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LIFESPAN FOR RADIALLY SYMMETRIC SOLUTIONS
TO SYSTEMS OF SEMILINEAR WAVE EQUATIONS
WITH MULTIPLE SPEEDS
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Abstract
We consider the Cauchy problem for a system of semilineaevemuations with
multiple propagation speeds in three space dimensions. M&nothe sharp lower
bound for the lifespan of radially symmetric solutions tolass of these systems.
We also show global existence of radially symmetric sohgido another class of
systems with small initial data.

1. Introduction and the main results
For c > 0, we define
3
Oc =87 —CPAx =95 —c* ) o7

J!
j=1

where dp = 9, = 9/dt, and 9; = 9/dx; for j =1, 2, 3. The above constantis called
the propagation speed. We simply wrié for 0; = 32 — Ay.

This paper is devoted to a study on the Cauchy problem foesysiof semilinear
wave equations in three space dimensions of the type

(1.1) Ogui = Fi(u, du) for (t,x) € (0,00) x R® (i =1,..., m)

with initial data

(1.2) Ui (0, x) = ¢efi(x), (3ui)(0, x) = £gi(x)

for x e R® (i =1,...,m), whereg (1 <i < m) are given positive constants =

following, we assume thaF (u, v) = (Fj(u, v))1<j<m is @ smooth function ofy v) €
R™ x R, vanishing together with its first derivatives at, ¢) = (0, 0). We suppose
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f=(fj)icjzm 9=1(9j)1<j<m € Cg"(]R?’; R™). For simplicity of exposition, we also
suppose that the propagation speed$l <i < m) are distinct.

Let T, =T,(f,qg, F) be the supremum of all such that the Cauchy problem (1.1)—
(1.2) admits aC>™-solution u = (uj)i<j<m for (t, x) € [0, T) x R3. T, is called the
lifespan of the classical solution to the Cauchy problem)d(1.2). We say thasmall
data global existencéor (SDGE)) holds for (1.1)—(1.2) if for any, g € CgO(R3; R™),
there exists a positive constasy such thatT.(f, g, F) = oo for all ¢ € (0, gg]. When
T.(f, g, F) < 0o, we say that the solution blows up in finite time.

For the following single wave equation

(1.3) {DU = ()2 (or u(3u)) in (0, 00) x RS,

u(0, x) =& f(x), (u)(0,x)=eg(x) for xeR3
it is known that there exist, g € C3°(R3) and two positive constant; ande; such that
(1.4) T. < expCie V)

for any ¢ € (0,¢1] (see John [3], Sideris [18], and Kubo [14]). In other worfts;, such
f and g, the solution to (1.3) blows up in finite time no matter how #mais. The
above upper bound for the lifespdn is sharp in the sense that for arfiyg € C*(R®),
there exist two positive constan@ and ¢, such that

(1.5) T. > expCae %)

for any ¢ € (0, ¢2] (see John-Klainerman [4], and Klainerman [10]; see alsodhlad
[16] for the casem =1 and F(u, 0) = O(Ju|®) for small u, and the author [6] for the
casem > 2 and F(u, du) = O(Jul® + [au|?) around (1, du) = (0, 0)).

The above example (1.3) shows that some restrictioRf @& necessary for (SDGE).

To recall known results for (SDGE), we introduce severalety/pf nonlinearities. Let

¢ = (¢i)1=i=m and ¥ = (¥i)1i<m be C-functions. In the following.ay, ;. alj"i"ab, alj,:?b,

aljlll"'ia and alj\}:“i are arbitrary constants. First of all, we introduwell terms
m .
(1.6) Ni(3¢, 0y) = Y ol ; Qo@y. Vi ),
j=1
where Qp(v, w; ¢) is the null form defined by
3
Qo(v, w; ©) = (Bv)(dw) — ¢ Y (hv)(dhw)
k=1

(see Klainerman [11]; note that another type of the null form

Qab(v, w) = (av)(dpw) — (Fpv)(daw),
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which was also introduced in [11], does not appear here,beishuse we have restricted
our attention to the simplified situation of semilinear sys$ with distinct speeds). Next
we introduce

(1.7 R8¢, 9y) = Z Z o % (82007 ) (3o Vc),
1<j,k<m 0O<a,b<3
17k
(1.8) R'Gp, av)= 3 D al(0a0))@1),
1<j<m 0<a,b<3
j#i

which we callnonresonant terms of typ€b and (), respectively. Similarly we define
nonresonant terms of typdgHl) and (IV) by

(1.9) R 0v)= > 3 ol @avn),
1<j,k=m O<ax<3
j#k
(1.10) RV(g, 09)= Y Y ahigi(@av)),
1<j<m 0<a<3
j#i

respectively. Finally, letH; be a smooth function ofu( du), satisfying
(1.11) Hi(u, 8u) = O(lu® +|aul®) near (, du) = (0, 0).
Now the known results for (SDGE) can be summarized as folloivds has the form

(1.12) Fi(u, au) = N;(du, du) + R'(du, du) + R (3u, du) + H;(u, du)
forall ief{l,...,m}

then (SDGE) holds for (1.1)—(1.2) (see the author [6]; ses dlainerman [11],
Christodoulou [2], Kovalyov [13], Yokoyama [21], Sideria+ [19], Kubota-Yokoyama
[15], and Sogge [20]). Note that in (1.12), quadratic termhg~odepend only orju.
On the other hand, even ii is involved in quadratic terms, we also have (SDGE)
for (1.1)—(1.2), if i can be written as

L1g T 0= Ni@U, 0w+ RIGU, 0u) + R (U, 90) + RY (U, 0u) + Hi(u, 0u)
(1.13) forall iefl,...,m)

(see Katayama-Yokoyama [9]; see also the author [5, 7]).
From (1.12) and (1.13), it seems reasonable to conjectaeiftt can be writ-
ten as

Fi(u, au) = N;(du, du) + R'(du, du) + R (au, au)

(1'14) 1l \%
+ R" (u, 9u) + R (u, du) + H;(u, au)
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for all i € {1,..., m}, then (SDGE) holds. But this conjecture turns out to be false
because of the following counterexample by Ohta [17]:

O, ug = Fi(u, du) := uz(d:uy),

(1.15) {Dczuz = Fa(u, du) := (8cup)?.

