restriction of�1 to Ker�0. It is not hard to see that (1) is an
F-resolution of Ker�0, and hence the induction hypothesis gives thatSn�1

F ([Ker �0]) =
[0]. By (2), SF([M]) = [Ker �0], and it follows thatSn

F ([M]) = Sn�1
F SF([M]) = [0], as

desired.

5. Relative Schanuel maps and Ext functors

In this final section we compare the Schanuel condition and the Ext condition of
Definition 2.4. While it is true that the Schanuel condition implies the Ext condition,
cf. Proposition 5.1, the converse is, in general, not true byLemma 5.3. However, in
Corollary 5.5 we give a sufficient condition for this to happen.

Proposition 5.1. For any precovering classF we have:

(SM,n) ) (EM,n) for all modules M and all integers n> 0.

Proof. We use induction onn. If S0
F([M]) = [0] then, in particular, M is a di-

rect summand of someF 2 F. As Ext1F(F , �) = 0 it follows that Ext1F(M, �) = 0.
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Now let n > 0 and assume thatSn
F ([M]) = [0]. If ' : F ! M is an F-precover then

Sn�1
F ([Ker ']) = [0], and the induction hypothesis implies that Extn

F(Ker', �) = 0. By
[8, Theorem 8.3.2 (2)] there is an induced long exact sequence:

0 = ExtnF(Ker', �) !Extn+1
F (M, �) !Extn+1

F (F , �) = 0

from which the desired conclusion follows.

EXAMPLE 5.2. We have already seen examples of classes where mono precovers
are not necessarily isomorphisms, cf. Proposition 3.8 and Example 4.7.

Lemma 5.3. A necessary condition forF to satisfy the implication:

(EM,0) ) (SM,0) for all modules M,

is that every monoF-precover is an isomorphism.

Proof. Let F ! M be a monoF-precover. The HomR(F, �) exact complex 0!
0! F ! M ! 0 gives a long exact sequence:

0 = Ext0F(0,�) !Ext1F(M, �) !Ext1F(F , �) = 0,

from which it follows that Ext1F(M,�) = 0. By our assumptions we then getSF([M]) =
[M] = [0], in particular, M is a homomorphic image of some module inF. Therefore
the monoF-precoverF ! M must be surjective as well, and hence an isomorphism.

REMARK 5.4. In particular, the classF from Proposition 3.8 satisfies the impli-
cation “(E)) (R)” but not “(E)) (S)”, cf. Theorem 3.9 and Lemma 5.3.

Assuming the necessary condition from Lemma 5.3, the following result is an im-
mediate corollary of Theorems 3.9 and 4.8.

Corollary 5.5. Assume that every monoF-precover is an isomorphism, that F
is closed under direct summands, and that F is precovering by almost epimorphisms.
Then

(EM,n) ) (SM,n) for all modules M and all integers n> 0.

REMARK 5.6. The dual notion of a precover is apreenvelope, see [8, Chap-
ter 6]. For apreenvelopingclassG, the reader can imagine how to construct Ext func-
tors, resolutions, and Schanuel maps relative toG, see also [8, Chapter 8].
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Not surprisingly, every result in this this paper has an analogue in this “preenveloping
context”. We leave it as an exercise for the interested reader to verify this claim.
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