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INJECTIVITY RADIUS
FOR NON-SIMPLY CONNECTED SYMMETRIC SPACES
VIA CARTAN POLYHEDRON
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Abstract
We determine the cut locus of an arbitrary non-simply cotewccompact and
irreducible Riemannian symmetric space explicitly, andnpate injectivity radius
and diameter for every type of them.

1. Introduction

Let (M, g) be a Riemannian manifoldp € M and ¢ : [0, c0) — M be a normal
geodesic such that(0) = p, then the set of for with d(z(t), £(0)) =t is either [0,00)
or [0, tg] for somety > 0, whered( , ) is the distance function oM x M induced
by the metricg. In the latter case¢(tp) is called thecut point of ¢ with respect to
p andteZ (0) is called acut point in ToM. The union of all cut points irM is called
the cut locus of p in Mand denoted by#(p), while the union of all cut points in
TpM is called thecut locus of p in FM and denoted bYC(p). The injectivity radius
of M is the largest such that for allp € M, exp, is an embedding on the open ball
of radiusr in T,M, which is denoted by(M); the diameterof M is the least upper
bound of the length of minimal geodesics M, which is denoted by(M).

¢ (p), C(p), i(M), d(M) have a close relationship with other geometrical quan-
tities, e.g., sectional curvature, Ricci curvature, voduniundamental group, conju-
gate locus, convexity radius and so on. Cheeger, Klinggnb&ponogov, Berger,
Grove, Shiohama, Weinstein, Sugahara, Ichida and Pittrhasme made a contribu-
tion to these topics (see [3] Chapter 5-6, [7], [26], [22]], [A5]).

Generally, it is very difficult to determin&’(p), C(p), i(M) andd(M) for an ar-
bitrary Riemannian manifoldv; but it is possible for Riemannian symmetric spaces
to describe those objects explicitly in terms of their Liedhetic structures. Richard
Crittenden discussed conjugate points and cut points inrsstnic spaces in [5]; where
he claimed that the conjugate locus is determined bydiagram of a single Cartan
subalgebra and the isotropy group, and proved that the cuslof p coincides with
the first conjugate locus of for every p € M when M is simply connectedCheeger
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gave a different proof in [4]). Based on his work, T. SakaireleterizedC(p) for com-
pact Riemannian symmetric spaces in [18], without assumsingply connectedness;
and furthermore he studies the singularitieszifp) in [20]. M. Takeuchi generalized
the structure theorem fo¥'(p) in [24] and [25], using his theory of the fundamental
group of compact symmetric spaces, which is derived in [2ZBhe author computed
i(M) andd(M) for every type of simply connected, compact and irredeciRlemann-
ian symmetric spaces according to the corresponding Dydkigram and Satake di-
agram in [27]. The purpose of the present paper is to cakul@) and d(M) for
every type of non-simply connected, compact and irredaciRiemmannian symmetric
spaces. To realize it, we express the cut locus of them dtkplio terms of Cartan
polyhedron The author hopes the methods and the results be beneficading fur-
ther research for general geometric properties on symmspraces of compact type.

In Section 2, we summarize the results about cut locus of bitrany simply con-
nected, compact Riemannian symmetric space, which are ald®ichard Crittenden;
but our denotation is mainly from [8] and [2]. Notice the cept of Cartan poly-
hedron which plays an important role in the expression of the catisoand the com-
putation ofi(M) and d(M) for both simply connected case (cf. [27]) and non-simply
connected case. Moreover, we compute the kernel of the erpiahenapping explic-
itly and give two easily-seen corollaries, which are uséfulthe next sections.

E. Cartan and M. Takeuchi have studied the fundamental grbapropact Riemann-
ian symmetric spaces, see [23]. But for the expression ofcthidlocus, we adopt a
new idea of describing the fundamental group. At the begmrof Section 3, we ex-
plore the relationship betweeny; (K) and the restricted root system, wheve= U /K
is the universal covering space ™ and Z,g,(IZ) denotes the points iM fixed by
the left action ofK; then we claim that there is a one-to-one correspondenceebat
every subgroup OTZM(IZ) and every globally Riemannian symmetric space which is
locally isometric toM, and whose fundamental group is isomorphic to the correspon
ing subgroup ofZ; (K).

Then in Section 4, we bring in new denotation (i.€; and P/, whereT is an
arbitrary subgroup oTZ,g,(IZ)) and obtain Theorem 4.1 about cut locus, the main the-
orem in the paper. Theorem 4.1 is equivalent to the main émeaf [18] in essence.

Section 5-8 is the process of computin@) and d(M). In Section 5, we com-
pute @, ) for every type ofX (restricted root system), whems, ..., g denote the
vertices of Cartan polyhedron, ( , ) denotes the Killing fpland give the group struc-
ture onM(K), which is completely determined by. In Section 6, we introduce two
new qualities, i.e.j(Pr) andd(Pr) and express them in the form of (), whereyr
is the highest restricted root; later in Section 7, we compt, ¢) for every type of
reduced, compact and irreducible orthogonal symmetricdlgebras (the work is first
done by X.S. Liu in [13], and our method is similar to [27], se wmit the details of
computation); then combining the results of Section 6 ancti®@e 7, i(P-) andd(Pr)
are determined explicitly. In Section 8, we give the geoinatmeaning of a parame-
ter € > 0, which only depend on the metric &fl, and then we lisi(M) and d(M)
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for every type of non-simply connected, compact and irrdgdedRiemannian symmet-
ric spaces wher = 1, Ric =1/2 in Table 8.1 and Table 8.2 on the basis of what we
have done in Section 5-7. However, whih= SU(n);SQn), SU(2n)/SEn) or SU(n),

I' =Z, such that 2< p < n, the author temporarily have no idea to compd(&1/T).
Our computation is on the basis of the Dynkin diagram of eweduced root system
and theSatake diagranof every type of reduced, compact and irreducible orthobona
symmetric Lie algebras given by Araki in [1].

2. Some results about the cut locus

Let u be a compact semisimple Lie algebra a&hdn involutive automorphism of
u, then6 extends uniquely to a complex involutive automorphismgpthe complexi-
fication of u. We have then the direct decompositions

(21) u=to@p, whereto={X cu:0(X)=X}, p. ={X e u: 6(X) = —

Let ( , ) be an inner product onp, invariant under Ady, then {, 6, ( , )) is an or-
thogonal symmetric Lie algebra; without loss of generality can assume it ireduced
(cf. [2] pp.20—-21). LetM =U /K with U-invariant metricg is a compact Riemannian
symmetric space which associates withd, ( , )), then there is a natural correspon-
dence betweenT(M, g) and §.,( , )), whereo=eK; in the following text we identify
ToM andp,.

It is well known that the geodesic emanating frarwith tangent vectorX € p,
is given by y(t) = expt X)K, wheret — exp¢X) is a one-parameter subgroup Of
(see [8] p.208); i.e., if we denote by Exp; — (M, g) the exponential mapping, then
Exp(X) = exp(X)K; and

(Tx)"

+1)! € Pus

(2.2) d Expy = dz(expX), o Z o

where t(a) denotes the mappingK — abK of U/K onto itself for arbitrarya € U,
Tx denotes the restriction of (a)? to p, (see [8] p.215). By the properties of com-
pact Lie algebra, aX is anti-symmetric with respect t¢, ), thus Tx is symmetric
with respect to( , ),,; which yields that the eigenvalues ®% are all real; denote by
(p.),.(Tx) the eigenspace associated to the eigenvalaé Ty, then obviously

1 A =0;

1 H .
ﬁ sinh(v/1) A>0;

1
\/T_)\ S|n(\/—_)\.) A< 0

(Tx)"
(2:3) Z (2n>-|(- 1)!