Note that F; and F, in (1.15) are the nonresonant terms of types (lll) and (Il),
respectively. Hence (1.14) holds fér= (F1, F;) in (1.15), but neither (1.12) nor (1.13)
is satisfied. In [17], it was proved that (SDGE) does not hald the above sys-
tem (1.15) in general. More precisely, for the system (1.18h w < Cp, it was shown
that there exist radially symmetric datig g € CgO(IR{3; R?) and two positive constants
C3 and g3 such that

(1.16) T, < exp(Cse )

for all ¢ € (0, &3].

Since the upper bound of the lifespan obtained in (1.16) meschat longer than
(1.4), it is interesting to investigate sharpness of (1.18)r first aim in this paper is to
get the lower bound of the lifespan for (1.15). Unfortungtddecause it is difficult to
obtain energy estimates for (1.15) in large time, we resbio consideration to radial
solutions. Note that the upper bound (1.16) was also oldafoe radial solutions.

Before stating our results, we introduce some notation. #etkat¢ is a radial-
ly symmetric C3°-function if ¢ belongs toC3°(R®) and there exists a functiop e
C>([0, o0)) such thatp(x) = ¢(]x|) for any x € R3. We sayF = F(u, du) is rotationally
invariant if

F(Uo(t, x), duo(t, X)) = F(u(t, O(x)), (Bu)(t, O(x)))

holds for anyC?*-function u = u(t, x) and any orthogonal transformatio@ = O(x)
on R3, whereug is defined byuo(t, x) = u(t, O(x)). It is easy to see that iF =
F(u, du) is rotationally invariant, and the initial dath and g are radially symmetric
Cg°-functions, then the solutiom to (1.1)—(1.2) is radial, namelu(t, x) = df(t, [x])
with some functiond = T(t, r).

For ¢ = (¢i)1<i<m and ¢ = (¥i)1<i<m, We define

@, 0v) = > (B0 @wnd) + Bl (V) - (V).

{(J.K)j 7Kk}

r'@9, 9v) = Y (Bl (@) @) + Bl (Vxes) - (Vup),
(i 71}

M o)=Y Ao G,
{(j k), #k}

(Vg av)= Y B¢ @)
(i1 #1}
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fori =1,...,m, whereg/® g\ (a=0,1), ), and g}, are arbitrary constants.
Here Vy¢ = (010, 20, 33¢) for a C1-function ¢, and- denotes the inner product &°.

Note thatr/(du, au), r!'(du, du), r!"(u, du), andr/V(u, du) are rotationally invariant
nonresonant terms of types (1), (Il), (lll), and (IV), respieely. It is easy to see that

the null termsN;(du, ou) are also rotationally invariant.

Theorem 1.1. Let the propagation speeds,c.., ¢y be distinct Assume that for
eachie {1,...,m}, F has the form

Fi(u, u) = N;(du, du) +r/(du, au) +r' (du, du)

(1.17) N
where H is rotationally invariant and satisfieq1.11).

Then for any radially symmetric @-functions f and g there exist two positive
constantseg and C such that the lifespan, Tor (1.1)}+(1.2) satisfies

(1.18) T.(f, 9, F) > expCe?)
for any ¢ € (0, &g

Note that (1.17) contains the null terms, nonresonant tesfhiypes (1), (I) and
(), and terms of higher order. Sincgé in (1.15) has the form (1.17), the upper
bound (1.16) and the lower bound (1.18) guarantee the sbsspaf one another, as
far as radially symmetric solutions are considered.

To get (1.18), we follow a similar strategy to that in KatayaMatsumura [8],
where the sharp lower bound of the lifespan for the system

Oc,up = Ul in (0, 00) x RS,
Oguz=uj in (0,00) x R®

with ¢; # ¢, was obtained. The proof of Theorem 1.1 will be given in Sect®o

Now we turn our attention to another problem. Ohta’s cowaxample (1.15) says
that (SDGE) does not hold for (1.14), especially for a corabon of nonresonant
terms of types (II) and (lll). Our next question is what happdor other combina-
tions. Here we give an example which suggests (SDGE) may imolgeneral for a
combination of null terms, nonresonant terms of types (l), dnd (IV).

Theorem 1.2. Let m=2, and consider the Cauchy proble(f.1){1.2) with

(1.19) Fi(u, du) := Ny(du, du) +r}(du, du) +r} (du, du) +riY(u, au),
(1.20) Fa(u, du) := Na(du, du) +r(du, du) +r) (du, du).
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Assume £ # C,. Then for any radially symmetric @-functions f=(f;, f;) and g=
(g1, 92), there exists a positive constarg such that

(1.21) T(f,9, F) =00 forany ¢ € (0, &gl

Nonresonant terms of types (ll) and (IV) are involved in @-4(1.20). Hence nei-
ther (1.12) nor (1.13) holds for thiB = (F;, F;). Nonetheless (SDGE) holds for (1.1)
with this F as far as we consider radial solutions. Theorem 1.2 sugtestshere may
be a certain sufficient condition for (SDGE) other than ().28d (1.13). Of course,
even for (1.19)—(1.20), it may possibly happen that (SDG&gsdnot hold for gen-
eral C3° data. This problem is still open. The proof of Theorem 1.2 Wé given in
Section 4.

Throughout this paper, various positive constants, whiey whange line by line,
are denoted just by the same letter

2. Basic decay estimates

In this section, we derive basic>™-L> decay estimates.
For ¢, v € C3°(R3) and a positive constar, we write UZ[¢, y] for the solution
to the Cauchy problem for

{DCUC*[¢, ¥](t,x)=0 for (t, x) € (0, 00) x R3,
Uz, ¥10, x) = ¢(x), (B:Ug[e, ¥1)(0, x) =¥ (x) for x eR3

Similarly, for a continuous functiols = G(t, x) on (0,00) x R3, we write U[G] for
the solution to the Cauchy problem for

OcU[GI(t, x) = G(t, X) for (t, x) € (0, 00) x R3,
{UC[G](O, X) = (3U[G])(0, x) =0 for x e RS

For p € R, we write {p) = /1 +p2. For a continuous functiog, a non-negative con-
stantv, andt, r € [0, 00), ||#|l,.¢r iS defined by

vt = sup (yD 1oyl

yeR3 with [t—r|<|y|<t+r
For UZ[¢, ¥], we have the following.

