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TO SYSTEMS OF SEMILINEAR WAVE EQUATIONS

WITH MULTIPLE SPEEDS
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Abstract
We consider the Cauchy problem for a system of semilinear wave equations with

multiple propagation speeds in three space dimensions. We obtain the sharp lower
bound for the lifespan of radially symmetric solutions to a class of these systems.
We also show global existence of radially symmetric solutions to another class of
systems with small initial data.

1. Introduction and the main results

For c > 0, we define

�c = �2
t � c21x = �2

0 � c2
3X

j =1

�2
j ,

where �0 = �t = �=�t , and � j = �=�x j for j = 1, 2, 3. The above constantc is called
the propagation speed. We simply write� for �1 = �2

t �1x.
This paper is devoted to a study on the Cauchy problem for systems of semilinear

wave equations in three space dimensions of the type

(1.1) �ci ui = Fi (u, �u) for (t , x) 2 (0,1)� R3 (i = 1, : : : , m)

with initial data

(1.2) ui (0, x) = " fi (x), (�tui )(0, x) = "gi (x)

for x 2 R3 (i = 1, : : : , m), where ci (1 � i � m) are given positive constants,u =
(u j )1� j�m, and �u = (�au j )1� j�m,0�a�3, while " is a small positive parameter. In the
following, we assume thatF(u, v) = (F j (u, v))1� j�m is a smooth function of (u, v) 2
Rm � R4m, vanishing together with its first derivatives at (u, v) = (0, 0). We suppose
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f = ( f j )1� j�m, g = (g j )1� j�m 2 C1
0 (R3; Rm). For simplicity of exposition, we also

suppose that the propagation speedsci (1� i � m) are distinct.
Let T" = T"( f ,g, F) be the supremum of allT such that the Cauchy problem (1.1)–

(1.2) admits aC1-solution u = (u j )1� j�m for (t , x) 2 [0, T) � R3. T" is called the
lifespan of the classical solution to the Cauchy problem (1.1)–(1.2). We say thatsmall
data global existence(or (SDGE)) holds for (1.1)–(1.2) if for anyf , g 2 C1

0 (R3; Rm),
there exists a positive constant"0 such thatT"( f , g, F) =1 for all " 2 (0, "0]. When
T"( f , g, F) <1, we say that the solution blows up in finite time.

For the following single wave equation

(1.3)

��u = (�tu)2 (or u(�tu)) in (0,1)� R3,
u(0, x) = " f (x), (�tu)(0, x) = "g(x) for x 2 R3,

it is known that there existf , g 2 C1
0 (R3) and two positive constantsC1 and"1 such that

(1.4) T" � exp(C1"�1)

for any " 2 (0,"1] (see John [3], Sideris [18], and Kubo [14]). In other words,for such
f and g, the solution to (1.3) blows up in finite time no matter how small " is. The
above upper bound for the lifespanT" is sharp in the sense that for anyf , g 2 C1

0 (R3),
there exist two positive constantsC2 and "2 such that

(1.5) T" � exp(C2"�1)

for any " 2 (0, "2] (see John-Klainerman [4], and Klainerman [10]; see also Lindblad
[16] for the casem = 1 and F(u, 0) = O(juj3) for small u, and the author [6] for the
casem� 2 and F(u, �u) = O(juj3 + j�uj2) around (u, �u) = (0, 0)).

The above example (1.3) shows that some restriction onF is necessary for (SDGE).
To recall known results for (SDGE), we introduce several types of nonlinearities. Let� = (�i )1�i�m and = ( i )1�i�m be C2-functions. In the following,� j

N,i , � jk,ab
I, i , � j ,ab

II, i ,

� jk,a
III, i and � j ,a

IV, i are arbitrary constants. First of all, we introducenull terms

(1.6) Ni (��, � ) =
mX
j =1

� j
N,i Q0(� j ,  j ; c j ),

where Q0(v, w; c) is the null form defined by

Q0(v, w; c) = (�tv)(�tw)� c2
3X

k=1

(�kv)(�kw)

(see Klainerman [11]; note that another type of the null form

Qab(v, w) = (�av)(�bw)� (�bv)(�aw),
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which was also introduced in [11], does not appear here, justbecause we have restricted
our attention to the simplified situation of semilinear systems with distinct speeds). Next
we introduce

RI
i (��, � ) =

X
1� j ,k�m

j 6= k

X
0�a,b�3

� jk,ab
I, i (�a� j )(�b k),(1.7)

RII
i (��, � ) =

X
1� j�m

j 6= i

X
0�a,b�3

� j ,ab
II, i (�a� j )(�b j ),(1.8)

which we callnonresonant terms of types(I) and (II), respectively. Similarly we define
nonresonant terms of types(III) and (IV) by

RIII
i (�, � ) =

X
1� j ,k�m

j 6= k

X
0�a�3

� jk,a
III, i � j (�a k),(1.9)

RIV
i (�, � ) =

X
1� j�m

j 6= i

X
0�a�3

� j ,a
IV, i� j (�a j ),(1.10)

respectively. Finally, letHi be a smooth function of (u, �u), satisfying

(1.11) Hi (u, �u) = O(juj3 + j�uj3) near (u, �u) = (0, 0).

Now the known results for (SDGE) can be summarized as follows. If Fi has the form

(1.12)
Fi (u, �u) = Ni (�u, �u) + RI

i (�u, �u) + RII
i (�u, �u) + Hi (u, �u)

for all i 2 f1, : : : , mg,
then (SDGE) holds for (1.1)–(1.2) (see the author [6]; see also Klainerman [11],
Christodoulou [2], Kovalyov [13], Yokoyama [21], Sideris-Tu [19], Kubota-Yokoyama
[15], and Sogge [20]). Note that in (1.12), quadratic terms of Fi depend only on�u.
On the other hand, even ifu is involved in quadratic terms, we also have (SDGE)
for (1.1)–(1.2), if Fi can be written as

(1.13)
Fi (u, �u) = Ni (�u, �u) + RI

i (�u, �u) + RIII
i (u, �u) + RIV

i (u, �u) + Hi (u, �u)

for all i 2 f1, : : : , mg
(see Katayama-Yokoyama [9]; see also the author [5, 7]).

From (1.12) and (1.13), it seems reasonable to conjecture that if Fi can be writ-
ten as

(1.14)
Fi (u, �u) = Ni (�u, �u) + RI

i (�u, �u) + RII
i (�u, �u)

+ RIII
i (u, �u) + RIV

i (u, �u) + Hi (u, �u)
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for all i 2 f1, : : : , mg, then (SDGE) holds. But this conjecture turns out to be false
because of the following counterexample by Ohta [17]:

(1.15)

��c1u1 = F1(u, �u) := u2(�tu1),�c2u2 = F2(u, �u) := (�tu1)2.