(P )A (TX)
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Therefore

(2.4) kerd Exp) = D ()i (Tx):

A<0,/—renZ

Let h,, denote an arbitrary maximal abelian subspace.ofhe, be an abelian sub-
algebra oftg such thathe, ®b,, is @ maximal abelian subalgebrawf andl denote the
subalgebra ofy generated byhe, @ b,.. Denotepo = v/=1p,, p=p, ®C, E=t ®C,
Bpo = v/ —1hp., bp = hy, ® C, he = by, ® C, then the Killing form (, ) =B(, )
is positive on+/—1hy, @ by,; let A be the root system of with respect toh, then
V—1hg, @ by, is the real linear space generated Ay which is denoted byyg. De-
note by A* the subset ofA formed by the positive roots with respect to a lexicographic
ordering of A; for everya € A, denote by’ =6(x), by @ = 1/2(c — ) the orthog-
onal projection ofa into po. Denote byAg={a € Ata =0}, Ay ={o € A: a Z0},
P, = A*NA,; by £ ={a: a € Ay} the restricted root systemX has a compatible
ordering withA, and =* = {a: o € P,}. Denote by

(2.5) gy ={xeg:[H,x]=(H,y)x, Hep}, yeX,

(2.6) Ey = (gy S g,y) NE, py = (gy éBgfy) Np, Yy e Z+:

and bym, =dim¢ g, the multiplicity of y, then

(7))  g=3(bp) @ (@ gy), t=3e(hp) © (@ By), p=hp® (@ py)

yes yex* yex”
and
(2.8) m, =f{a € Ay: =y}, dimg¢, =dimp, =m,

(cf. [8] pp.283—293).

For every X € p,, there existsk e K and H € b,,, such thatX = Ad(k)H
(cf. [2] p.31). For arbitraryuep,, (adH)?u=—(ad(-+v/—1H))?u=—(—+v/—1H,y)%u;
—/=1H, y € by, vields (-v/—1H, y)? > 0; i.e.,

(2.9) Py NP C (Pe)(—ymam 2 (Th)-

Since X = Ad(k)H, adX = Ad(k) cadH o Ad(k) ! and moreoveiTyx = (adX)? = Ad(k) o
(adH)? o Ad(k)~* = Ad(k) o Ty o Ad(k)~%; which yields the eigenvalues dfx coincide
with the eigenvalues offy and for every eigenvalue, (p.);(Tx) = AdK)((p.)i(Th)).
By (2.4), (2.7), (2.9), we have
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Theorem 2.1. Let M =U/K be a compact Riemannian symmetric space such
that U is a semi-simple and compact Lie growgnd the denotation op.., €, hp,, =,
Exp is similar to above then for every X= Ad(k)H € p., where ke K, H € bp,, X
is a conjugate point in JM if and only if there exists at least onee X, such that

(2.10) H,y) e nv/-1(Z - 0)

and ker(Exp) is the direct sum ofAd(k)(p, N p.) such thaty € £* and (H, y) €

7v/—1(Z — 0).
Denote byC(p) the cut locus ofp € M in T,M, by
(2.11) S(p) = {X € ToM: d(p, exp,(X)) = [X]};

then X € &(p) if and only if there existsXy € C(p) andt € [0, 1] such thatX =t X,
and moreoverC(p) = 96(p) (cf. [3] pp.94-95). In 1962, Richard Crittenden proved
the following proposition in [5]:

Lemma 2.1. Let M be a simply connected complete symmetric spteevery
p € M, the cut locus of p coincides with the first conjugate locus of p

Then by Lemma 2.1 and Theorem 2X,= Ad(k)H € &(o) if and only if (tH, y) ¢
m+/—1(Z—-0) for everyt € [0, 1) andy € X, wherek € K andH € b, ; which implies

(2.12) -1 <—+—1(H,y)<m forevery ye?X.

Now we denote byC the Weyl chamber with respect the orderingXf i.e., C =
{X € hy,: (X, ¥) > 0 for everyy € £*}, by IT the set of simple roots. Recall that the
planes k, y) € Z (y € X) in b, constitute thediagram X) of X, and the closure of
a connected component 6f, — D(X) will be called aCartan polyhedron Especially,
let A be the set of maximal roots, then the inequalitiesy() >0 (y € IT), (x,8) <1
(B € A) define a Cartan polyhedron, which is denoted/ySee [2] p.10). Obviously
A c C, whereC denotes the closure o in hpo- Since Weyl groupW permutes
Weyl chamber in a simply transitive manner and every elenoén/eyl group can be
extended to Ad(ty) (See [8] pp.288—-290), for everX € p., there existk € K and
H e v/—1C such thatX = Ad(k)H. By (2.12), X € &(0) if and only if H € 7/—1A.
Then we have

Theorem 2.2. Let M = U/K be a simply connected and compact Riemannian
symmetric space such that U is a semi-simple and compactrhigpgand the deno-
tation of p., €, hp,, T, A is similar to above then (o) = Ad(K)(r v/ —1A).
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From Theorem 2.2, by the completeness Mf we easily obtain the following
Corollaries:

Corollary 2.1. The assumption and denotation are similarTtheorem 2.2 then
for every pe M, there exists ke K and xe A, such that p= Exp(AdK)(r v —1x)),
and do, p) = 7|v/—1x|; where|X| = (X, X)¥/2 for arbitrary X € T,M = p,.

Corollary 2.2. The assumption and denotation are similar Theorem 2.2and
Corollary 2.1; denote p= Exp(r+/—1X), q = Exp(r+/—1y), where xy € A, then
d(p, ) = 7|vV—=1(y — x)I.

Proof. Since the metrig on M is U-invariant,

d(p, ) = d(r(expm/—1x))p, (exprv/—1x))q)

(2.13)
=d(0, Explr/—1(y — X)));

sincex, y € A, for everyy € &%, (x, ¥), (v, ¥) € [0, 1], thus ¢ — x, ) € [-1, 1];
then (2.12) yieldst+/—1(y — X) € &(0); by the definition of&(0) and (2.13),d(p,q) =
/=1y — X)|. ]

3. Some properties ofZ;(K)

In this section, we assume,(®, ( , )) be a reduced, compact and irreducible or-
thogonal symmetric Lie algebra) be the simply connected Lie group associated with
u, and M = U/K with U-invariant metric§ be a simply connected Riemannian sym-
metric space associated with, ¢, { , )). Denote bys"the involutive automorphism of
U induced bys, then the fixed point set of {denoted byU;) is connected (see [16]
[4], [3] pp.102—103); which yields thaK = U; is the connected Lie subgroup of
generated byt,. Denote byexp the exponential mapping afonto U, by Exp: p, —

MX — &Xp(X)K, by 6 = 8K, where & the identity element oJ. The denotation
of by., bpor Bp, e, be, X, II, A is similar to Section 2; sinceu(6, ( , )) is ir-
reducible, X is also irreducible and\ is a simplex; letyy bethe highest restricted ropt
M={y,...,n} (I =rank@E) = dim(p,,)), anddy,...,d € Z* such thaty = Z::idiVl'
then the vertices ofA include

1
I

Denote Z (K) = {p € M: t(k)p = p for everyk € K}, then onZ;;(K) we have
the following proposition:

Proposition 3.1. There exists a natural group structure on,glzﬁ) if we define
aK - bK =abK and (aK) ' =a 'K for every &, bK e Zy(K). Then Z;(K) is a
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finite abelian group and for every p=aK € M — {8}, the following conditions are
equivalence y

(@ peZy(K); N o

(b) a e Ng(K), where Nj(K) denotes the normalizer oK in U;

(c) aa* € Z(U) N éXpb,.), where ZU) denotes the center dfl and a =6 (a)~%;

(d) p=Exp(rv/—1ej) such that ¢ = 1.

Proof. (a)& (b): If p=aK e Z,;(K), then for everyk € K, aK =kaK, which
yieldsatka e K, i.e., a € Ng(K); and vice versa.

