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Abstract

The x-spread of an ideal is defined as the minimal number of georsratf an
ideal which is minimal with respect to having the same tiglesare as the original
ideal. We prove an asymptotic length formula for thepread.

1. Introduction

Several closure operations for ideals in a commutative INo&n rings have been
studied by numerous authors; among those closures, weanentegral closure, tight
closure, Frobenius closure, and plus closure.

For each of the above-mentioned closure operations, aspmmneling notion of
spread can be defined as the minimal number of generators ahianah reduction
with respect to that operation. The fact that the minimal bemof generators is in-
dependent of the choice of the reduction is well-known in ¢hee of the integral clo-
sure ([6]), easy to see in the case of Frobenius closure, aerehtly proved ([2]) in
the case of tight closure.

Note that in most cases, these spreads can be charactesigagtatically in terms
of length, and without reference to corresponding redustiof the ideal. In the case
of integral closure, bar-spread is equal to analytic spi@aovided the residue field is
infinite):

(1) =17(1) = deg, dimg A(1"/m1") + 1 = deg, dimy n(1") + 1.1

The F-spread ofl is the eventual minimal number of generators of high Fraleni
powers ofl. That is,

IF(1) = lim (19 /mila) = fim (1),
q~>oo q»oo

Finally, the +-spread of an idedl in a henselian local domaiR is the eventual mini-
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IHere, » stands for length, ang is the minimal-number-of-generators function.
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mal number of generators of expanded to domains which are integral exten-
sions of R:

1*(1) = colim  A(IS/mIS)=  colim 1S).
) (Rm)ES(Sn) (1s/ ) (Rm)S(Sn) u(ts)
integral ext. domain integral ext. domain

The main result of this paper is an asymptotic charactéozatf x-spread (the spread
corresponding to tight closure) in terms of lergth

Theorem 1. Let (R, m, k) be an analytically irreducible excellent local ring of
characteristic p> 0 and Krull dimension d such that & «(R). Let J be a proper
ideal, and leta be anm-primary ideal Then for g > 0,

1 - a(Jlac] /glal glacely
1 1*(J) = lim .
@ O @ q¢

In particular, if A(R/J) < oo, then

enk (aJ1%]) — ey (IL%1)

() 1*(3) = an(@)

Here, K(ﬁ) stands for the residue field of the normalizatignof R (which is a
local domain, due to the analytic irreducibility &t; a proof of this fact can be found
in [2, Lemma 4.3], although it has been known as folklore befo

As an application, we get a result which connects the rdliitynaf the Hilbert-
Kunz multiplicity for the idealsl, J, and1Jl9, wherel and J are m-primary ideals
(Proposition 3). We also prove a change of base formulaxfspread under flat local
homomorphisms (Proposition 5).

2. Preliminaries

Throughout this paper,R, m) denotes a Noetherian local ring of positive charac-
teristic p > 0.

We review some of the notions and results that are used inrtef pf our main
result. We always use for the characteristic oR, andq, q', qo, 01, J2, etc. for
various powers ofp.

NoTATION 1. If | ¢ Ris an ideal, andy is a power ofp, 1[9 denotes the ideal
@i91iel).
If Xx=xX1,..., % IS a sequence of elements R andt > 1 an integerx' denotes

t t
the sequencey, ..., X;.

2If one assumes that is m-primary ands-independent, then the theorem is proved in [7, Theo-
rem 3.5 (a)]
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DEFINITION 1 (Tight closure and test elements, [3]). Lét be an ideal of a
Noetherian ringR of characteristicp > 0, andx € R. We say thatx is in the tight
closureof |, written X € 1*, if there is somec not in any minimal prime ofR such
that for allg > 0, cx9 e 114,

If c e Ris not in any minimal prime ofR, and if there exists some, such that
for all pairs &, I) with x e I*, we havecxd e |9 for all g > gg, we say thatc is a
weak test elemerdf R. If go =1 works, thenc is atest elementf R.

In [3], Hochster and Huneke prove the remarkable fact thatyeexcellent local
R contains a weak test element, and thaRifis also reduced, it has a test element.
Throughout this paper, we tend to assume tRabas a weak test element.

DEFINITION 2 (x-independence). LeR be a Noetherian local ring of character-
istic p> 0, let f;,..., fi € R We say thatf, ..., f| are x-independentif f; ¢
(fr, ..., fi,..., f)<foralli=1,...,1.