Note that F1 and F2 in (1.15) are the nonresonant terms of types (III) and (II),
respectively. Hence (1.14) holds forF = (F1, F2) in (1.15), but neither (1.12) nor (1.13)
is satisfied. In [17], it was proved that (SDGE) does not hold for the above sys-
tem (1.15) in general. More precisely, for the system (1.15) with c1 < c2, it was shown
that there exist radially symmetric dataf , g 2 C1

0 (R3; R2) and two positive constants
C3 and "3 such that

(1.16) T" � exp(C3"�2)

for all " 2 (0, "3].
Since the upper bound of the lifespan obtained in (1.16) is somewhat longer than

(1.4), it is interesting to investigate sharpness of (1.16). Our first aim in this paper is to
get the lower bound of the lifespan for (1.15). Unfortunately, because it is difficult to
obtain energy estimates for (1.15) in large time, we restrict our consideration to radial
solutions. Note that the upper bound (1.16) was also obtained for radial solutions.

Before stating our results, we introduce some notation. We say that� is a radial-
ly symmetric C1

0 -function if � belongs toC1
0 (R3) and there exists a functioñ� 2

C1([0,1)) such that�(x) = �̃(jxj) for any x 2 R3. We sayF = F(u,�u) is rotationally
invariant if

F(uO(t , x), �uO(t , x)) = F(u(t , O(x)), (�u)(t , O(x)))

holds for anyC1-function u = u(t , x) and any orthogonal transformationO = O(x)
on R3, where uO is defined byuO(t , x) = u(t , O(x)). It is easy to see that ifF =
F(u, �u) is rotationally invariant, and the initial dataf and g are radially symmetric
C1

0 -functions, then the solutionu to (1.1)–(1.2) is radial, namelyu(t , x) = ũ(t , jxj)
with some functionũ = ũ(t , r ).

For � = (�i )1�i�m and = ( i )1�i�m, we define

r I
i (��, � ) =

X
f( j ,k); j 6= kg(�

jk,0
I, i (�t� j )(�t k) + � jk,1

I, i (rx� j ) � (rx k)),

r II
i (��, � ) =

X
f j ; j 6= i g(�

j ,0
II, i (�t� j )(�t j ) + � j ,1

II, i (rx� j ) � (rx j )),

r III
i (�, �t ) =

X
f( j ,k); j 6= kg �

jk
III, i� j (�t k),

r IV
i (�, �t ) =

X
f j ; j 6= i g �

j
IV, i� j (�t j )
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for i = 1, : : : , m, where� jk,a
I, i , � j ,a

II, i (a = 0, 1), � jk
III, i and � j

IV, i are arbitrary constants.

Hererx� = (�1�, �2�, �3�) for a C1-function �, and � denotes the inner product ofR3.
Note that r I

i (�u, �u), r II
i (�u, �u), r III

i (u, �u), and r IV
i (u, �u) are rotationally invariant

nonresonant terms of types (I), (II), (III), and (IV), respectively. It is easy to see that
the null termsNi (�u, �u) are also rotationally invariant.

Theorem 1.1. Let the propagation speeds c1, : : : , cm be distinct. Assume that for
each i2 f1, : : : , mg, Fi has the form

(1.17)
Fi (u, �u) = Ni (�u, �u) + r I

i (�u, �u) + r II
i (�u, �u)

+ r III
i (u, �tu) + Hi (u, �u),

where Hi is rotationally invariant, and satisfies(1.11).
Then, for any radially symmetric C10 -functions f and g, there exist two positive

constants"0 and C such that the lifespan T" for (1.1)–(1.2) satisfies

(1.18) T"( f , g, F) � exp(C"�2)

for any " 2 (0, "0].

Note that (1.17) contains the null terms, nonresonant termsof types (I), (II) and
(III), and terms of higher order. SinceF in (1.15) has the form (1.17), the upper
bound (1.16) and the lower bound (1.18) guarantee the sharpness of one another, as
far as radially symmetric solutions are considered.

To get (1.18), we follow a similar strategy to that in Katayama-Matsumura [8],
where the sharp lower bound of the lifespan for the system

��c1u1 = u1u2 in (0,1)� R3,�c2u2 = u3
1 in (0,1)� R3

with c1 6= c2 was obtained. The proof of Theorem 1.1 will be given in Section 3.
Now we turn our attention to another problem. Ohta’s counterexample (1.15) says

that (SDGE) does not hold for (1.14), especially for a combination of nonresonant
terms of types (II) and (III). Our next question is what happens for other combina-
tions. Here we give an example which suggests (SDGE) may holdin general for a
combination of null terms, nonresonant terms of types (I), (II) and (IV).

Theorem 1.2. Let m= 2, and consider the Cauchy problem(1.1)–(1.2) with

F1(u, �u) := N1(�u, �u) + r I
1(�u, �u) + r II

1 (�u, �u) + r IV
1 (u, �tu),(1.19)

F2(u, �u) := N2(�u, �u) + r I
2(�u, �u) + r II

2 (�u, �u).(1.20)
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Assume c1 6= c2. Then, for any radially symmetric C10 -functions f = ( f1, f2) and g=
(g1, g2), there exists a positive constant"0 such that

(1.21) T"( f , g, F) =1 for any " 2 (0, "0].

Nonresonant terms of types (II) and (IV) are involved in (1.19)–(1.20). Hence nei-
ther (1.12) nor (1.13) holds for thisF = (F1, F2). Nonetheless (SDGE) holds for (1.1)
with this F as far as we consider radial solutions. Theorem 1.2 suggeststhat there may
be a certain sufficient condition for (SDGE) other than (1.12) and (1.13). Of course,
even for (1.19)–(1.20), it may possibly happen that (SDGE) does not hold for gen-
eral C1

0 data. This problem is still open. The proof of Theorem 1.2 will be given in
Section 4.

Throughout this paper, various positive constants, which may change line by line,
are denoted just by the same letterC.

2. Basic decay estimates

In this section, we derive basicL1-L1 decay estimates.
For �,  2 C1

0 (R3) and a positive constantc, we write U�
c [�,  ] for the solution

to the Cauchy problem for��cU�
c [�,  ](t , x) = 0 for (t , x) 2 (0,1)� R3,

U�
c [�,  ](0, x) = �(x), (�tU�

c [�,  ])(0, x) =  (x) for x 2 R3.

Similarly, for a continuous functionG = G(t , x) on (0,1)� R3, we write Uc[G] for
the solution to the Cauchy problem for��cUc[G](t , x) = G(t , x) for (t , x) 2 (0,1)� R3,

Uc[G](0, x) = (�tUc[G])(0, x) = 0 for x 2 R3.

For � 2 R, we write h�i =
p

1 +�2. For a continuous function�, a non-negative con-
stant�, and t , r 2 [0,1), k�k�,t ,r is defined by

k�k�,t ,r = sup
y2R3 with jt�r j�jyj�t+r

hjyji� j�(y)j.
For U�

c [�,  ], we have the following.