(b) = (c): It is well known thatU = K éxp(,,)K (cf. [2] pp.74-76), soa =
by EXpXb, for some X € b, andby, b, € K. a e Ng(K) yields é&xpX € Ng(K); by
the easily-seen facts thabd)* = c*b* and k* = k= for arbitraryb, c € U andk € K,
we have

aa* = by €xp Xbyhy* (EXp X)*bi = Fp,(EXp X(EXpX)*);  (where Fy(c) = bcb™)

so aa* € Z(U) N éxpb,,) if and only if éXxpX(éxpX)* does; without loss of gen-
erality we can assuma = éXpX. For everyk € K, there existsk' € K, such that
ka=ak/, thus

Fe(aa’) = kaa'k™! = ka(ka)* = (ak))(ak)* = aa".

Since b, is abelian,aa* = éXp(2X) is invariant underFegy for arbitrary Y € b, ;
furthermore, it is invariant undeff, = Fy, o Fexpy o Fy, for arbitraryb = k; éXpY k € U.
Hence (c) holds.

(c) = (b): Denotea =b; éxpXh,, whereb;, b, € K and X € h,,. Z(U) 5 aa* =
by EXp(2X)b; ! implies Exp(2X), €xp(-2X) € Z(U); then for everyk € K

6 (FepxK) = Fs@px)0 (K) = Fexpex)K = Fapax) Fepxk = Ferpxk;

i.e., Fapxk € K, &XpX e Ng(K). Hencea = by &xp(X)b, € Ny (K).
(@) = (d): By Corollary 2.1, there existk € K and x € A, such thatp =
Exp(AdK)( +/—1x)) = 7(K) Exp(r ~/—1x), then (a) implies = 7(k~ 1) p = Exp(r+/—1X).
Denote X = w+/—1x, then for arbitraryY € £y andt € R,

(32)  Exp(X)=p=rt(EXptY))p = t(EXpLY)) EXp(X) = Exp(expf adY)X).
Differentiate both sides of (3.2) and then tet 0, we have
(3.3) (d Exp)x[Y, X] = 0.

Notice thatx € A; applying Theorem 2.1, we obtain

(3.4) Y. Xle @ @, np.)

yext (x,y)=1
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p # 0 yields X # 0, then there existy; € I1, (X, y;) # 0; take nonzeror € €, N to,
then [Y, X] € p,, Np, and (3.4) yields X, y;) = 1; sincex € A, we have X, ¥) =1
and moreover

|
1=(x,9)= ) dix n)

i=1
which yieldsd; =1 and &, y1) = &j; i.e., X = gj.
(d=(c): p= E;(Jp(n«/—lej) yields aa* = éxp(2r+/—1e;) € éxpl,,.). Denote by
Ad: U — GL(u) the adjoint homomorphism, then
Ad(aa")l,, = exp(2rv/—1Lade))l,, =€V 1@ =1, yex;

(3.5) _
Ad(aa*)|39(hp) = eXp(Zr -1 adej)|3z(bp) =1

By (2.7), aa* € ker(Ad) c z(U).

Ng(K) is a Lie subgroup ofi, and the Lie algebra associatedNg (K) is n, (€) = £
(since (, 6, ( , )) is semi-simple, cf. [2] p.25); s&K is the identity component of
Ng(K) and thenZg(K) = Ng(K)/K is a finite group.

Define W: Zy(K) — Z(U) N éxpb,.)

(3.6) aK — aa’;
obviously ¥(8) = & and
w(aK - bK) = w(abK) = ab(ab)* = a(bb*)a* = aa*(bb*) = w(aK )W (bK)
for everyaK, bK e Zy;(K); if W(aK)=8&, thens(a) = a and thereforeaK = &; hence

Vs a monomorphist,;,(lZ) could be considered a subgroup #(U), which is an
abelian group. O

By Corollary 2.2, d(E;(/p(m/—lej), E?(Jp(m/—lq)) =n|v/—1(ex — &)l 70 when
i #k, then Proposition 3.1 tells us

(3.7) Za(K) = (Exp(rv/—1ej): dj = 1} U {6}

For everyj 7k such thatd; = d¢ = 1, (g — &, ) € [-1, 1] for arbitraryy € X, so
there existsw € W and x € A, such thate; — e = o(X); let k € K such thatw =
Ad(K)lp,,, then
Z(K) > Explrv'—1e;) Exp(rv/—1a) ™ = Exp(rv~1(ej — &)
= 7(K) EXp(r v—1x) = EXp(r v/—1x).
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From the proceed of proving Proposition 3.1, we havee for some 1<r <| such
that d, = 1. Similarly, there exists & s <| such thatds = 1 and Exp(r+/—1e;)~! =
Exp(r~/—1es). It tells us that the group structure &,;(K) can be uniquely de-
termined by the type ofZ, and using the technology stated above, we can write
Exp(rv/—1ej) Exp(r/—1&) ! and Exp(r+/—1e;)~! precisely. We shall give the re-
sults for every type of: in Section 5 after concrete computation.

ZM(IZ) has a close relationship with the fundamental group of Rieman symmet-
ric spaces. LeM =U /K with U-invariant metric be a non-simply connected Riemann-

ian symmetric space associated withd, ( , )), then the universal coverlng group of
U is U; denote byx: U — U the coverlng homomorphism and by: M = U/K —

M =U/K

(3.8) aK = x(a)K;

then 7 is obviously a covering map, and the pullback metrictg coincides withg.
In this case,M is called aClifford-Klein form of M; M is isomorphic to the quo-
tient of M by a properly discontinuous group of isometries which is isomorphic to

771(0) = x H(K)/K (cf. [2] pp.101-105). Byx(K) c K, x Y(K)/K is invariant un-
der (k) for arbitrary k € K; furthermore, smca(—l(K)/K is discrete, any point of
which is invariant under (k); thereforer—%(0) ZM(K), i.e., the fundamental group
of M is a subgroup ofZ,;(K).

Conversely, lefl” be an arbitrary subgroup Q‘M(K); by Proposition 3.1,¥(T") is

a subgroup ofZ(U), whereV is defined in (3.6); let) = U /¥(I"), denote byy: U —
U the covering homomorphism. For aag* € W(T") such thataK €T, sinceéxp() =
(b*)~* and b** = b,

5(aa’) = ((aa’)) 1= (@"a) 1= (aa’) e (),

i.e.,  keepsW¥(I') invariant; sos” induces a involutive automorphism &f, which is
denoted bys. Let K =U,, and the definition ofr is similar to (3.8), then for every
aeU, aK e 77Y(0) = x (K)/K if and only if

o(x(@) =x@) ie., W@K)=aa =as@)* e ker(x)=w():

so the fundamental group ol is isomorphic toI’. We can expres$! as M/T.
Therefore, all of the subgroups &,;(K), which is uniquely determined by the

type of 2, could completely determine every compact and irredudiiEmannian sym-

metric space which is locally isometric d, ie., every Clifford-Klein form ofM.

4. The cut locus of non-simply connected, compact and irredtible Riemann-
ian symmetric spaces

Our assumption and the denotation af 4, ( , )), M, ZM(K) is similar to Sec-
tion 3. Let M = M/I" be a Clifford-Klein form of M, whereT is a subgroup of
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Zyi(K) satisfyingT" # {6}; and denote byr: M — M the covering mapping. We shall
study the cut locus oM; and our denotation o€(p) and &(p) is similar to Section 2.

Obviouslyn(lg(p(x)) = Exp(X) for arbitrary X € p,. By the properties of covering
maps, we have

(4.1) dui (0, Exp(X)) = min dy; (p, Exp(X)).