Lemma 2.1. Let c> 0 andx > 0. Then there exists a positive constant C such
that we have

(t+Ix])(ct = [x])*|USTe, ¥1(t, X)I

2.1)
< Cl@ll2+e,ct,ix) + V@l 24 ct,1xt + 1 124¢,ct, x1)

for (t, x) € [0, 00) x RS,
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For the proof, see Kubota-Yokoyama [15]. More precisely, ¢ésémate stated in
[15] is not exactly (2.1), but we can easily obtain (2.1) byeistigating their proof
(see also Asakura [1]).

Let ¢y, ..., Ccn be given positive constants, and gt=0. We define

w(t, r):ogl]i<nm(cjt—r)

for (t,r) € [0, 00) x [0, o0). We also define

(t+ry=—" if <0,
2.2) ot r)=1{lo <2+(t+”) it =
. ot o(2+ ,
(t—r)y=" if x>0,
_(log2+t) if w=0,
(2:3) q’“(t)‘{l if 4> 0.

Note that we havebdg(t,r) < Clog(2+t) for any ¢,r) € [0, 00) x[0,00). For 1<i <m,
(t, x) € [0, 00) x R® and ¢, r) € [0, o0) x [0, o), we put

®i(t, x) = {(z, y) € [0, t] x R3;
O, r)={(r,A) €[0,t] x[0,00); Ir =Gt —7)| <A <Tr+c(t—1)}

IX| —ci(t—7)| < Iyl < x| +cit — 1)},

Then, forUg[G] we have

Lemma 2.2. Letie{l,...,m}. For p > 0 and u > 0, there exists a positive
constant C such that

{t+ X, 1(cit, X)) UG [GI(t, X)|

<CW,t) sup (t+|yDw(z, ly)*™ Iyl IG(z, y)l
(7,y)€0i(t,x)

(2.4)

for (t, x) € [0, co) x R3.

Proof. The case wherg > 1 andu > 0 was proved by Katayama-Yokoyama [9,
Section 8]. Other cases can be proved by apparent modifisatib the proof in [9],
and we only give a sketch of the proof here (see also the a{hdor the caseo = 1
and u = 0, and Katayama-Matsumura [8] for the case- 1 andu = 0).

Without loss of generality, we may assume= 1. Then, following [9, Section 8],
we find

t t—t+r
|Ug [GI(t, X)| < Cr—1/ f W(r, 2)"tdade
0 Ir—t+7|

(2.5)

X sup - W(z, lyDIyl IG(z, y)I
(z,y)€Bi (t,X)
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for any positive functionV = W(z, A), wherer = |x|. Therefore our task is to show

t t—t+r
(2.6) r*lfo / W(z, A) tdadr < C(t+r) 10, y(t, r)W,(t)

—t+1|

with W(t, r) = (t +r)?w(t, r)**. Sincew(t, r)™* < Y "y(cjt —r)~1, it suffices to
evaluate the integral

t t—t+r
(2.7 Jpalt,r) =17t / / (1+t+2)""@A+|ar —A) "1 dadr
o Jir

—t+7|

with a > 0. Performing a change of variables= 7+ and 8 = A — ar, we obtain

(2.8) Jpalt,r) =

t+r o
/ (1+0) ™ da / (@ +18) " dp
| B

t—r|

(a+1x

with g = {(1 — a)x + (L +a)(r —t)}/2 (see [9, (8.6) and (8.7)]).
For example, ifu > 0, it is easy to see

t+r

(2.9) Jipalt,r) < Cr’lf (1+a) tda.
It—rl

By a direct calculation, we get

e+ 1+t+r
1 R |
r 1+ do=Cr ~logl ——

(2.10)
< C(t+r) tdo(t, )
forr > (t +1)/2. On the other hand, we also have
t+r
(2.11) r’1/ (l+a) tda<C@A+t—r)t<C@+t+r)?
It

7r|

forr < (t +1)/2. (2.9), (2.10) and (2.11) imply (2.6) for the cape= 1 andu > 0
immediately. Other cases can be treated similarly. ]

By (2.5) and similar lines to (2.6)—(2.11), we also have

Corollary 2.3. Letie{l,...,m} and
Wt 1) = Agt+r)Lw(t, 1)+ Agt +r) " tw(t, )2
with some positive constants; And A. Then we have

{t + X)) o(cit, [X])HUqg [GI(t, X)|

<C(Arlog2+t)+ Az) sup W(z, lyDIyIIG(z, y)I.
(.Y)€65 (t,%)
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Forc> 0, (t,r) € [0, o0) x [0, 00), and aC-function G = G(t, r) on [0, o0) x
[0, 00), we define

1 t re(mtr) |

(2.12) LJ[G](t, 1) = — / / G(z, 2) da | dr,
2c Jo Ag(Titr)

where

(2.13) ATt r) =r et - 1),

and G is defined byG(t,r) =rG(t, |r]) for (t,r) € [0, o) x R. Then easy calculations
lead to

(2.14) (3 £ ¢ )Lc[G](t, r) = IF[G](t, 1),
(2.15) 3 (3 + cdr)Le[GN(t, 1) = G(t, r) £ I F[8, G(t, ),
(2.16) 0r (0 = cor)Le[G](t, 1) = 1[0, GI(t, 1),

where | F[H](t, r) is defined by
ICi[H](t, r)= /-t H(z, )fct(r; t,r))dz, (t,r) €[0,0) xR
0

for a functionH = H(t, r). Note that we haved(G)(t,r) = G(t, |r|) + |r|(3; G)(t, |r])
forr e R. It is also easy to verify that a classical solutiorto

(2.17)

Ocu(t, X) = G(t, [x]) in (0, 00) x R3,
{v(O, X)=2w(0,x)=0 for xeR3

can be written as
(2.18) u(t, X) = XTI G](t, [x]) for (t, ) € [0, 0o) x (R3\ {0}).