Lemma 2.1. Let c> 0 and � > 0. Then there exists a positive constant C such
that we have

(2.1)
ht + jxjihct � jxji� jU�

c [�,  ](t , x)j
� C(k�k2+�,ct,jxj + krx�k2+�,ct,jxj + k k2+�,ct,jxj)

for (t , x) 2 [0,1)� R3.
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For the proof, see Kubota-Yokoyama [15]. More precisely, theestimate stated in
[15] is not exactly (2.1), but we can easily obtain (2.1) by investigating their proof
(see also Asakura [1]).

Let c1, : : : , cm be given positive constants, and letc0 = 0. We define

w(t , r ) = min
0� j�m

hc j t � r i
for (t , r ) 2 [0,1)� [0,1). We also define

8� (t , r ) =

8>><
>>:
ht + r i�� if � < 0,

log

�
2 +
ht + r iht � r i

�
if � = 0,

ht � r i�� if � > 0,

(2.2)

9�(t) =

�
log(2 + t) if � = 0,
1 if � > 0.

(2.3)

Note that we have80(t , r ) � C log(2+t) for any (t , r ) 2 [0,1)�[0,1). For 1� i �m,
(t , x) 2 [0,1)� R3 and (t , r ) 2 [0,1)� [0,1), we put

2i (t , x) =
�
(� , y) 2 [0, t ] � R3;

��jxj � ci (t � � )
�� � jyj � jxj + ci (t � � )

	
,

2�
i (t , r ) = f(� , �) 2 [0, t ] � [0,1); jr � ci (t � � )j � � � r + ci (t � � )g.

Then, forUci [G] we have

Lemma 2.2. Let i 2 f1, : : : , mg. For � > 0 and � � 0, there exists a positive
constant C such that

(2.4)
ht + jxji8��1(ci t , jxj)�1jUci [G](t , x)j
� C9�(t) sup

(� ,y)22i (t ,x)
h� + jyji�w(� , jyj)1+�jyj jG(� , y)j

for (t , x) 2 [0,1)� R3.

Proof. The case where� > 1 and� > 0 was proved by Katayama-Yokoyama [9,
Section 8]. Other cases can be proved by apparent modifications of the proof in [9],
and we only give a sketch of the proof here (see also the author[6] for the case� = 1
and� = 0, and Katayama-Matsumura [8] for the case� > 1 and� = 0).

Without loss of generality, we may assumeci = 1. Then, following [9, Section 8],
we find

(2.5)
jUci [G](t , x)j � Cr�1

Z t

0

Z t��+r

jr�t+� j W(� , �)�1 d� d�
� sup

(� ,y)22i (t ,x)
W(� , jyj)jyj jG(� , y)j
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for any positive functionW = W(� , �), wherer = jxj. Therefore our task is to show

(2.6) r�1
Z t

0

Z t��+r

jr�t+� j W(� , �)�1 d� d� � Cht + r i�18��1(t , r )9�(t)

with W(t , r ) = ht + r i�w(t , r )1+�. Sincew(t , r )�1 � Pm
j =0hc j t � r i�1, it suffices to

evaluate the integral

(2.7) J�,�,a(t , r ) := r�1
Z t

0

Z t��+r

jr�t+� j (1 + � + �)��(1 + ja� � �j)�1�� d� d�
with a � 0. Performing a change of variables� = � + � and � = �� a� , we obtain

(2.8) J�,�,a(t , r ) =
1

(a + 1)r

Z t+r

jt�r j(1 +�)�� d� Z �
�̂ (1 + j�j)�1�� d�

with �̂ = f(1� a)� + (1 +a)(r � t)g=2 (see [9, (8.6) and (8.7)]).
For example, if� > 0, it is easy to see

J1,�,a(t , r ) � Cr�1
Z t+r

jt�r j(1 +�)�1 d�.(2.9)

By a direct calculation, we get

(2.10)
r�1

Z t+r

jt�r j(1 +�)�1 d� = Cr�1 log

�
1 + t + r

1 + jt � r j
�

� Cht + r i�180(t , r )

for r � (t + 1)=2. On the other hand, we also have

(2.11) r�1
Z t+r

jt�r j(1 +�)�1 d� � C(1 + jt � r j)�1 � C(1 + t + r )�1

for r � (t + 1)=2. (2.9), (2.10) and (2.11) imply (2.6) for the case� = 1 and� > 0
immediately. Other cases can be treated similarly.

By (2.5) and similar lines to (2.6)–(2.11), we also have

Corollary 2.3. Let i 2 f1, : : : , mg and

W(t , r )�1 = A1ht + r i�1w(t , r )�1 + A2ht + r i�1w(t , r )�2

with some positive constants A1 and A2. Then we have

ht + jxji80(ci t , jxj)�1jUci [G](t , x)j
� C(A1 log(2 + t) + A2) sup

(� ,y)22i (t ,x)
W(� , jyj)jyj jG(� , y)j.



L IFESPAN FORRADIALLY SYMMETRIC SOLUTIONS 699

For c > 0, (t , r ) 2 [0,1) � [0,1), and aC1-function G = G(t , r ) on [0,1) �
[0,1), we define

(2.12) Lc[G](t , r ) =
1

2c

Z t

0

 Z �+
c (� ;t ,r )

��c (� ;t ,r )
Ǧ(� , �) d�

!
d� ,

where

(2.13) ��c (� ; t , r ) = r � c(t � � ),

and Ǧ is defined byǦ(t , r ) = rG(t , jr j) for (t , r ) 2 [0,1)�R. Then easy calculations
lead to

(�t � c�r )Lc[G](t , r ) = I �c [Ǧ](t , r ),(2.14)

�t (�t � c�r )Lc[G](t , r ) = Ǧ(t , r )� cI�c [�r Ǧ](t , r ),(2.15)

�r (�t � c�r )Lc[G](t , r ) = I �c [�r Ǧ](t , r ),(2.16)

where I �c [H ](t , r ) is defined by

I �c [H ](t , r ) =
Z t

0
H (� , ��c (� ; t , r )) d� , (t , r ) 2 [0,1)� R

for a function H = H (t , r ). Note that we have (�r Ǧ)(t , r ) = G(t , jr j) + jr j(�r G)(t , jr j)
for r 2 R. It is also easy to verify that a classical solutionv to

(2.17)

��cv(t , x) = G(t , jxj) in (0,1)� R3,v(0, x) = �tv(0, x) = 0 for x 2 R3

can be written as

(2.18) v(t , x) = jxj�1Lc[G](t , jxj) for (t , x) 2 [0,1)� (R3 n f0g).
Before we proceed to estimate derivatives of solutions to wave equations, we give

two technical lemmas.

Lemma 2.4. Let c> 0, � 6= 0 and p� 0. Then we have

(2.19)
Z t

0

�
1 +

���� � jr � ctj����(1+p)
d� � C9p(t)

for (t , r ) 2 [0,1)� [0,1), where9� is defined by(2.3).
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Proof. It is very easy to treat the casep> 0, and we only consider the casep = 0
here. Supposer � (j�j + c)t . Then we get

(2.20)

Z t

0

�
1 +

���� � jr � ctj����1
d� =

Z t

0
(1 + r � ct � �� )�1 d�

=
1� log

�
1 + r � ct

1 + r � ct � �t

�
.