Let X € 6(0), i.e., du(o, Exp(X)) = |X|, then (4.1) impliesdy; (6, E;(/p(X)) > |X]; on
the other hand, obviousldy; (8, Exp(X)) < |X|; then dy; (8, Exp(X)) = |X|, i.e., X €
S(8). By Theorem 2.2, there existse K andx € A, such thatX = Ad(k)(r v—1x).
For any p = Exp(r+/—1¢) € ", by Corollary 2.2,
@.2) dya (P, EXp(X)) = dyi(p, 7(k) Explrv/=1x)) = dyg (r(k~*) p, Exp(rv/—1x))
= dy (Exp(r v~ 1e), Explrv'=1x)) = 7|V =1(x — &)|.

Then by (4.1),

[X| = mindyi(p, EXp(X)) = min{|X|, 7|v=1(x - &)|: Exp(rv'—1a) €T)

= min{z|v/=1x|, 7|v/=1(x — &)|: Exprv/—1&) € I'};

ie.,
(4.3) xeA and |v-1x| <|v—1(x—g)| for every E;(/p(n\/—le,) erl.

Conversely, if (4.3) is satisfied, it is easy to check tthato, Exp(X)) = | X|. Therefore,
(4.3) is a necessary and sufficient condition ¥re G(0).

The condition (4.3) can be simplified further. Since 4, ( , )) is irreducible,
there exists a positive constantsuch that

(4.4) (, Y=—€(, ), (, ) bethe Kiling form ong

(cf. [2] pp.23—-26). Then for every € po, |v—1y|? = €(y, y); hence |v/—1x| <
[vV=1(x —e)| if and only if e(X, X) < e(x — g, X —g), i.e.,, K, ) <1/2(g, €).
As a matter of convenience, we bring in new denotation:

DENOTATION 4.1. Given an arbitrary subgroup C ZM(K), we denote
1 —
(4.5) Pr = {x €N (X, )< E(e,, g) for every Exp(rv/—1g) € F};
, 1
Pl = {x ePri(x,¥)=1or (x, e)= E(ej, g)

(4.6)
for some j such thatExp(rv/—1e;) € F}.
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For anyx € Pr, if tx ¢ Pr for everyt > 1, thenx € P[; and vice versa. So we
have the following theorem:

Theorem 4.1. Let (u, 6, ) be a reduced compact and irreducible orthogo-
nal symmetric Lie aIgebraM U/K be the simply connected Riemannian symmetric
space associated withs, 0, ( , )), M = M/I" be a Clifford-Klein form ofM, where

I is a subgroup of &(K) satisfyingI" # {6}, then &(0) = Ad(K)(r+~/—1P;) and
C(0) = 96(0) = Ad(K)( v/—1PY).

5. Some computation one; and several corollaries

The section is preparation for the next section. One of oupgaes is to compute
(&, &), after which, we will give the group structure g (K).

When computing€, €;), we assumé; (K) # {8}, which impliesE = a;, by, ¢, 0, ¢6
or ¢7 (by (3.7)). If T is a classical root systemy( b, ¢ or 9), then & can be
imbedded into Euclidean space in a natural manner (see [8B6pp465); so we can
expresse explicitly according to (3.1) and then compute, ;). Otherwise, wher
is an exceptional one, the following Lemma takes effect.

Lemma 5.1. The denotation ofz, I1, y;, g is similar to Section 3,if we denote
Qij =, 7)), then(e, &) = 1/(djdi) (R ;i

Proof. Since{ys,..., n} is a basis off,,, we can writeg; = ykA‘J-‘; then (3.1)
yields
(5.1) g di = (e, n) = (WA, 1) = AfQ;
i

SO Alj< = l/dj (Qfl)ki&j = 1/dj(§271)kj and
1 1 -1
(@, &)= (WA, eJ)——31kA, 3Jk (Q )kI_H(Q )ii - 0
Now we give the detail of computation o&( e;) for every type ofX.

¥ =q (I = 1): The corresponding Dynkin diagram is:

o—0—~: - —0—20
Yo " Yi-1 Vi

Denotey, =X — Xi+1 (1 <i <1), thenX ={£(x —x)):1<i<j<I|+1}, ¢ =
X1 — Xj+1 = Z, -1 v and thereforex;, x;) = 1/2(¥, ¥)éij; by (3.1), we obtain

2 - .

k=j+1



522 L. YANG

(R o ) S

(5.3) (a-ej)—m, <i<j<

¥ =b (I = 2): The corresponding Dynkin diagram is

Yio " Yi-1 VI

Denotey, =% —Xi+1 (1 <i <l —=1), y=x, thenZ ={£(x £x;):1<i <] <Il}uU
(Ex:1<i<I}), y=xi+x=y+2Y.,% and therefore X, x;) = 1/2(¢, ¥)5ij;
by (3.1), we obtain

2 1 Jd
. e S — 2 i |,
(5.4) o=y © (w,w)éxk 2<ij<l
(5.5)
(ne)= 2 Ene)=—— (2<j<l), (.e)=-—— @=<i=<j=<l).
’ W) T ) T T T 2, y) T T T

¥ =¢ (I = 3): The corresponding Dynkin diagram is:

Yo "2 Yi-1 Vi

Denotey; =X —Xi+1 (L <i <1 =1), p =2x, thenZ = {£(x £xj): 1 <i < j <I}U
{(£2x: 1<i <}, ¥ =2x, =2Y |2ty +y1 and thereforex;, x;) = 1/4(¥, ¥)si;; by (3.1),
we obtain

2 .
(5.6) ejzmgxk, 1<j<lI;
(5.7 (a,ej)=m, 1<i<j<l

¥ =9 (I = 4): The corresponding Dynkin diagram is
Yi-1

oO—O0O— - -
Yio " Yi—2 v

Denotey; =X —Xi+1 (1 <i <1—=1), n =x_1+x, thenX = {+(x £x;): L <i <] <1},



INJECTIVITY RADIUS FOR SYMMETRIC SPACES 523

¥ =X +X =3+ 25 v+ noa+n and thereforeX, x;) = 1/2(w, v)8ij; by (3.1),
we obtain

j
- 91=(w,2w)xly ltjﬁﬁgxk (25J|5I—2),
817 (w,lw) <k21: X _X'>’ a7 (w,lw) 2%
(el,e1)=(¢,—2¢), (el,ej)=(1//’—lw) 2=<j=l),
(5.9) @ €)= 550y @=i=l-2andj=i)
(al,al)=(e,a)=m, (al,a)zziw_,zw).

¥ =e¢: The corresponding Dynkin diagram is:

Y6

Yi Y2 V3 Y4 Vs

Thenvyr = y1 + 2y, + 33+ 24 + y5 + 2y, since all the roots have the same length,

2 -1
-1 2 -1
1 1 2 -1 -1 .
Q—E(I//.l/f) 1 2 1 '
-1 2
-1 2
then by Lemma 5.1,
8 5 4 4 4 3
55 4 4 4 3
B 1 1 : 1 4 4 4 4 4 3
(5.10) ((e,,eQ)—(H(Q )l')‘3(¢, )| 4 4 4553
4 4 4 5 8 3
3 33 3 33

¥ =¢7: The corresponding Dynkin diagram is:

V7

Yio Y2 V3 Va4 Vs Ve
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Thenyr = y1+ 2y, + 33+ 4y, + 3ys+ 26 + 2)7; since all the roots have the same length,

2 -1
-1 2 -1
-1 2 -1
1
2=y, ¥) -1 2 -1 -1
-1 2 -1
-1 2
-1 2

then by Lemma 5.1,

36 24 20 18 16 12 18\
24 24 20 18 16 12 18
20 20 20 18 16 12 18
=———| 18 18 18 18 16 12 18|.
12, ¥) 16 16 16 16 16 12 16
12 12 12 12 12 12 12
18 18 18 18 16 12 2]/

(5.11) (@,€)) = (rld(ﬂ‘l)j) !

From (5.2), ~(5.8), using the technology given in Section & a&n give the group
structure ofZg (M), which only depend on the type af.