Before we proceed to estimate derivatives of solutions teeweguations, we give
two technical lemmas.

Lemma 2.4. Letc> 0, « #0 and p> 0. Then we have
t

(2.19) / (1+|ar —Ir ct|]) “Pdr < Cwy(t)
0

for (t, r) € [0, 00) x [0, 00), where W, is defined by(2.3).
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Proof. It is very easy to treat the cape- 0, and we only consider the cage=0
here. Suppose > (Ja| +c)t. Then we get

t t
/(1+|Ot‘l,’—|l‘:|:Ct||)_1d‘[:/(1+r:|:C'[—(XT)_1d‘L'
0 0
_1IO l1+r +£ct
o N T fcat—at)

(2.20) implies (2.19), because we have

(2.20)

1+r +ct
L+left)™ <

<— <1+|aft
1+r £ct—oat

forr > (Ja| +O)t.
On the other hand, if < (Ja| +cC)t, it is easy to see

t
/ (L+]aT —1r ﬂ:ct||)*1 dr < Clog(2 +t +r) < Clog(2 +t).
0

This completes the proof. 0

Forc>0,a>0, p>1andu >0, we define
t
(S (W :/ (r+ (st ) Plar — A5 (et )y W dr.
0

Lemma 2.5. Let c> 0.
(i) For u>0andp > 1, we have
(2.21) Keepulti 1) < CUL(t)(Ct+1)77,
(2.22) Keoput, 1) < CUL(t)(ct —1)™7 + Cd,_s(ct, r)(ct — )@

for (t,r) € [0, 00) x [0, 00), where®,_; and ¥, are from(2.2) and (2.3), respectively
(i) Let a> 0, and suppose & c. Then for u > 0 and p > 0, we have

(2.23) Keapu(ts 1) < Clet 1) W, (t)
for (t, r) € [0, o0) x [0, oc0), where ¥, is given by(2.3).

Proof. First we note thakg, , ,

(t, r) is bounded by

t
C/ (L+cr+ RE(t, D) P (L+|ar — 2t ) 4™ dr.
0
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Sincect +Al(r;t,r) =ct+r, andct — Ai(r;t,r) = 2ct — (r +ct), Lemma 2.4
implies

t
K:’C,p,u(t! r) = C(Ct +r)7p / (1 + |2CT — (r +Ct)|)*(l+u) dr
0
< C(ct+r) "W, (1).

Suppose < ct. Observing that we have

. ct—r
ct—(ct—r) if > o
—ct+ct—r if 1< ,
c
we get
tA{(ct—r)/c}
Kgepult, 1) < Clct—r1)=* / (1+|2ct — (ct — )}~ dr
0
t
+C(ct—r)’(1+“)/ (1+2ct — (ct —r))~" dr,
tA{(ct—r)/c}

wherea A 8 = min{a, 8}. By Lemma 2.4, we see that the first term on the right-hand
side of the above is bounded I8/(ct —r) "W ,(t). We also see that the second term
is bounded byC(ct —r)~@*®,_4(ct, r), since we have

t 1 l+ct+r
/ (1+2t —(ct—r)) tdr = = log ———
(ct—r)/c 2c l+ct—r

and

t
1
(1+27—(ct—r))"dr < ——(L+ct —r)**
/(ctr)/c 2c(p — 1)

for p > 1, provided that¢t —r)/c < t.
Now suppose > ct. Then we have

t
Kot 1) = Clet —r) 10 / (1+2ct +(r —ct)) ™ dr,
0

and a similar argument to the above leads to

Koot 1) < Clet—r)"®ma (et r).
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Finally we are going to prove (2.23). Let> 0 anda # c. Since we havecr +
IAZ(z;t, 1)l > Cletxr| for r > 0, at — A%(z;t,r) = (@+C)t — (r +ct), and

t_

(@a—Qr—(r —cty if rzccr,
. t—

(@a+c)r —(ct—r) if r<ccr,

ar — A (z;t, 1) =

Lemma 2.4 implies

t
K(fa,p,u(t' r) <C(ctxr)=* /(; (1 + |al- _ |)L(::t(‘[; t, r)||)—(1+,,,) dr
< C{et£r) P W, (t).
This completes the proof. -

Let cy,...,Cn be given positive constants, angl=0 as before. Fore {1,2,...,m},
we define

wi(t,r) = OLr]]i<nm(c,-t —r).
#

Lemma 2.6. Letie{1,...,m}. Suppose Ge C!([0, c0) x [0, o)), and letv be
a classical solution to

Og v(t, X) = G(t, [x]) for (t, x) € (0, 00) x R®
withv=0wv=0at t=0. Set

Dll(t, x) = (1) > 19¢v(t, )1 +1 Y 13 u(t, X)I,

|or[=1 |or|=2

where r=|x|, ¢ = Z?zl(XJ‘/|X|)aj, and 98¢, denotesd"o7> for a multi-indexa =
(1, @2). We define D¢ =9 +co, for c > 0, and

D [u](t, X) = (1) Dagv(t, X)| +1 Y 138 Dagu(t, X)I.
la|=1

We also set

MIG](t, 1) = ()IG(t, 1) +1 Y 35 G(t, r)I.

|er[=1

Then we have the following estimates
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(i) For p>1andu >0, we have

()Gt —r) "+ @, 1(ct, r)igt — )T ID](t, )

<C sup (t+A)w(r, )™ M[G](z, A).
(z,1)ed} (t,r)

(i) ForO0<p<1andu >0, we have

(Gt —=r)*DJ(t,x) <C  sup (t+1) wi(r, )Y** M[G](z, ).
(t,0)e®F(t,r)

(i) For p > 1 and u > 0, we have

(t+1) @, a(Gt, 1) DI w](t, X)
<CW,(t) sup (z+Aa)w(r, ) M[G](x, A).
(7,)€@(t,r)