(2.20) implies (2.19), because we have

(1 + j�jt)�1 � 1 + r � ct

1 + r � ct � �t
� 1 + j�jt

for r � (j�j + c)t .
On the other hand, ifr < (j�j + c)t , it is easy to see

Z t

0

�
1 +

���� � jr � ctj����1
d� � C log(2 + t + r ) � C log(2 + t).

This completes the proof.

For c > 0, a � 0, � � 1 and� � 0, we define

K�
c,a,�,�(t , r ) =

Z t

0
h� + j��c (� ; t , r )ji��ha� � j��c (� ; t , r )ji�(1+�) d� .

Lemma 2.5. Let c> 0.
(i) For � � 0 and � � 1, we have

K +
c,c,�,�(t , r ) � C9�(t)hct + r i�� ,(2.21)

K�
c,c,�,�(t , r ) � C9�(t)hct � r i�� + C8��1(ct, r )hct � r i�(1+�)(2.22)

for (t , r ) 2 [0,1)� [0,1), where8��1 and9� are from (2.2) and (2.3), respectively.
(ii) Let a� 0, and suppose a6= c. Then, for � � 0 and � > 0, we have

(2.23) K�
c,a,�,�(t , r ) � Chct � r i��9�(t)

for (t , r ) 2 [0,1)� [0,1), where9� is given by(2.3).

Proof. First we note thatK�
c,a,�,�(t , r ) is bounded by

C
Z t

0
(1 + c� + j��c (� ; t , r )j)���1 +

��a� � j��c (� ; t , r )j����(1+�)
d� .
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Since c� + �+
c(� ; t , r ) = ct + r , and c� � �+

c(� ; t , r ) = 2c� � (r + ct), Lemma 2.4
implies

K +
c,c,�,�(t , r ) � Chct + r i�� Z t

0
(1 + j2c� � (r + ct)j)�(1+�) d�

� Chct + r i��9�(t).

Supposer < ct. Observing that we have

j��c (� ; t , r )j =
8><
>:

c� � (ct � r ) if � � ct � r

c
,

�c� + ct � r if � < ct � r

c
,

we get

K�
c,c,�,�(t , r ) � Chct � r i�� Z t^f(ct�r )=cg

0
(1 + j2c� � (ct � r )j)�(1+�) d�

+ Chct � r i�(1+�)
Z t

t^f(ct�r )=cg(1 + 2c� � (ct � r ))�� d� ,

where� ^ � = minf�, �g. By Lemma 2.4, we see that the first term on the right-hand
side of the above is bounded byChct � r i��9�(t). We also see that the second term
is bounded byChct � r i�(1+�)8��1(ct, r ), since we have

Z t

(ct�r )=c(1 + 2c� � (ct � r ))�1 d� =
1

2c
log

1 + ct + r

1 + ct � r

and Z t

(ct�r )=c(1 + 2c� � (ct � r ))�� d� � 1

2c(� � 1)
(1 + ct � r )��+1

for � > 1, provided that (ct � r )=c < t .
Now supposer > ct. Then we have

K�
c,c,�,�(t , r ) � Chct � r i�(1+�)

Z t

0
(1 + 2c� + (r � ct))�� d� ,

and a similar argument to the above leads to

K�
c,c,�,�(t , r ) � Chct � r i�(1+�)8��1(ct, r ).
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Finally we are going to prove (2.23). Leta � 0 and a 6= c. Since we havec� +j��c (� ; t , r )j � Cjct � r j for � � 0, a� � �+
c(� ; t , r ) = (a + c)� � (r + ct), and

a� � j��c (� ; t , r )j =
8><
>:

(a� c)� � (r � ct) if � � ct � r

c
,

(a + c)� � (ct � r ) if � < ct � r

c
,

Lemma 2.4 implies

K�
c,a,�,�(t , r ) � Chct � r i�� Z t

0

�
1 +

��a� � j��c (� ; t , r )j����(1+�)
d�

� Chct � r i��9�(t).

This completes the proof.

Let c1,:::,cm be given positive constants, andc0 = 0 as before. Fori 2 f1, 2,:::,mg,
we define

wi (t , r ) = min
0� j�m

j 6= i

hc j t � r i.

Lemma 2.6. Let i 2 f1, : : : , mg. Suppose G2 C1([0,1)� [0,1)), and let v be
a classical solution to

�ci v(t , x) = G(t , jxj) for (t , x) 2 (0,1)� R3

with v = �tv = 0 at t = 0. Set

D[v](t , x) = hr iXj�j=1

j��t ,r v(t , x)j + r
X
j�j=2

j��t ,r v(t , x)j,

where r = jxj, �r =
P3

j =1(x j =jxj)� j , and ��t ,r denotes��1
t ��2

r for a multi-index � =
(�1, �2). We define D+,c = �t + c�r for c > 0, and

D+
i [v](t , x) = hr ijD+,ci v(t , x)j + r

X
j�j=1

j��t ,r D+,ci v(t , x)j.
We also set

M[G](t , r ) = hr ijG(t , r )j + r
X
j�j=1

j��t ,r G(t , r )j.
Then we have the following estimates:
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(i) For � � 1 and � � 0, we have

(9�(t)hci t � r i�� +8��1(ci t , r )hci t � r i�(1+�))�1D[v](t , x)

� C sup
(� ,�)22�

i (t ,r )
h� + �i�w(� , �)1+�M[G](� , �).

(ii) For 0< � � 1 and � > 0, we have

hci t � r i�D[v](t , x) � C sup
(� ,�)22�

i (t ,r )
h� + �i�wi (� , �)1+�M[G](� , �).

(iii) For � � 1 and � � 0, we have

ht + r i8��1(ci t , r )�1D+
i [v](t , x)

� C9�(t) sup
(� ,�)22�

i (t ,r )
h� + �i�w(� , �)1+�M[G](� , �).

Proof. For� > 0, Lemma 2.1 implies

(2.24)

ht + r ihci t � r i� jU�
ci

[0, G(0, j � j)](t , x)j
� CkG(0, j � j)k2+�,ci t ,r

� C sup
(� ,�)22�

i (t ,r )
h� + �i�w(� , �)M[G](� , �),

since we haveh�i2+� = h0+�i�w(0,�)h�i. For� > 0, � � 0, and 0� a � 3, Lemma 2.2
leads to

(2.25)
ht + r i8��1(ci t , r )�1jUci [�a�ci v](t , x)j
� C9�(t) sup

(� ,�)22�
i (t ,r )
h� + �i�w(� , �)1+��j(�aG)(� , �)j.