Proposition 5.1. (i) If X =eg, f4, g2 0or (bc) (I > 1), then Z\;,(IZ) = {0} = Z;.
(i) If © = a, then Zz(K) = (Explr~/—1ej): 1 < j < 1)} U {8} = Z1, and
(Exp(rv/—1e))! = Exp(r+/—1e;) for everyl < j <.
(i) If = =), then Zg(K) = {Exp(r~/—1ey), 8} = Z,.
(iv) If T =g, then Z3(K) = (Exp(r+/—18), 8} = Z,.
(v) If = =0, then Zg(K) = {(Exp(r+/—1e1), Exp(rv/—18_1), EXplrv/—18),5}. When
| is even it is isomorphic toZ, & Z,; when | is odd it is isomorphic toZ, and
(Exp(rv/~18 1)) = EXp(rv—Tey), (Exp(rv/—16-1))° = Explrv—Ta).
(Vi) If = =e¢q, then Z;(K) = {Exp(r+v/—1e1), Exp(rv/—165), 6} = Zs.
(vii) If S =e7, then Zg(K) = {Exp(rv/—1ey), 8} = Zo.

Proof. By Proposition 3.1 and (3.7), from the fact that a grof prime order is
a cyclic group, (i), (iii)—(iv), (vi)—(vii) is easily seen.
When X = q, by (5.2),
Sq-x.a(B+1—€) =€, 1<j=<I|-1

(5.12)
S<1—X|+1(_a) = ey,

where s, (y € X) the reflection with respect toy =0, which belongs to the
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Weyl group. (5.12) yieldslS(p(m/—lej+1)(I§</p(m/—1ej))*1 = E;(/p(m/—lel) and
(Exp(r+/—16))~! = Exp(r+/—1e,) and furthermore we have (ii).
When X =79, by (5.8),
S<1+X2S<17X2(_el) = €,
(5.13) SiraSutis  Sioxa (€L —@-1) =@ if | is even,
S _1—X Sxo+x3Sxatxs Sx|,3+x,,2(el —@g_1)=¢q_1 Iif | is odd.

Which implies
(Explrv/—1ey)) ™ = Explr/—1ey);

5.14 — _—
544 Exp(nquExmw——lal»-lz{

E;(/p(m/—la) | is even;
Exp(rv/—1e_1) | is odd.

Since|Z(K)| = 4, Z(K) is isomorphic toZ, ® Z, or Zs4; then (v) is easily obtained.
]

6. The computation ofi(Pr) and d(Pr)

Our assumption and denotation keep invariant. At the béggnaf the section, we
define two new quantities.

DENOTATION 6.1. Define

(6.1) i(Pr) = min(x, x)¥2, d(Pr) = maxx, x)%2 = max(x, x)%/?;
xeP/. XePr xeP).

where (, ) is an inner product ofj,, induced by the Killing form org.

In the following we shall comput&(Pr) and d(Pr).

By the definition of P/, for every x € P, (x,¥)=1 or (X, ) =1/2(¢g;, &)
for some j such thatExp(r+/—1e;) € T, which implies d; = 1. If (x,¢) =1,
then 1=§,v¥) < (x,X)Y2(y, ¥)¥2, which yields &, x)2 > (v, y) V3 if (x,g) =
1/2(ej, ), then Y2(gj, &) = (X, &) < (x, X)¥?(ej, €))%2, which implies &, x)/? >
1/2(8], ej)l/z. Thus

(6.2) i(Pr) > min{(w, S %(ej, e)?: Exp(rv/—1e)) € r}.

If the right side of (6.2) is equal to/2(e, &)Y? for somek, let x = 1/2g,, then
(X, %) =1/26i > 0 for every 1<i <, (x,¥)=1/2 <1, (X,€) = 1/2(e, ) <
1/2(ex, &)“2(e;, €j)%2 < 1/2(e;, €;) for every j such thatExp(r+/—1e;j) € T'; which
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yields x € P/, and hence (Pr) = 1/2(e, &)Y2. Otherwise, the right side of (6.2) is
equal to ¢, y)~2, letx =y/(y,¥), then & 1) =0, (x,¥) =1, (x,&) = (¥, )" <
1/4(ej, €)) < 1/2(e;, &;) for every j such thatExp(r+/—1e;) € I'; which yieldsx € P/,
and theni(Pr) = (¥, ¥)~Y2. Therefore

(6.3) i(Pr) = min{(l/f, ¥v)~Y?, %(e,—, e)/2: Exp(rv/—1e)) € r}.

By (6.3) and the results ofe(, e;) in Section 5, we can compuigPr) for any
given ¥ andI'. We list the results as follows.

?(Vh Yy + 1)V T = Dy

64) £ =a iR (W, ¥)V20 - )Y2(1 +1yY2 T =Zge1y2, | > 3, | is odd;
. = . r) =

?(w, y) Y2 | =5, [ =2y,
(W, y) 2 otherwise.

(6.5) T =10 :i(Pr)= g(lﬁ, ¥)TE (T =1Z).

(6.6) T =¢ :i(Pp)= min{l, %ll/z}(w, v)Y2 (I =1Zy).

g(l/j’ Y) Y2 Exp(rv/—1e) € T;
6.7) =0 :i(Pr) = /3

min{l, T|1/2}(1//, ¥)™V? Explrv/—1ep) ¢ T.
(6.8) X =¢g:i(Pr)= ?(w, Y) M2 (I = 7).

(6.9) T =¢7:i(Pr)= ?(vn Y)™H2 (T = Zy).

What aboutd(Pr)? Notice thatPr is a convex polyhedron, and for amy, X, € Pr
andt € [0, 1],
(txq + (1 — t)xp, txg + (1 — t)x)¥?
(610) = (tz(X]_, X]_) + (1 — t)z(Xz, X2) + 2t(1 — t)(Xl, Xz))l/2
< t(xq, )2+ (1= t)(xz, X2)%
which yields thatx € Pr — (x, x)¥/? takes its maximum at the vertices Bf. It is an

elementary idea to determine all the verticesRpf explicitly and then compute(Pr).
Sometimes the method takes effect, but when the verticesoarenany it doesn’t; so
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we need peculiar tricks for concrete examples. Now we give emnmas which will
play an important role later.

Lemma 6.1. meZ*, a> 0, b,s> 0satisfying ma<s <mb, thenif1y,...,Am €
[a,b], Y1, A <, we have
(6.11)

m 2 2
> s [mb—s] a2+ [—S_ ma} b® + ¢ where c=s — [mb—s}a_ [s—ma}b'
i=1 b-a b—a b—a b—a

Proof. DenoteD = {(A1, ..., Am) € [a,b]™: Y1, Aj < s}, thenD is compact and
every continuous function oD can takes its maximum. Denote by( ..., um) € D
such that) (1, 42 > Y0 A2 for every Q4,...,Am) € D. We claim{ui: 1<i <m}n
(a, b) has at most one element. If not, we assume u; < uz < b without loss of
generality, then there exists sufficiently small- 0 such thatu; — e, ux + ¢ € (a, b);
let Ay =1 —&, Aa=pa+e, A =i (3<i <m), then obviously} ", A% > 31 u?;
which causes a contradiction. Using the same trick, we camepy ", ui =s. Then
we can easily obtain (6.11). ]

Lemma 6.2. LetmeZ*', t1>t,>.-.>t,>0,if Ay >A,>...> Ay >0 such
that Y-y Ak < Y ks t for everyl < j <m, then )7L 22 < 3T t2

Proof. Denotes; = Y| ti, uj =Yl A (1<) <m), theniy > 2> --- >
Am >0 andd i, A < Y-, & if and only if

2y —p2 >0, 2up — 1 — 3 >0,. .., 2Um-1 — m—2 — im = 0, m — m-1 > 0;

mjp<sj (L<j=<m).