Proof. Forp > 0, Lemma 2.1 implies

(t +r>(Cit - r>p|U:|[Or G(O, | : |)](t! X)|

(2.24) < CIIG(O, |- Dllz+p.cit,r
<C sup (t+A)w(r, )M[G](z, A),
(1. )e®r(tr)

since we haveéa)?™ = (0+A)?w(0,A)(A). Forp >0, u >0, and O<a < 3, Lemma 2.2
leads to
{t+1)®, 1(cit, 1) Uq[0a0¢ v](t, X)]

<CW,(t) sup (tv+1) w(r, ) |@BaC)(r, 1)I.
(r,2)€®%(t,r)

(2.25)

Since we havedav = Ug [0a0c v] + 320U [0, G(O, | - [)] with the Kronecker deltas,p,
and (t+r)=1®, 4(cit,r) < C(cit —r)=* for p > 0, from Lemma 2.2, (2.24) and (2.25)
we get

(cit —r)?(Ju(t, X)I + 9 (t, X)I + 19 v(t, X)I)

<CW,(t) sup (t+Ar)w(r, )™ M[G](z, A)
(r,1)e®:(t,r)

(2.26)

for p >0 andu > 0.
For p > 0, it is easy to see

(2.27) t+r)r|G(t,r) <C sup (t+A)’M[G](z, ).
(r. )ed (t,r)
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Now we set
DIv](t, x) = 13(r v(t, X))| + 13 (r v(t, X))| + 13 3 (r v(t, X))
+102(rv(t, X)) — rG(t, r)| +[92(rv(t, x))I.

Since we have

Dl](t, x) < C (ﬁ[v](t, X)+ Y lof v, X)| +r]G(t, r)|),

lo|<1

in vi~ew of (2.26) and (2.27) we only have to prove (i) and (iijtwDJ[v] replaced
by D[v]. As we have mentioned before, we hawe(t, x) = L [G](t, r). Therefore,
from (2.14), (2.15) and (2.16) we get

(2.28) Dlo)(t, x) <C Y (1SIGN(L, 1)l + 1S [ CI(t, 1)),

s=+,—

and we find

t
Dl(t, ) <C ) f W(, 38 (z;t, r)) Hdr
(2.29) s=+,— 0
x sup  W(r, A)M[G](z, 1)
(T, )0k t,r)
for any positive functionV = W(z, 1).
We use (2.29) with

W(t, A) = (r + 1) w(r, )™ and W(r, A) = (z + 1) wi(z, 1)
to obtain (i) and (ii), respectively. Noting that we have
w(z, )L)f(lﬂt) < Z (cjt — Ay~ @),
0<j<m
wi(z, )7 < 3" (cjr — )W

0<j<m

J7i

for u > 0, and using Lemma 2.5 to estima%W(r, |A§(r;t, N)~tdz, we obtain (i)
and (ii) with D[v] replaced byf)[v].

Concerning (iii), our task is to estimat‘glaIsl Ird¢', D+ g v(t, X)|, because (2.24)
and (2.25) imply the desired bound f@bD. ¢ v(t, X)|.

We have

ra) Dy gu(t, X) = 8 Dag (ro(t, X)) — Galv(t, x) for j=0,1,
rar D+'ci U(t, X) = 8[ D+,Ci (rv(t, X)) - D+'ci U(t, X) - C| arv(t, X),
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and by (2.14)—(2.16) we also have

> 18 Dag (ro(t, X))l < C(IZ[G] + 148, G]) + CIG(t, r)I.

la|<1

Hence we obtain the desired estimate Joy,,_; 1oy, D+ v(t, )| from Lemmas 2.2
and 2.5 together with (2.24), (2.25) and (2.27) (note thathamee (t +r>¢>;}1(t, r) <
(t+r)? for p > 1). This completes the proof. ]

From the proof of Lemma 2.6, with using Corollary 2.3 in plaaeLemma 2.2
and choosing/V as in Corollary 2.3, we also have

Corollary 2.7. Letv and G be as in.emma 2.6,and
W(t, r) = At +r)y twt, r) T+ Axt+r) tw(t, r) 2

with some positive constants; And A. Then we have
(Gt —r) L+ do(ct, r)(ct —r) ) 1D[](t, x)
+(t+r)do(Gt, 1) "D v](t, X)

<C(Aslog(2+t)+ Az) sup  W(r, Y)M[G](z, 1),
(T, 0)edk (t.r)

where r= |X|.
We conclude this section with a decay estimate T{U;].

Lemma 2.8. Letie{l,...,m} « >0, andv =U{[¢, ¥]. Suppose thap and
Y are radially symmetric functionsThen we have

(t+IxI)(cit — XD (L, x)

§C< D 10 bllznctm t Y ||arkw||2+K,qt,|x>.

0<k<2 0<k=<1

Proof. Sincep andy are radially symmetric, we see thatalso is radially sym-
metric. Setw(t,r) =ru(t, (Ir],0,0)), é(r) =re(r|, 0, 0), andxp(r)—rtp(|r| 0,0). Then
we get 62 — c28?)w(t,r) =0 for (t,r) € [0, 00) x R, with w =¢ anddw = att =0.
It is easy to check that we have

Diu](t, X) < C D (D d w)(t, X))+ Y 18 v(t, X)|.

|e[<1 o<1
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By Lemma 2.1, we obtain

(E+ IXGt = XD Y 1ag u(t, X)|

lo]<1

(2.30)
< C( D 1 Pl + Y ||arkw||z+x,m,r>.

0<k=<2 0<k<1
Since ¢; — 9 )(D+ o w)(t, r) =0, we get
(2.31) Dig df, w(t, r) = (D46 87, w)(0, Gt +r).

Now it is easy to see

(E+1) 3" Dy 0, w)(0, Gt +1))]

lo|<1
1+ o
2.32) < |a|2<21|(cit + 1) (D 87, w)(0, Gt +1))]
< c( > 1 P loneair + Y ||arkw||zw,qt,,>.
0<k=2 O<k<1
(2.30), (2.31), and (2.32) imply the desired result. ]

3. Proof of Theorem 1.1

For brevity, whemv = v(t, X) is radially symmetric, we write sometimes= v(t, x)
and sometime® = v(t, r) with r = |x| in the following. In other words, if there exists
7 = o(t, r) such thatv(t, x) = (t, |X|), we do not distinguishy from o.