Since we have�av = Uci [�a�ci v] + Æa0U�
ci

[0, G(0, j � j)] with the Kronecker deltaÆab,

and ht +r i�18��1(ci t , r ) � Chci t� r i�� for � > 0, from Lemma 2.2, (2.24) and (2.25)
we get

(2.26)
hci t � r i�(jv(t , x)j + j�tv(t , x)j + j�r v(t , x)j)
� C9�(t) sup

(� ,�)22�
i (t ,r )
h� + �i�w(� , �)1+�M[G](� , �)

for � > 0 and� � 0.
For � > 0, it is easy to see

(2.27) ht + r i�r jG(t , r )j � C sup
(� ,�)22�

i (t ,r )
h� + �i�M[G](� , �).
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Now we set

D̃[v](t , x) = j�t (r v(t , x))j + j�r (r v(t , x))j + j�r �t (r v(t , x))j
+ j�2

t (r v(t , x))� rG(t , r )j + j�2
r (r v(t , x))j.

Since we have

D[v](t , x) � C

0
�D̃[v](t , x) +

X
j�j�1

j��t ,r v(t , x)j + r jG(t , r )j
1
A,

in view of (2.26) and (2.27) we only have to prove (i) and (ii) with D[v] replaced
by D̃[v]. As we have mentioned before, we haver v(t , x) = Lci [G](t , r ). Therefore,
from (2.14), (2.15) and (2.16) we get

(2.28) D̃[v](t , x) � C
X

s=+,�(jI s
ci

[Ǧ](t , r )j + jI s
ci

[�r Ǧ](t , r )j),
and we find

(2.29)

D̃[v](t , x) � C
X

s=+,�
Z t

0
W(� , j�s

ci
(� ; t , r )j)�1 d�

� sup
(� ,�)22�

i (t ,r )
W(� , �)M[G](� , �)

for any positive functionW = W(� , �).
We use (2.29) with

W(� , �) = h� + �i�w(� , �)1+� and W(� , �) = h� + �i�wi (� , �)1+�
to obtain (i) and (ii), respectively. Noting that we have

w(� , �)�(1+�) � X
0� j�m

hc j � � �i�(1+�),

wi (� , �)�(1+�) � X
0� j�m

j 6= i

hc j � � �i�(1+�)

for � � 0, and using Lemma 2.5 to estimate
R t

0 W(� , j��ci
(� ; t , r )j)�1 d� , we obtain (i)

and (ii) with D[v] replaced byD̃[v].
Concerning (iii), our task is to estimate

Pj�j�1 jr ��t ,r D+,ci v(t , x)j, because (2.24)
and (2.25) imply the desired bound forjD+,ci v(t , x)j.

We have

r � j
t D+,ci v(t , x) = � j

t D+,ci (r v(t , x))� ci � j
t v(t , x) for j = 0, 1,

r �r D+,ci v(t , x) = �r D+,ci (r v(t , x))� D+,ci v(t , x)� ci �r v(t , x),
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and by (2.14)–(2.16) we also have

X
j�j�1

j��t ,r D+,ci (r v(t , x))j � C(I +
ci

[Ǧ] + I +
ci

[�r Ǧ]) + CjǦ(t , r )j.
Hence we obtain the desired estimate for

Pj�j�1 r j��t ,r D+,ci v(t , x)j from Lemmas 2.2

and 2.5 together with (2.24), (2.25) and (2.27) (note that wehave ht + r i8�1��1(t , r ) �ht + r i� for � � 1). This completes the proof.

From the proof of Lemma 2.6, with using Corollary 2.3 in placeof Lemma 2.2
and choosingW as in Corollary 2.3, we also have

Corollary 2.7. Let v and G be as inLemma 2.6,and

W(t , r )�1 = A1ht + r i�1w(t , r )�1 + A2ht + r i�1w(t , r )�2

with some positive constants A1 and A2. Then we have

(hci t � r i�1 +80(ci t , r )hci t � r i�2)�1D[v](t , x)

+ ht + r i80(ci t , r )�1D+
i [v](t , x)

� C(A1 log(2 + t) + A2) sup
(� ,�)22�

i (t ,r )
W(� , �)M[G](� , �),

where r = jxj.
We conclude this section with a decay estimate forD+

i [U�
ci

].

Lemma 2.8. Let i 2 f1, : : : , mg, � > 0, and v = U�
ci

[�,  ]. Suppose that� and are radially symmetric functions. Then we have

ht + jxjihci t � jxji�D+
i [v](t , x)

� C

 X
0�k�2

k�k
r �k2+�,ci t ,jxj +

X
0�k�1

k�k
r  k2+�,ci t ,jxj

!
.

Proof. Since� and are radially symmetric, we see thatv also is radially sym-
metric. Setw(t , r ) = r v(t , (jr j, 0, 0)), �̌(r ) = r�(jr j, 0, 0), and ̌(r ) = r (jr j, 0, 0). Then
we get (�2

t � c2
i �2

r )w(t , r ) = 0 for (t , r ) 2 [0,1)�R, with w = �̌ and �tw =  ̌ at t = 0.
It is easy to check that we have

D+
i [v](t , x) � C

X
j�j�1

j(D+,ci ��t ,rw)(t , jxj)j + Xj�j�1

j��t ,r v(t , x)j.
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By Lemma 2.1, we obtain

(2.30)

ht + jxjihci t � jxji� Xj�j�1

j��t ,r v(t , x)j
� C

 X
0�k�2

k�k
r �k2+�,ci t ,r +

X
0�k�1

k�k
r  k2+�,ci t ,r

!
.

Since (�t � ci �r )(D+,ci ��t ,rw)(t , r ) = 0, we get

(2.31) D+,ci ��t ,rw(t , r ) = (D+,ci ��t ,rw)(0, ci t + r ).

Now it is easy to see

(2.32)

ht + r i1+� X
j�j�1

j(D+,ci ��t ,rw)(0, ci t + r )j
� X

j�j�1

jhci t + r i1+� (D+,ci ��t ,rw)(0, ci t + r )j
� C

 X
0�k�2

k�k
r �k2+�,ci t ,r +

X
0�k�1

k�k
r  k2+�,ci t ,r

!
.

(2.30), (2.31), and (2.32) imply the desired result.

3. Proof of Theorem 1.1

For brevity, whenv = v(t , x) is radially symmetric, we write sometimesv = v(t , x)
and sometimesv = v(t , r ) with r = jxj in the following. In other words, if there existsṽ = ṽ(t , r ) such thatv(t , x) = ṽ(t , jxj), we do not distinguishv from ṽ.