Denote byD ={(z1,...,Zm) € R™: 220 — 2, >0, Zn—Zm-1 > 0, 22« — Zx_ 1 — Zk+1 >
0, zj <sj forany 2<k <m-—1 and 1< j <mj}, then obviouslyD is convex and
(#1,--+ m), (S1,-..,Sm) € D. Denote by¢(t) = (1—t)(i1,..., um) +t(St, ..., Sm), then
¢(t)e D forte€[0,1], £(0) = (u1,..., wm), §(1) = (Sp,..., Sm) @nAE(t) = (S1— 1, Sm—

Mm)-
Define f: D - R

m—1
fze, ... zm) =4+ (21— 7))
j=1
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then f(ug, ..., um) = Z?Ll AJZ, f(s,...,Sn) = ZTzl tjz; since

af

— =2(2z; — >0,

0z (221 — 2o)

of

87_2(22'_2' 1—2Z+1) >0 (2<j<m-1),
j

of

_—Z(Zm_zm 1) =0,

0Zm

(fog)(t)= lejsm(sj —wj)(0f/0z;)(¢(t)) = 0 and thereforef o ¢ (1) > f 0£(0); i.e.,
Y af < YLt O

In the following we give the detail of computind(Pr) for any given® andT.

CASEl. ¥ =q andT =7, i.e., T = {6, Expirv/—16): 1L <i <I}.

The denotation of; is similar to Section 5; from the definition &%, by (5.2)—(5.3),
x =0 x € Pr (X1 4 = 0) if and only if

A—Xx2>0,..., A —X41 >0, }\1_)¥I+l§ﬁ;
1+1
ja+1-j) .
+1-J)) r— Ak @=<j=h.
Z “ k_JZﬂ W)
i.e.,
j+1-j) A j+1—j)
6.12 >_v o7
(6.12) Z N E e U Py E Ve

Let 1< m < such that\,, > 0 but A\p;41 < 0. Then by (6.12), we have

I +2—2k |:I+1:|.

| ' T k
J : ; I+ 1)y,
kXZl:)»k < kz:l:tk (1<j<m), wherety= (() D ¥) [ 1]

Sincet; >t > .- >ty >0, by Lemma 6.2, we have

m m [(1+1)/2] 2
(+2-20% _ 1(+2)
G13) QM=) WS D (i e 600w, 07
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On the other hand, from (6.12) we have

=M1 > A = > —Ame1 > 0;
1+1 1+1
— M St —As = A Sttt Y (M) S )
k=m+1 k=m+1

Where

2k -1 -2 |:I+1:|
— k> — |;
I+, v) ~L 2

I +1
0 k — .
<[]
Sincetiyy >t > --- >t >0, by Lemma 6.2, we have
1+1 1+1 1+1

(k—1-=2¢  1(1+2)
(6.14) IBEE DD TN DN B el YT X

k=m+1 k=m+1 k=[(1+1)/2]

(6.13) and (6.14) yield

1+1 1+1

I+
619 0= 3w =D 20 = g
and the equal sign holds if and only if
L ol+2-2 _
=L G, s
so we have
(6.16) d(Pr) = ?(w, Y) VAR + 2)M2( + 1),

Casell. T =q (I >3 is odd) andl’ = Zy, i.e., T = {8, Exp(rv/—1eg+1y2)}.

At first, notice that the linear automorphism of bh,, satisfying ¢(yi) = M+1-i
keeps (, ) invariant, which also satisfieée) = g.1_;.

The vertices of A are 0,e,...,8; by (5.2)-(5.2), for every 1< i <
(1 +1)/2, (&, e+1)2) = 1/2(eg+1)/2, €+1)2) if @and only if i < (1 +1)/4, (&, g+1)2) =
1/2(eg+1y2, €+1)/2) if and only if i > (I + 1)/4; so the vertices oPr are

SN R |1 +1 . I+1
0;a,¢(a)(1slsz>; :j i ()( JS%):

(6.17)

. | +1 |+1 . I +1
Ui,j,¢(vi,j), wi,ij(wi,j) <1§| < T, T <] =< T)
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Where

v, = —(4j =1 =1)a +( +1-4i)g),
(6.18) 40 I')

Wi = 70 _i)((4j —1 —=1)g +( +1—4i)p(e)).
By computing, we obtain
(6.19) .

6 l+1
(eq+ay/a, €gsayya)’? = = (0, ) A + 1)2 % is even;

d(Pr) =

V2 _ l+1 .
(va-1y/a,043ya Vo-1y/a0eaya) /2 = (0, ) TVAE@ - )V —=is odd.

CASEIl. T =b andT =7Z,, i.e., I' = {6, Explrv/—1e1)}.
The vertices ofA are Ogy,...,8; by (5.5), €1,€)) =1/2(e1, &) for every 2<j <lI,
so the vertices ofr include

1
0, e, e,..., .
261 € Q

Since (V2ey, 1/2e1) = 1/2(%, ¥)™, (g, ¢) = j/2(W. ¥)™t (2<j <) (by (5.10)),
we have

(6.20) d(Pr) = (8, &)"? = ?(w, ) VA2,
CASEIV. T =¢ andT =Zy, i.e., T = (8, Explrv/—18)).

By (5.6)—(5.7),x = YI_, Aix; € Pr if and only if

2 I
Al — A o,..., Mor—M>0,4>0, A< —), A < ———.
1 2= -1 | = | = 1<(1//:1ﬁ)§ <(W-1ﬁ)

By Lemma 6.1, ifl is even,

[ I 2 29 I
_ 2 %)< = ———) . = = .
(x,x)—§iki(xl'x')%((w,w)) a7 26,9

i=1

if 1 is odd,

| -1 2 2 1 2 1 2 -1
= 2(%;, Xi 5 \ 7 4 T
() ;M(X"X')f< = (@) +<(w.w))> a3y




INJECTIVITY RADIUS FOR SYMMETRIC SPACES 531
Then

NG

6.21) d(Pr) W s even
. F =

%(w, v) Y22 - 1)Y? | is odd.

CASEV. =0 andT = Z;;(K), i.e., T = {8, Exp(r+/—18):i =1,1 — 1 orl}.
By (5.8)—(5.9),x = YI_, Aix € Py if and only if

2
Ar—2XA2>0,..., AM_1—M>0,4_1+4 >0, A+ < ——;
(¥, ¥)

| [
= )Z AT w)z =209

Mo1+h =0andi_1—x =0 vyield h_1 > [n| = 0; Yot 4 — M < 1/(2(, ¥)) and
oA <1/, ¥)) yield YU A+ M) < 1/(2(, ¥)), then by Lemma 6.1,

! -1 TR | is even;
(x, x) = lexf(xi, X)) = (zlj W2+ |/\||2> : %(w, V) < 2;”’_1’1 |
" "~ | is odd.
8y, ¥)

and the equal sign holds if and only Xf= (1/(y, ¥)) Z:/zl Xi € Pr whenl is even,
x = (1/(, ¥)) S5 %+ (1/2(0, ¥))Xg+12 € Pr whenl is odd. Thus

1
5(1#, y) Y22 | is even;

?(w, Y) Y22 — 1)%2 | is odd.