Suppose that all the assumptions in Theorem 1.1 are fulfilleet U®);-x<3 =
((ui(k))lfifm)lfkfg be a solution to

O u™® = Ny (0u®, 9u®) +r/ (au®, du®) + " (D, 3u®)
+ H (u®, gu®)y,
Ogui® = 2N (9u®, au@*@) + 2r! (3u®), u@*®)
+ N (0U@H®, Ju@¥@) 4 (U@, 5, @+(3)
(32) + ri” (au(l)+(2)+(3)’ au(1)+(2)+(3))
+ ri“l (u(:I_)-i-(Z)+(3)7 atu(Z))

(3.1)

+ Hy (U@ 5 y*@+@) _ H, (u®, au),

(33) DC, ui(3) - riIII (U(2)+(3), 8tu(l)) + riIII (U(1)+(2)+(3), atu(3))
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for 1 <i < m, with initial data
(3.4) uW=¢f, aul=¢gg, UD=9u@=u®=3u®=0

att =0, whereu*® =yl + y® for 1 < j, k < 3, andu®*@*G) = y@ + y@ + y®,
Since f andg are radially symmetric, and nonlinearity is rotationalhyariant, we see
thatu® (k =1, 2, 3) are radial functions. Note that we haW ) - (Vxw) = (3 v)(3; w)
for radial functionsv and w. Setu = u® + u® + u®, and we find thatu satis-
fies (1.1)—(1.2). Hence our task is to solve the Cauchy prok@1)—(3.3) with (3.4).

From the classical local existence theorem, the Cauchylemolf3.1)—(3.4) admits
a unique solutiony®);-x<3 for 0 <t < T with someT > 0. Let T, be the supremum
of suchT.

We define

efu®](t, r) =Y (e +r)iat — n)(u, Nl + D uP)E, )
i=1

+ (Gt —r)?Dul)(t, 1)),
elu@)t,r) = i{a +1)®o(cit, 1)U, 1)l + DU, )
- + (it =)Dt 1)},
eslu®(t, 1) = iw +1)®o(Git, 1)~H(u(t, 1)l + DUt 1)

+ (Gt — 1)t (ot — ) 2de(at, 1) DU, 1)),

where ®o(cit, r) is given by (2.2), andD[v](t,r) and D} [v](t,r) are from Lemma 2.6.
We also define

Ex(T) = sup  efu®t,r) (k=1,2,3)
(t,r)€[0,T)x[0,00)

for 0 < T < T., and Ex(0) = SUR0.o) &[U™M](O, ).

Proposition 3.1. Assumel < T < T, and let M (k =1, 2, 3) be positive con-
stants Suppose that is a positive constant satisfying

Mse3 < Mpe? < Mie < 1

and ¢ < 1. Then there exist three positive constantg €, and G (which are in-
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dependent of TT,, ¢, and M (k =1, 2, 3))such that

(3.5) Ex(T) < Mgek  (k=1, 2, 3)

implies

(3.6) E1(T) < Ci(e + MZe?),

(3.7) Ea(T) < Co(MZe2 + (M7 + M2)Mze* log(2 +T) + M25(log(2 +T))?),
(38) E3(T) < C3(M1M283 + M2M385 |Og(2 +T))

Before proving Proposition 3.1, we show that Theorem 1.lofed from it.

Proof of Theorem 1.1. Set

2E4(0) 2E(0)

&

2E3(0
Ms = max{Ls(), 4c3|v|1|v|2}.
&

My = max{
(3.9

Choose a positive constapt (< 1) which is small enough to satisfy
1 3 2
(310) Migr < E and M381 < M281 < Mg < 1.

1

Let 0 < ¢ < &1, and assume? log(2 +T,) < C,4, where

1 M 1
(3.11) C4 = min . , 2, .
6C2(M1 + Mz) 6C2M3 4C3M2

Define

T =supSe [0, T.]; Ex(S) < Mie® (k=1, 2, 3).

Since (3.9) impliesEx(0) < Myek/2 (k = 1, 2, 3), the continuity ofEy, implies Ex(S) <
Mgk (k =1, 2, 3) for someS e (0, T,]. HenceT is positive.

Now supposeT < T.. Then, Proposition 3.1, (3.9), (3.10), and (3.11) lead to
Ex(T) < Myek/2 (k = 1, 2, 3), which contradict the definition of becauseEy (k =
1, 2, 3) are continuous functions. Hence we concliide T,, and Ex(T.) < Mye* for
1<k<3.

From thesea priori estimates, we see that ,; > by 193, u®(t, r)] is bounded
for (t,r) € [0, T,) x [0, 00). Then, from the system (3.1)—(3.3), it is easy to show that
Y2 o1 187.u®(t, )| is also bounded fort(r) € [0, T.) x [0, c0). Now the classi-
cal local existence theorem assures that we can extend tigoso(u®);--3 beyond
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T.. This contradicts the definition of.. Accordingly we finde? log(2 +T,) > C, for
0 < & < g1, which immediately impliesT, > exp(Cse2) for & < g9 with appropriately
chosen positive constan€s and gg. This completes the proof. ]

Now we are going to prove Proposition 3.1.

Proof of Proposition 3.1. Lep andy are radially symmetricC2-functions. First
we observe that we have

(3.12) M@ I, 1) < CU(E, 1)+ (1)~ DIBI(L, )DL, 1),
(3.13) M0 $)@L WL, 1) < C) DI, )DLy, 1)

for |B] =|y| =1, whereM is defined as in Lemma 2.6. Since
2Qo(¢, ¥; Gi) = (9t¢ — €0 P)(Dr g ¥) + (0¥ — €0 ¥)(Ds, ¢)

for any radially symmetric functiong and vy, we also obtain

M[Q0(¢! I//: Ci)](t! r)
< C(n)HDIBI(L, DT, 1) + DIy, 1D, 1))

For 0< j <m, we define

(3.14)

Aj ={(t,r) €0, 00) x [0, 00); [Cjt — 1| < 5t}

with some smalls > 0, wherecy = 0 as before. Note thafc;t — r) is equivalent
to (t +r) outside Aj. If 6 is chosen sufficiently small, then there is no intersection
betweenA; and A for j #Zk. Hence we have

(3.15) cit—r)y Hat —r)y b <Cit+r)twt, r)

for j #k. Moreover, if we have] Zi andk #i in addition, we get
(3.16) it =) Mot —r)y < Ct+r) twit, r)h
Similarly, for k > 0 and j #k, we have

(3.17) (Cjt —r) “Do(ckt, r) < C({cjt —r) “ + (t +r1) “Do(cit, 1)),

(3.18) do(cjt, r)do(ckt, r) < C(Po(cjt, r) + Po(ckt, r)).