Suppose that all the assumptions in Theorem 1.1 are fulfilled. Let (u(k))1�k�3 =

((u(k)
i )1�i�m)1�k�3 be a solution to

�ci u
(1)
i = Ni (�u(1), �u(1)) + r I

i (�u(1), �u(1)) + r III
i (u(1), �tu

(1))

+ Hi (u
(1), �u(1)),

(3.1)

�ci u
(2)
i = 2Ni (�u(1), �u(2)+(3)) + 2r I

i (�u(1), �u(2)+(3))

+ Ni (�u(2)+(3), �u(2)+(3)) + r I
i (�u(2)+(3), �u(2)+(3))

+ r II
i (�u(1)+(2)+(3), �u(1)+(2)+(3))

+ r III
i (u(1)+(2)+(3), �tu

(2))

+ Hi (u
(1)+(2)+(3), �u(1)+(2)+(3))� Hi (u

(1), �u(1)),

(3.2)

�ci u
(3)
i = r III

i (u(2)+(3), �tu
(1)) + r III

i (u(1)+(2)+(3), �tu
(3))(3.3)
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for 1� i � m, with initial data

(3.4) u(1) = " f , �tu
(1) = "g, u(2) = �tu

(2) = u(3) = �tu
(3) = 0

at t = 0, whereu( j )+(k) = u( j ) + u(k) for 1 � j , k � 3, andu(1)+(2)+(3) = u(1) + u(2) + u(3).
Since f and g are radially symmetric, and nonlinearity is rotationally invariant, we see
that u(k) (k = 1, 2, 3) are radial functions. Note that we have (rxv) � (rxw) = (�r v)(�rw)
for radial functionsv and w. Set u = u(1) + u(2) + u(3), and we find thatu satis-
fies (1.1)–(1.2). Hence our task is to solve the Cauchy problem (3.1)–(3.3) with (3.4).

From the classical local existence theorem, the Cauchy problem (3.1)–(3.4) admits
a unique solution (u(k))1�k�3 for 0� t < T with someT > 0. Let T" be the supremum
of such T .

We define

e1[u(1)](t , r ) =
mX

i =1

fht + r ihci t � r i(ju(1)
i (t , r )j + D+

i [u(1)
i ](t , r ))

+ hci t � r i2D[u(1)
i ](t , r )g,

e2[u(2)](t , r ) =
mX

i =1

fht + r i80(ci t , r )�1(ju(2)
i (t , r )j + D+

i [u(2)
i ](t , r ))

+ hci t � r iD[u(2)
i ](t , r )g,

e3[u(3)](t , r ) =
mX

i =1

fht + r i80(ci t , r )�1(ju(3)
i (t , r )j + D+

i [u(3)
i ](t , r ))

+ (hci t � r i�1 + hci t � r i�280(ci t , r ))�1D[u(3)
i ](t , r )g,

where80(ci t , r ) is given by (2.2), andD[v](t , r ) andD+
i [v](t , r ) are from Lemma 2.6.

We also define

Ek(T) = sup
(t ,r )2[0,T )�[0,1)

ek[u(k)](t , r ) (k = 1, 2, 3)

for 0< T � T", and Ek(0) = supr2[0,1) ek[u(k)](0, r ).

Proposition 3.1. Assume0 < T < T", and let Mk (k = 1, 2, 3) be positive con-
stants. Suppose that" is a positive constant satisfying

M3"3 � M2"2 � M1" � 1

and " � 1. Then there exist three positive constants C1, C2 and C3 (which are in-
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dependent of T, T", ", and Mk (k = 1, 2, 3)) such that

(3.5) Ek(T) � Mk"k (k = 1, 2, 3)

implies

E1(T) � C1(" + M2
1"2),(3.6)

E2(T) � C2(M2
1"2 + (M2

1 + M2)M2"4 log(2 +T) + M2
3"6(log(2 +T))2),(3.7)

E3(T) � C3(M1M2"3 + M2M3"5 log(2 +T)).(3.8)

Before proving Proposition 3.1, we show that Theorem 1.1 follows from it.

Proof of Theorem 1.1. Set

(3.9)

M1 = max

�
2E1(0)" , 4C1

�
, M2 = max

�
2E2(0)"2

, 6C2M2
1

�
,

M3 = max

�
2E3(0)"3

, 4C3M1M2

�
.

Choose a positive constant"1 (� 1) which is small enough to satisfy

(3.10) M1"1 � 1

4C1
and M3"3

1 � M2"2
1 � M1"1 � 1.

Let 0< " � "1, and assume"2 log(2 +T") � C4, where

(3.11) C4 = min

(
1

6C2(M2
1 + M2)

,

s
M2

6C2M2
3

,
1

4C3M2

)
.

Define

T = supfS2 [0, T"]; Ek(S) � Mk"k (k = 1, 2, 3)g.
Since (3.9) impliesEk(0)� Mk"k=2 (k = 1, 2, 3), the continuity ofEk implies Ek(S) �
Mk"k (k = 1, 2, 3) for someS2 (0, T"]. HenceT is positive.

Now supposeT < T". Then, Proposition 3.1, (3.9), (3.10), and (3.11) lead to
Ek(T) � Mk"k=2 (k = 1, 2, 3), which contradict the definition ofT becauseEk (k =
1, 2, 3) are continuous functions. Hence we concludeT = T", and Ek(T") � Mk"k for
1� k � 3.

From thesea priori estimates, we see that
Pj�j�1

P3
k=1 j��t ,r u(k)(t , r )j is bounded

for (t , r ) 2 [0, T")� [0,1). Then, from the system (3.1)–(3.3), it is easy to show thatPj�j=2

P3
k=1 j��t ,r u(k)(t , r )j is also bounded for (t , r ) 2 [0, T")� [0,1). Now the classi-

cal local existence theorem assures that we can extend the solution (u(k))1�k�3 beyond
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T". This contradicts the definition ofT". Accordingly we find"2 log(2 +T") > C4 for
0< " � "1, which immediately impliesT" � exp(C5"�2) for " � "0 with appropriately
chosen positive constantsC5 and "0. This completes the proof.

Now we are going to prove Proposition 3.1.

Proof of Proposition 3.1. Let� and are radially symmetricC2-functions. First
we observe that we have

M[�(�
t ,r )](t , r ) � C(j�(t , r )j + hr i�1D[�](t , r ))D[ ](t , r ),(3.12)

M[(��t ,r�)(�
t ,r )](t , r ) � Chr i�1D[�](t , r )D[ ](t , r )(3.13)

for j�j = j
 j = 1, whereM is defined as in Lemma 2.6. Since

2Q0(�,  ; ci ) = (�t� � ci �r�)(D+,ci ) + (�t � ci �r )(D+,ci �)

for any radially symmetric functions� and , we also obtain

(3.14)
M[Q0(�,  ; ci )](t , r )

� Chr i�1(D[�](t , r )D+
i [ ](t , r ) + D[ ](t , r )D+

i [�](t , r )).

For 0� j � m, we define

3 j = f(t , r ) 2 [0,1)� [0,1); jc j t � r j < Ætg
with some smallÆ > 0, wherec0 = 0 as before. Note thathc j t � r i is equivalent
to ht + r i outside3 j . If Æ is chosen sufficiently small, then there is no intersection
between3 j and3k for j 6= k. Hence we have

(3.15) hc j t � r i�1hckt � r i�1 � Cht + r i�1w(t , r )�1

for j 6= k. Moreover, if we havej 6= i and k 6= i in addition, we get

(3.16) hc j t � r i�1hckt � r i�1 � Cht + r i�1wi (t , r )�1.