(6.22) d(Pr) =

CASE VL. X =9, andT = {8, Exp(r+/—1ey)}.
By (5.9), €1, €)= 1/2(e1, e1) for every 2< j <I, so the vertices oPr include

1
0, e e, ..., .
291 € Q

Since (],./291, 1/261): 1/2(¢! w)il, (ej ) e]): J /Z(W, 1#)71 (25 J <l _2) and Q*l! afl):
(&, 8)=1/2@y, ¥)* (by (5.10)), we have

V2

(6.23) d(Pr)=(a-1.8 1)"’=(a, @)= > W y) VA2,
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Case VIl. X =9 (I is even) and = {6, E;(/p(m/—la_l)} or {8, é;(/p(m/—la)}.
By (5.9), when i <I/2, (&,6-1) <1/2(8-1,8-1); whenl/2<i <I, (&,8-1) >
1/2(8_1,8_1). Thus if ' = {8, Exp(t+/—16_1)}, the vertices ofPr are

o | I . 1 I _
0, & (1§| SE)’ Z_jej <§+1§J§|—2>, Ea_l' ma,

1 , 1 ) . .
m«' — 4 +( —2)a), 5o (e +(-2)a1) @=i=I-2)

)
1 . . . | | .
s (@ D (=20 (21 =5 -1 5 e1z<1-2)
lera) — (et —4a 1), (2] —Der+(l - 4e))
291 3,20_2) 1 a71'2(j—2) J € j
<|-+1§j§I—2>.
2
and

, . [Yew w1
— 1 1 —
(6.24)  d(Pr) =maxX(er, )", (a2, @/2)"%) = %(w’ S | s g

Similarly, if T = {0, E;(Jp(yr\/—lq)}, (6.24) also holds.

CASE VIIl. S =¢g andl =Zg, i.e., I' = {8, Exp(rv/—1e1), Explrv/—16s)}.
By (5.10), the vertices ofr are

0, &, 6, }ely ilez, }el.;.ﬂe& }ez"'}es:

2 5 5 5 2 2
ﬂ'e4, _e4+1-eﬁa 2e4+1-e:|.! ﬂ-ezl-i-ﬂ-e21 ﬂe4+}e1+fe6, 1.94"'1-62"'—96,
5 2 2 3 6 9 9 9 9 9 3 3 3
1-35, =6+ =6, 6+ 56, —95'*'2321 1-95"'}('3‘1"'296, 1-35"'1192'*"—196
25 5 3 37 6 37 6 6 379 9 9

and

(6.25) d(Pr) = (63, &3)"? = Z‘T@(vm y) 2

CASE IX. X =e¢7 andT =7y, i.e., T = {8, Expirv/—1er)}.
By (5.11), the vertices o are

0 1 3 9 1 N 9 1 +3
» €4, 65, 6, €7, 231, 462. 106‘3, 1031 1065, 462 435,
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1 +1 1 +3 1 +1 3 +l
293 235, 491 496, 292 266, 4‘33 496

and

V7 _
(6.26) d(Pr) = (&7, &)"? = 7(1#, y) 2
REMARK 6.1. If ¥ =q, ' =Z, such that 2<r <1 +1, the author temporarily

has no idea to overcome the difficulty of computid{Pr).

7. The squared length of the highest restricted root

Results of this section aboui’ () compensate Section 6; after computing, {/),
we can obtain (Pr) andd(Pr) explicitly.

In this section, we assume@, ( , )) be irreducible; the denotation of ( , ),
A, %, g, b, br, bp,, Ag, M, (y € X) is same as Section 2; and denote rbynd |
respectively the rank oA and . Then {, 0, ( , )) belongs to one of the two fol-
lowing types: (I)u is compact and simpled is an involution; (Il) u is a product of
two compact simple algebras exchangedébysee [2] p.28).

TypPe l. In the case,A and X are both irreducible; denote k/the highest root
of A; since the orderings oA and ~ are compatible, (i.e. > B yields o > B for
arbitrarya, B € A), § is the highest root of2, i.e., ¥ = 3.

Denote bys+ = {x € hg: (X, 8) = 0}, then A N 6+ is obviously a subsystem of
A with an induced ordering; leB = {1, ..., oy} be the set of simple roots in,
then B N 8+ is the simple root system oA N §*, ando; € BN &+ if and only if
8§ —a; ¢ AU{0}; then according to the Dynkin diagram of, we can clarifyB N §+
and A N &+ (for details see [27]).

On AnNést, we have the following lemmas:

Lemma 7.1. (8, 8) =4(A| — |A NSt +6)7L.
Lemma 7.2. (38, 8) = (8, 8) or 1/2(s, 8), and the following conditions are equiv-
alent

@ 6 8)=(@,0);

(b) 8 = —3;
() Bopc BNést, where B =BnN Ag;
(d) m;=1.

For details of the proof of the two Lemmas, see [27].
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According to Lemma 7.1, from those well known facts|af| for every irreducible
and reduced root system (see [8] pp.461-474), we can ohiah) &s follows:

1 1 1
T A—bn.(S,(S)—m, A=cy:i(8,0)= n+1

1 1
A=¢g:(8,8)=—; A=¢e7:(,06)=—;
¢ . (5, 6) 1 e7: (8, 8) s

A =

(71) A:On (8,8):2—_2,

A:esj(ﬁ,a):i; A:f4:(8,6):}; A:gz:(6,6)=}.

By Lemma 7.2, from the Satake diagram given by Araki in [1], wan justify
whether 6 8) =(8,6) or (8 8) =1/2(8, &) for every type of irreducible, simple and
compact orthogonal symmetric Lie algebras. The ultimaselts are: & 8) 1/2(s, 8)
when {, 6) belongs to All, ClI, EIV, Fll or {, ) belongs to BDI and = 1; other-
wise @, 8) = (5, 8) (for details see [27]). Combining the results with (7.1)e wan
compute ( 5) ie., @, v).

TypPE Il. In this case, we denotea = v @ v, wherev is a compact and sim-
ple Lie algebra; the®(X, Y) = (Y, X) for arbitrary X, Y € v, & = {(X, X): X € v},

= {(X, =X): X € v}. Let t be a maximal abelian subalgebra of t; = vV—1t,
A* C tg be the root system of ® C with respect tot ® C with an ordering; then
hp, = {(X, —=X): X € t} is a maximal abelian space @f and we can assumig, =

{(X, X): X € t}; thus b, = {(X, —X): X € to}, br = {(X, ¥): X, ¥ € to} and

1 1
(7.2) A=(A%0)U(0,A"), T= {(Ea, —§a>: a € A*}.
A has an lexicographic ordering induced by the orderingAdf and we can define
an ordering onX: (1/2«a, —1/2«) > 0 if and only if « > 0; obviously A and ¥ have
compatible orderings. Denote laythe highest root oiA*, thenyr = (1/28, —1/25) and

(7.3) W, ¥)= <<%8 —%8), (%8 —%8)) = %(8, 8),

e., the squared length of the highest restricted root igladf the squared length of
the highest root ofA*.

8. Computation of injectivity radius and diameter

From the definition of injectivity radius and diameter of atbikary Riemannian
manifold, by Theorem 4.1, Denotation 6.1 and (4.4), we h&efollowing theorem.

Theorem 8.1. Let (u, 0, (, )) be a reducedcompact and irreducible orthogo-
nal symmetric Lie algebraM = U /K be the simply connected Riemannian symmetric
space associated witfu, 6, ( , )), M = M/I" be a Clifford-Klein form ofM, where
I is a subgroup of Z(K) satisfyingT # {8}, then i(M) = 7¢¥/2i(P;) and dM) =
we'/2d(Pr), wheree is a positive constant such that, )= —e(, ).
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REMARK 8.1. ¢ has geometric meaning. L& and R be respectively Levi-Civita
connection and curvature tensor dh with respect to the metrig (where R(X, Y) =
—[Vx, V] + Vix,v7), then R(X, Y)Z = ad[X, Y]Z (cf. [12] p.231, notice the differ-
ent sign convention for the curvature tensor); moreoverchgyosing an adapted base
we have

(8.1) Ric(X, Y) = —%(x, Y) = 2—16<x, Y)

(cf. [21] p.180); i.e.,M is an Einstein manifold with Ricci curvature/(Re).

Then from the results obtained in Section 6 and Section 7, amecomputd (M)
andd(M) for every type of non-simply connected, compact and ircéela Riemannian
symmetric spaces and list the results in Table 8.1 and TaBle 8

Table 8.1. The injectivity radius and diameter of non-siyngbn-
nected, compact and irreducible Riemannian symmetricespat
Type | whene =1, i.e., Ric=12.