From (3.15), we especially have)(cjt —r)™* < C(t+r)~! for 1 < j <m, and we
obtain

(3.19) Pt )1+ O DU 1) < Clt ) THet 1) T Me,

(3.20) W, )+ () DU, 1) < Ct+r)rdo(ct, 1)Mye"
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for k = 2, 3. Having these estimates in mind, we are going to ewaleach non-
linearity.
First we estimate nonlinear terms contained in (3.1). Weshav
MIN;(@u®, au))(t, 1) < C Y ) ~Ht +r) 7 et — )2 MZe?
i
< C(t+r)"2w(t, r)3M2

MIr{(@u®, auD)(t, r) <C Y () Mot —r)” 2<ckt_r>*2|v|1252
i #k
< C(t+r)3w(t, r)2Mze

MM u®, su®(t, r)y < C Z(t +1) et — 1) Mokt —r)T2M2e2
i7k
<C{t+ r)’zw(t, r)’lezsz.
On the other hand, since; is a rotationally invariant function of cubic order, we have
MIH U®, 8u®(E, 1) < CUrUDP + (U2 + 8, u@ 2 D[u])
< C(t+r) 2w(t, r)3*me®
Summing up, we get
(3.21) MO uPI(t, 1) < Clt +1) 2w(t, r) 2M2e
Hence Lemmas 2.1, 2.8, 2.2, and Lemma 2.6-(i), (iii) with &) = (2, 1) lead to
(3.22) E1(T) < Cy(e + M2e?).

Next we turn our attention to (3.2). Let be a positive and small constant. Then
we have

(3.23) Do(cit, r) < C{t+r)" (gt —r)™".
Using this inequality, we start with
MIN; (3u(2)+(3) 8u(2)+(3))](t, r)
<C Z Lt +1)7 et —r)"tdo(cjt, r)?(Mas? + Mae®)?

< C(t +r )72+2uw(t, r)7172v M2284
M(r! (@u@*® gu@*Ch(t, r)

<C Z Yot — )7 et — 1) oo(cjt, 1) Do(Cit, 1)(Mae? + Mge®)?
i#k
< C{t+r) " w(t, r) "Mzt
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Since du® enjoys a better estimate thau@*®), it is easy to obtain
MIN; (0u®, u@*ON(t, r) < C(t +r) 2™ w(t, r) 727" My Mye?,
MIr!(@u®, su@*O)(t, r) < C(t +r) 2" w(t, r) 2" My Mos®.

Now we are proceeding to rather delicate parts. For sintpliof exposition, we
setu = u®*@*®) Then we have

M[r'@du, du)](t, r)

<CZ Y H(cit —r)T*MZe? + (gt — 1) A (M3e? + M2e©)
i#i
+(cjt — )4 do(c;jt, r)2M2e®)
Ct+r)ytwi(t, r)"4(MZe? + M2e5{log(2 +T)}?)

for 0 <t < T. Here we have usedy(c;t, r) < Clog(2 +t). We also get

M (u®, 3u@)(t, r)

<C Z t+1)" et — )" ot —r)"IMy Mae®
j7k

< C{t+r)2w(t, r) M Mae® < C(t +1r) 72" w(t, r)~1" My Mae?,
M (@), gu@)t, r)

<C Z(t +1) L dg(cjt, r)(ckt — 1) H(Mae? + Mge®)Mpe?
i 7k

< C({t+r)tw(t, r)y~t+ (t +r) 7 w(t, r)")Mze

< C(t+r) tw(t, r) *MZe*

Setting Hi = Hj(u, au) — H; (u®, au®), we obtain

3
MHE, r)<C[Z(|u<k>|+ ~D[u®)) Z(<r>|u<k>|+1>[u<k>])
k=2

k=1
< C{t+r)" ¥ u(t, r) " MiMe*
< C(t+r) tw(t, r) TM2Mae*,

Now we set

Gi1=r/"(du, du), Gj,= "'(u(2)+(3) U@ + A,
Gi3=06U? —Gi1—Gipa
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Since we have shown
MG a](t, r) < C{t+r) 2 2w(t, r) "M Mze?,

from Lemma 2.2 and Lemma 2.6-(i), (iii) witho( n) = (2 — 2v, v) (note that we may
assume 2- 2v > 1), we get

(3.24) &[Uq [Gi alI(t, r) < CM;Mae® < CMZe2,
Also these lemmas withp( 1) = (1, 0) yield
(3.25) &[Ug [Gi 2lI(t, 1) < C(MZ + M2)Mae* log(2 +t).
On the other hand, by Lemmas 2.2 and 2.6-(ii), (iii) with f«) = (1, 1), we get
(3.26) &[U[Giall(t, 1) < C(Mfe? + M3e®(log(2 +T))?).
Now (3.24), (3.25) and (3.26) imply
(3.27) Ex(T) < Ca(M2e? + (M2 + Mp)Mas log(2 +T) + M2e8{log(2 +T)}?)

with an appropriate consta,.
Finally we consider (3.3). We get
M[ri“' (u(2)+(3), atu(l))]

<C Z(t +1) " 2do(cjt, r)(ckt — r) 2Mye(Mas? + Mae®)
i7k
<C({t+r) w172+t +r) 3 w(t, r)™" )M Mye®
< C(t+r)tw(t, r)2MMype,
wherev (> 0) is a small constant. We also obtain
MIr" ®, 3u®)] < C Y (t+r) et —r) Had —r)
i7k
x (1 + (et —r) tdg(cxt, r))MyMae?
< C(({t+n) 2w, r) T+ (t +1)"2w(t, r)"2)MMae?
< C(t+r) w(t, r) 2M;Mae?.