Similarly, for � � 0 and j 6= k, we have

hc j t � r i��80(ckt , r ) � C(hc j t � r i�� + ht + r i��80(ckt , r )),(3.17)

80(c j t , r )80(ckt , r ) � C(80(c j t , r ) +80(ckt , r )).(3.18)

From (3.15), we especially havehr ihc j t � r i�1 � Cht + r i�1 for 1 � j � m, and we
obtain

ju(1)
j (t , r )j + hr i�1D[u(1)

j ](t , r ) � Cht + r i�1hc j t � r i�1M1",(3.19)

ju(k)
j (t , r )j + hr i�1D[u(k)

j ](t , r ) � Cht + r i�180(c j t , r )Mk"k(3.20)



710 S. KATAYAMA

for k = 2, 3. Having these estimates in mind, we are going to evaluate each non-
linearity.

First we estimate nonlinear terms contained in (3.1). We have

M[Ni (�u(1), �u(1))](t , r ) � C
X

j

hr i�1ht + r i�1hc j t � r i�3M2
1"2

� Cht + r i�2w(t , r )�3M2
1"2,

M[r I
i (�u(1), �u(1))](t , r ) � C

X
j 6= k

hr i�1hc j t � r i�2hckt � r i�2M2
1"2

� Cht + r i�3w(t , r )�2M2
1"2,

M[r III
i (u(1), �tu

(1))](t , r ) � C
X
j 6= k

ht + r i�1hc j t � r i�1hckt � r i�2M2
1"2

� Cht + r i�2w(t , r )�2M2
1"2.

On the other hand, sinceHi is a rotationally invariant function of cubic order, we have

M[Hi (u
(1), �u(1))](t , r ) � Cfhr iju(1)j3 + (ju(1)j2 + j�t ,r u

(1)j2)D[u(1)]g
� Cht + r i�2w(t , r )�3M3

1"3.

Summing up, we get

(3.21) M[�ci u
(1)
i ](t , r ) � Cht + r i�2w(t , r )�2M2

1"2.

Hence Lemmas 2.1, 2.8, 2.2, and Lemma 2.6-(i), (iii) with (�, �) = (2, 1) lead to

(3.22) E1(T) � C1(" + M2
1"2).

Next we turn our attention to (3.2). Let� be a positive and small constant. Then
we have

(3.23) 80(ci t , r ) � Cht + r i�hci t � r i�� .
Using this inequality, we start with

M[Ni (�u(2)+(3), �u(2)+(3))](t , r )

� C
X

j

hr i�1ht + r i�1hc j t � r i�180(c j t , r )2(M2"2 + M3"3)2

� Cht + r i�2+2�w(t , r )�1�2�M2
2"4,

M[r I
i (�u(2)+(3), �u(2)+(3))](t , r )

� C
X
j 6= k

hr i�1hc j t � r i�1hckt � r i�180(c j t , r )80(ckt , r )(M2"2 + M3"3)2

� Cht + r i�2+�w(t , r )�1��M2
2"4.
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Since�u(1) enjoys a better estimate than�u(2)+(3), it is easy to obtain

M[Ni (�u(1), �u(2)+(3))](t , r ) � Cht + r i�2+�w(t , r )�2��M1M2"3,

M[r I
i (�u(1), �u(2)+(3))](t , r ) � Cht + r i�2+�w(t , r )�2��M1M2"3.

Now we are proceeding to rather delicate parts. For simplicity of exposition, we
set u = u(1)+(2)+(3). Then we have

M[r II
i (�u, �u)](t , r )

� C
X
j 6= i

hr i�1fhc j t � r i�4M2
1"2 + hc j t � r i�2(M2

2"4 + M2
3"6)

+ hc j t � r i�480(c j t , r )2M2
3"6g

� Cht + r i�1wi (t , r )�2(M2
1"2 + M2

3"6flog(2 +T)g2)

for 0� t < T . Here we have used80(c j t , r ) � C log(2 + t). We also get

M[r III
i (u(1), �tu

(2))](t , r )

� C
X
j 6= k

ht + r i�1hc j t � r i�1hckt � r i�1M1M2"3

� Cht + r i�2w(t , r )�1M1M2"3 � Cht + r i�2+�w(t , r )�1��M1M2"3,

M[r III
i (u(2)+(3), �tu

(2))](t , r )

� C
X
j 6= k

ht + r i�180(c j t , r )hckt � r i�1(M2"2 + M3"3)M2"2

� C(ht + r i�1w(t , r )�1 + ht + r i�2+�w(t , r )��)M2
2"4

� Cht + r i�1w(t , r )�1M2
2"4.

Setting H̃ i = Hi (u, �u)� Hi (u(1), �u(1)), we obtain

M[ H̃ i ](t , r ) � C

(
3X

k=1

(ju(k)j + hr i�1D[u(k)])

)2 3X
k=2

(hr iju(k)j + D[u(k)])

� Cht + r i�2+3�w(t , r )�3�M2
1 M2"4

� Cht + r i�1w(t , r )�1M2
1 M2"4.

Now we set

Gi ,1 = r II
i (�u, �u), Gi ,2 = r III

i (u(2)+(3), �tu
(2)) + H̃ i ,

Gi ,3 = �ci u
(2)
i � Gi ,1� Gi ,2.
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Since we have shown

M[Gi ,3](t , r ) � Cht + r i�2+2�w(t , r )�1��M1M2"3,

from Lemma 2.2 and Lemma 2.6-(i), (iii) with (�, �) = (2� 2�, �) (note that we may
assume 2� 2� > 1), we get

e2[Uci [Gi ,3]]( t , r ) � C M1M2"3 � C M2
1"2.(3.24)

Also these lemmas with (�, �) = (1, 0) yield

(3.25) e2[Uci [Gi ,2]]( t , r ) � C(M2
1 + M2)M2"4 log(2 + t).

On the other hand, by Lemmas 2.2 and 2.6-(ii), (iii) with (�, �) = (1, 1), we get

(3.26) e2[Uci [Gi ,1]]( t , r ) � C(M2
1"2 + M2

3"6flog(2 +T)g2).

Now (3.24), (3.25) and (3.26) imply

(3.27) E2(T) � C2(M2
1"2 + (M2

1 + M2)M2"4 log(2 +T) + M2
3"6flog(2 +T)g2)

with an appropriate constantC2.
Finally we consider (3.3). We get

M[r III
i (u(2)+(3), �tu

(1))]

� C
X
j 6= k

ht + r i�180(c j t , r )hckt � r i�2M1"(M2"2 + M3"3)

� C(ht + r i�1w(t , r )�2 + ht + r i�3+�w(t , r )��)M1M2"3

� Cht + r i�1w(t , r )�2M1M2"3,

where� (> 0) is a small constant. We also obtain

M[r III
i (u(1), �tu

(3))] � C
X
j 6= k

ht + r i�1hc j t � r i�1hckt � r i�1

� (1 + hckt � r i�180(ckt , r ))M1M3"4

� C(ht + r i�2w(t , r )�1 + ht + r i�2+�w(t , r )�2��)M1M3"4

� Cht + r i�1w(t , r )�2M1M3"4.