Type M by r i(M) d(m)
Zn Ly(n - 1)12 LBy (n? - 1)12
(nZg/ 26) w(n—2)Y2 unknown
Al | SUDEEEO) V2r (n=4) Sen (41 n)
Ly 327 (n=6) Y27(3n2 — 4n)12
zn¥/2 (n > 8) (41n)
otherwise wnt/? unknown
Zn V27 (n — 1)2 By (n? — 1)1
Zn
(" 3/26) 2n(n — 2)Y/? unknown
Al | SHEVEED g 2v27 (n=4) Ln (4] n)
- Lp 3V27 (n=6) L27(3n% — 4n)*/2
27nY2 (n > 8) (41n)
otherwise 27nt/2 unknown
Lap (p<3) 7p (p is even)
Al c(s;pﬁ(azc)) ¢ Z VErptt (ped) | Zm@pt—
st 2
TRz (p is odd)
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Table 8.1. (continued)

Type M ) r i(M) d(M)
2
Vi =y | Er
I sgn)/um) |, 7 (n is even)
(nz=3 " ? (N + 1)Y2 Ix(2n? +n - 1)12
(n=4) (n is odd)
L7(2p2 + p)¥2 7(2p? + p)¥2
cll Grp o (H) . ’ (p<3) (n is even)
(p=2) " ? \/ZEEJZE z)l)l/2 ?7((4}32 —dé))l/z
> nis o
(2G<rp8(§)q) by Zs Lr(p+q—2)V2| Lr(p?+ pg - 2p)*?
s o Zy Pr(q - 12 Pr(q - 12
P (p? - p)¥?
2 (R) (p— 12 (p is even)
M %N(sz _ 3p + 1)1/2
BDI (p is odd)
Crely | o | BpervTIe ) | n(p— 1) n(p? - )V
= = 5| 3m(p?—p)Y? 27 (p — 1)¥?
(Explrv=lep-n). 0| 27 < g (p=<6)
(Explrv—Tep), 8) | V2r(p— 12 | Za(p? - p)¥?
(p is even) (p=8) (p=29)
1n(n? — )2 Ly (n? - n)l2
n<a6 4
o | SQ2n)/Un) o z, (n=<6) (41n)
(n>4is even) V2r(n — 1)¥2 Lyn-1)
(n>18) (41n)
El (es, SP4)) | e Zs 2/2n 4
EIV (¢s, f2) a Zs 227 48y
EV (e7, su(8)) e7 Z; 37*/671 3—‘/21771
EVIL| (e7,e6®R) | s Zy 26y 337
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Table 8.2. The injectivity radius and diameter of non-siyngbn-
nected, compact and irreducible Riemannian symmetricespat

Type Il whene =1, i.e., Ric =712.

M A* r i(M) d(M)
Z w(n— 1)¥2 LB (n? — 1)1
(nZ;/ZG) V21 (n — 2)/2 unknown
(ﬁUz(nz)) a1 27 (n=4) LBrn (4]n)
Z 3r (n=6) 1(3n% — 4n)/2
V27n¥2 (n > 8) (41n)
otherwise 2mnt/2 unknown
SRS | b Z, 7(2n — 12 (202 — n)/2
_ m(n?+n)Y2
SHn) . . Ver (n=3 (n is even)
(=3 " i V2r(n+ 12 | LZrEn?+n - 1)V2
(n > 4) (n is odd)
m(n? — n)¥2
- (n is even)
Za(K N2m(n — 1)?
1 (K) 7 ( ) %n(znz _3n+ 1)1/2
. (n is odd)
WY | o | BowvIe) s | VE-17 | V2@ -
v s | 2r(n? —n)Y? 2y/2rn(n - 1)Y2
{Exp(r+/—1ey_1), 6} 2 h<6) (n=0)
{Exp(r/—1e,), 6} 27 (n — 1)1/2 7(n? — n)2
(n is even) (n>18) (n>18)
Ee e6 Zs3 4 427
= €7 Zo 331 3V7n
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REMARK 8.2. In Table 8.1,M = M/I", whereM is the universal covering space
of M, T is a subgroup ofZy;(K) = {p € M: z(k)p = p for everyk € K}; £ denotes
the restricted root systemi(M) and d(M) are respectively the injective diameter and
the diameter ofM. In Table 8.2,M is a non-simply connected, compact and simple
Lie group with bi-invariant metric andvl is the universal covering group d¥l with
pullback metric; in this caseZ,;(K) coincides with the center ofl; let v be the Lie
algebra associated thl, t be a maximal abelian subalgebrawfthen A* denotes the
root system ofo ® C with respect tot ® C (cf. Section 7).

REMARK 8.3. In Table 8.1, we identifyp, and c,.

REMARK 8.4. WhenM = Grp,p(R), A =X =0,; the Satake diagram oB(0) is

ap—1
o—0O—— -
(03] (0%) ap_2 o,

(cf. [1]) and the Dynkin diagram ok is

yp—l

o—O— - -
Yio 2 Vp—2 Vp

wherey, =«; (1 <i < p); furthermore, sincér =b,,, we haved(«;) = —; andy; =
ai. The definition ofey,...,ey_1,€p is similar to (3.1). Letp be a linear automorphism
of hr such thatg(oi) = o (1 <i < p—2), ¢(xp-1) = ap and ¢(crp) = ap_1, thene
keeps (, ) invariant and can be extended to an automorphissa(®p), which is also
denoted byp; since¢ commutes withp, it induces an isometr§ of Grp p(R), which
satisfies

F(Exp(rv/—1e)) = Exp(rv/—1g) (1<i < p-—2);

8.2
6.2 F(Exp(rv/—1ep_1)) = Explrv/—1ep), F(Exp(r+/—1ep)) = Explrv/—1e,_1).
So whenp is even, Gry, p(R)/{Exp(v/—1ep_1), 8} and Grp, p(R)/{Exp(r~/—1ey), 6}
are isometric to each other. Especially, wher 4, an arbitrary linear automorphism
¢ of hr satisfying¢(B) = B and ¢(«2) = a2 keeps (, ) invariant, which yields that
Gra,4(R)/{EXp(rv/—Tey), 8}, Gra 4(R)/{EXp(rv/—1es), 6}, Gra 4(R)/{EXp(r v—1ey), 6}
are isometric to each other. On the other handpifs even andp > 6, thenM; =
Grp.p(R)/{Exp(r/—1ey), 6} isn’t isometric to My = Grp, p(R)/{EXp(v/—1€p_1), 8},
although the fundamental group of them are both isomorphiZ it is easily seen
from Table 8.1 (since(Mj) #i(My), d(My) # d(My)).

Similarly, Spin(®)/{Exp(rv/~1ey), 8} (i.e., SO®B)), Spin8)/(Experv/—1es), 8,
Spid8)/{§p(n¢—_1e4), 0} are isometric to each other; ifi is even andn > 6,
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Spin(2n)/{Exp(r+~/—1en_1), 8} and Spin2n)/{Exp(rv/—1e,), 8} are isometric to each
other, but both of them aren’t isometric &pin(2n)/{Exp(r+/ —1€1), 6} (i.e., SQ2n)).

REMARK 8.5. In Table 8.1 and Table 8.2, we assuawel, i.e., theK-invariant
metric on M = U /K is induced by—(, ) onu, and Ric = ¥2. For general cases
such thate # 1, we should multiply the corresponding results in Table &. Table 8.2
by €%/2,

For example, letM = RIP9 = S7/Z, with canonical metriog such thatk =1, then
Ric =g — 1 and Remark 8.1 yields = 1/(2(q — 1)); according to Table 8.1,

V2 )22

(8.3) (M) =d(M) = =m(q — 1

4
5"
The result is well-known.
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