From Lemma 2.2 and Lemma 2.6-(i), (iii) withp{u) = (1, 1), we obtain

(3.28) es[Ug [r" (u@*®, 3,u®y +r M (@D, 3u®))(t, r) < CM;Me®,
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On the other hand, fof # k and smallv (> 0), we have
Do(Cjt, r){cet —r) ML+ (ot —r) T do(ct, 1))
< C((t+r) " do(cjt, r) +w(t, 1)~ +w(t, r)"?do(cyt, 1))
< CUt+r)™™uw(t, )™ +wt, r) "+ wt, r)"2log2 +T))
< C(w(t, r) " +w(t, r) ?log(2 +T)).
Hence we get
Mr" (@), 3u®t, r)
< C Y {t+n T do(cit, r)ot — 1)
j7k
x (1 +(Cct —r) T do(ct, 1))(Mae? + Mae®)Mge®
<C(t+r) Ywt, r) T+ w(t, r) ?log(2 +T))MyMze®.
Therefore, by Corollaries 2.3 and 2.7, we obtain
(3.29) es[Ui[r" (U@, au®)|(t, r) < CMaMse® log(2 +T).
Finally (3.28) and (3.29) imply
(3.30) E3(T) < C3{M1Moe® + MaMse® log(2 +T)}.

This completes the proof.

4. Proof of Theorem 1.2

713

Suppose that all the assumptions in Theorem 1.2 are fulfilleet u = (uy, uy)
be a solution to (1.1)—(1.2) (with (1.19) and (1.20)) fox® < T,. Fix « satisfying

1/2 <k < 1. We put
effua](t, r) = (t +r)(ua(t, r)| + Di[ua](t, r))
+(cit —r)*Dlug](t, r),
e[ua](t, r) = (t +r)Po(Cat, 1) *(lux(t, r)l + D3[uz](t, 1))
+ (Cot —r)Dluz](t, r),

and

(4.1) E(T) = sup - (e[ua](t, r) + &5[ug(t, r))
(t.r)<[0, T)x[0,00)

for 0 < T < T, with E(0) = SUR g, (€1 [U1](O, 1) + &5[U2](O, 1)).
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Similarly to the proof of Theorem 1.1, what we need for thegbrof Theorem 1.2
is the following.

Proposition 4.1. Assume0 < T < T,, and let My be a positive constantSup-
pose thate is a positive constant satisfying < 1 and ¢ < 1. Then there exists a
positive constant g; which is independent of ,TT,, ¢, and M, such that ET) < Mge
implies

(4.2) E(T) < Co(e + M2¢?).

From Proposition 4.1, following a similar argument in theqfr of Theorem 1.1,
we see thate(T) stays bounded as far as the solutiorexists for 0O<t < T, and the
local existence theorem implies Theorem 1.2.

Proof of Proposition 4.1. Lemmas 2.1 and 2.8 yield

2
(4.3) > eUglefi, egill(t, r) < Ce.

i=1
As for the nonlinearities, firstly we have
M[Qo(uy, Ug; c))(t, 1) < C(r) Mt +1) 7 (cat —r)“MGe?
< C(t+r)"%w(t, r)"*M3e?

< C(t+r)" T w(t, r)"2 " MZe?
for v > 0 satisfying 2 — v > 1. Similarly we get

M[Qo(uz, Uz; C)I(t, 1) < C(r) Mt +r)H{cot — 1) L do(Cat, r)Me?
< C(t+r) 2u(t, r)’lf”Mgfs2

< Clt+r)"w(t, r)"2Mae?
for small v > 0. Thus we obtain
(4.4) MIN;(du, du)](t, r) < C(t+r) T w(t, r)*%vmgg%

On the other hand, we have

MIr{(3u, du)I(t, ) < C(r)H(cat — 1) (ot — 1)t MFe?
< C(t+r)" T w(t, r)7IM3e?

< Ct+1) 22yt r)"1*2M2e2.
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Summing up, from Lemma 2.2, (i) and (iii) in Lemma 2.6, we a@bta
(4.5) &' [Ug [Ni(du, au) +r!(du, du)]I(t, r) < CM3e?

fori=1, 2.
Now we are going to estimate the main parts. Fg, we have

MryY (u, BW)I(t, r) < C(t+1) " Do(Cat, r)(Cat — 1) " MZe?

< Clt+r) ™M wy(t, r) 1" M2e?
for smallv > 0. By (ii) in Lemma 2.6 with p, u) = (1—v, v), we get
(4.6) (eat — 1) D[Ug,[r1TI(t, 1) < CMGe?,

provided thatv is small enough to satisfy & « <1 —v.
On the other hand, since

() gt 1) < Clt )T+ T g, 1)
and (t +A) < (t+r) for (7, 1) € ®(t, r), we get

sup (T + A2 w(r, AP MIrY1(r, ) < CMZe(t +r)te,
(z,A)e®5(t,r)

Now, since we may assume-2x — v > 1, Lemmas 2.2 and 2.6—(iii) withpo( ©) =
(2—Kk—v,v) lead to

4.7 U, [r 1 1(t, 1)1 + DU, [r/TI(t, 1) < Cit +1) 7 Mie?,
From (4.6) and (4.7), we obtain
(4.8) e;[Uq[ry (u, du)l](t, r) < CMZe?.
Similarly we also obtain
(4.9) €i[Ug,[r1 (8u, au)]](t, r) < CM3e2.

Since we have 2> 1, we get

Mr3 (du, du)](t, r) < C(r)~Heat —r) "> Mie?

<C{t+ r)’lwz(t, r)’z" Mgaz.
Hence, from Lemma 2.2, (ii) and (iii) in Lemma 2.6, we obtain

(4.10) &5[Uq[r} (du, au)]](t, r) < CoMZe?.
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(1]

(2]
E
(4]
(5]
(6]
(7]
(8]
9]
(10]

(11]

[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]

(20]

(21]

S. KATAYAMA

Finally, (4.2) follows from (4.3), (4.5), (4.8), (4.9) and.(0). This completes
proof. 0
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