From Lemma 2.2 and Lemma 2.6-(i), (iii) with (�, �) = (1, 1), we obtain

(3.28) e3[Uci [r
III
i (u(2)+(3), �tu

(1)) + r III
i (u(1), �tu

(3))]]( t , r ) � C M1M2"3.
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On the other hand, forj 6= k and small� (> 0), we have

80(c j t , r )hckt � r i�1(1 + hckt � r i�180(ckt , r ))

� C(ht + r i�180(c j t , r ) +w(t , r )�1 +w(t , r )�280(ckt , r ))

� C(ht + r i�1+�w(t , r )�� +w(t , r )�1 +w(t , r )�2 log(2 +T))

� C(w(t , r )�1 +w(t , r )�2 log(2 +T)).

Hence we get

M[r III
i (u(2)+(3), �tu

(3))](t , r )

� C
X
j 6= k

ht + r i�180(c j t , r )hckt � r i�1

� (1 + hckt � r i�180(ckt , r ))(M2"2 + M3"3)M3"3

� Cht + r i�1(w(t , r )�1 +w(t , r )�2 log(2 +T))M2M3"5.

Therefore, by Corollaries 2.3 and 2.7, we obtain

e3[Ui [r
III
i (u(2)+(3), �tu

(3))]]( t , r ) � C M2M3"5 log(2 +T).(3.29)

Finally (3.28) and (3.29) imply

(3.30) E3(T) � C3fM1M2"3 + M2M3"5 log(2 +T)g.
This completes the proof.

4. Proof of Theorem 1.2

Suppose that all the assumptions in Theorem 1.2 are fulfilled. Let u = (u1, u2)
be a solution to (1.1)–(1.2) (with (1.19) and (1.20)) for 0� t < T". Fix � satisfying
1=2< � < 1. We put

e�1[u1](t , r ) = ht + r i� (ju1(t , r )j + D+
1 [u1](t , r ))

+ hc1t � r i�D[u1](t , r ),

e�2[u2](t , r ) = ht + r i80(c2t , r )�1(ju2(t , r )j + D+
2[u2](t , r ))

+ hc2t � r iD[u2](t , r ),

and

(4.1) E(T) = sup
(t ,r )2[0,T )�[0,1)

(e�1[u1](t , r ) + e�2[u2](t , r ))

for 0< T � T", with E(0) = supr2[0,1)(e
�
1[u1](0, r ) + e�2[u2](0, r )).
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Similarly to the proof of Theorem 1.1, what we need for the proof of Theorem 1.2
is the following.

Proposition 4.1. Assume0 < T < T", and let M0 be a positive constant. Sup-
pose that" is a positive constant satisfying M0" � 1 and " � 1. Then there exists a
positive constant C0, which is independent of T, T", ", and M0, such that E(T) � M0"
implies

(4.2) E(T) � C0(" + M2
0"2).

From Proposition 4.1, following a similar argument in the proof of Theorem 1.1,
we see thatE(T) stays bounded as far as the solutionu exists for 0� t < T , and the
local existence theorem implies Theorem 1.2.

Proof of Proposition 4.1. Lemmas 2.1 and 2.8 yield

(4.3)
2X

i =1

e�i [U�
ci

[" fi , "gi ]]( t , r ) � C".
As for the nonlinearities, firstly we have

M[Q0(u1, u1; c1)](t , r ) � Chr i�1ht + r i�� hc1t � r i��M2
0"2

� Cht + r i�2�w(t , r )�1M2
0"2

� Cht + r i�1��w(t , r )�2�+�M2
0"2

for � > 0 satisfying 2� � � > 1. Similarly we get

M[Q0(u2, u2; c2)](t , r ) � Chr i�1ht + r i�1hc2t � r i�180(c2t , r )M2
0"2

� Cht + r i�2+�w(t , r )�1��M2
0"2

� Cht + r i�1��w(t , r )�2+�M2
0"2

for small � > 0. Thus we obtain

(4.4) M[Ni (�u, �u)](t , r ) � Cht + r i�1��w(t , r )�2�+�M2
0"2.

On the other hand, we have

M[r I
i (�u, �u)](t , r ) � Chr i�1hc1t � r i��hc2t � r i�1M2

0"2

� Cht + r i�1��w(t , r )�1M2
0"2

� Cht + r i�1��=2w(t , r )�1��=2M2
0"2.
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Summing up, from Lemma 2.2, (i) and (iii) in Lemma 2.6, we obtain

(4.5) e�i [Uci [Ni (�u, �u) + r I
i (�u, �u)]]( t , r ) � C M2

0"2

for i = 1, 2.
Now we are going to estimate the main parts. Forr IV

1 , we have

M[r IV
1 (u, �u)](t , r ) � Cht + r i�180(c2t , r )hc2t � r i�1M2

0"2

� Cht + r i�1+�w1(t , r )�1��M2
0"2

for small � > 0. By (ii) in Lemma 2.6 with (�, �) = (1� �, �), we get

(4.6) hc1t � r i�D[Uc1[r
IV
1 ]]( t , r ) � C M2

0"2,

provided that� is small enough to satisfy 0< � � 1� �.
On the other hand, since

ht + r i�1+�w1(t , r )�1�� � Cht + r i1��ht + r i�2+�+�w1(t , r )�1��
and h� + �i � ht + r i for (� , �) 2 2�

i (t , r ), we get

sup
(� ,�)22�

i (t ,r )
h� + �i2����w(� , �)1+�M[r IV

1 ](� , �) � C M2
0"2ht + r i1�� .

Now, since we may assume 2� � � � > 1, Lemmas 2.2 and 2.6–(iii) with (�, �) =
(2� � � �, �) lead to

(4.7) jUc1[r
IV
1 ](t , r )j + D+

1 [Uc1[r
IV
1 ]]( t , r ) � Cht + r i��M2

0"2.

From (4.6) and (4.7), we obtain

(4.8) e�1[Uc1[r
IV
1 (u, �u)]]( t , r ) � C M2

0"2.

Similarly we also obtain

(4.9) e�1[Uc1[r
II
1 (�u, �u)]]( t , r ) � C M2

0"2.

Since we have 2� > 1, we get

M[r II
2 (�u, �u)](t , r ) � Chr i�1hc1t � r i�2�M2

0"2

� Cht + r i�1w2(t , r )�2�M2
0"2.

Hence, from Lemma 2.2, (ii) and (iii) in Lemma 2.6, we obtain

(4.10) e�2[Uc2[r
II
2 (�u, �u)]]( t , r ) � C0M2

0"2.
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Finally, (4.2) follows from (4.3), (4.5), (4.8), (4.9) and (4.10). This completes
the proof.
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