We say that an idedl C R is x-independentif can be generated by-independent
elements. IfR is local, excellent, and analytically irreducible, this @guivalent to
every minimal system of generators beirgndependent [7, Proposition 3.3]. When
this is the case, we say thatis strongly x-independent

DerINITION 3 (x-reductions). LetR be a Noetherian local ring of characteristic
p>0,I,K c Rideals. We say thaK is a *-reduction of Iif K C 1 € K*. We say
that K is a minimal %-reduction of |if it is minimal with this property.

Note that, by [2, Propositions 2.1 and 2.3, is a minimalx-reduction ofl if and
only if it is a %-reduction and strongly independent. Therefore, in the calsenR is
analytically irreducible, a minimak-reduction is equivalent to a-reduction generated
by x-independent elements.

Also, by [2, Proposition 2.1 and Lemma 2.2], every iddalhas a minimal
x-reduction.

DEFINITION 4 (x-spread). Let R, m, k) be an excellent analytically irreducible
local domain of characteristip > 0, | € R an ideal. Thex-spreadof |, denoted
[*(1), is the minimal number of generators of a minimateduction ofl. The fact that
this number is independent of the choice of a minimakduction is [2, Theorem 5.1].

DEFINITION 5 (Special tight closure, [7]). LetR,m) be a Noetherian local ring
of characteristicp > 0, x € R, | C R an ideal. We say that € | **P, the special tight
closure of |, if there existsgy = p® such thatx® e (m| [%l)*,

Note that one can replacel [%! by al[%! in the above definition for any-primary
ideal a, by suitably increasingjo.
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The following result was proved in [2, Theorem 4.5]:

Theorem 2. Let (R, m, k) be an excellent analytically irreducible local domain
of characteristic p> 0. Assume that k «(R). Then for any proper ideal | of R
there exists a power’pf p such that

(1T < 11T 4 (g l@lyssp,

We will also use the following result of [1], which we will ref to as thecolon
criterion:

Proposition 1. Let (R, m) be an excellent analytically irreducible local domain
let | ¢ R, and x ¢ |*. Then there exists aggsuch that [ : x4 ¢ ml%/%l for all

d = Qo.

We will also use the following result, from [2, PropositionlP

Proposition 2 (Nak*). Let R be a Noetherian local ring possessing a weak test
element c Let I, J be ideals of R such that 3 1 € (J +ml)*. Then I C J*.

DEFINITION 6. Let (R, m) be a Noetherian local ring of characteristic> 0,
and | ¢ R an m-primary ideal. TheHilbert-Kunz multiplicityof | is
o MR/
ek (l) = qleoo q—d’
whered is the Krull dimension ofR.

The Hilbert-Kunz multiplicity e (1) of an m-primary ideall was identified as a
kind of growth rate for the Hilbert-Kunz function(R/1[9) by Monsky in [5F, and
it turned out to be an important tool in the study of tight cas due to [3, Theo-
rem 8.17], which asserts that twoe-primary idealsl € J have the same tight closure
if and only if they have the same Hilbert-Kunz multiplicity.

3. Proof of the main result

Before we prove our main result, Theorem 1, we need somenpreliy results.

Lemma 1. Let R be a Noetherian local ring of characteristic>p0 possessing

a weak test elementet fy, ..., fi be %-independent elements generating an ideal K
and letx = xq,..., Xy be parameters modulo KThen there is some positive integer t
such that £,..., i, x,..., x} are xindependent

3More precisely,e, (1) := limg_« A(R/1191)/q4. Monsky showed that it always exists.
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Proof. First note thak] ¢ (f1,..., fi,x,...,%],...,x})* for 1< j <n, vt since
the x; are parameters mol, so the heights of the latter ideal ard+ (x!) do not
match moduloK.

Now pick some 1<i <1, and supposef € (f1,..., fi,..., fi,x}, ..., x})* for
all t. Then since each of these ideals contains the next,

fie((fo o fioo o, XD = (f o i ),

t>1

which contradicts the-independence of thé;. (The equality holds essentially because
of the Krull intersection theorem.) Thus for eachwith 1 <i <, there exists an
integert; with

fi¢ (fo, ..., fiuooo B, oo, XE).

n

Let t = max{t}. ThenK + (x") is a x-independent ideal. ]

Lemma 2. Let (R, m) be a local ring of characteristic p- 0 which has a weak

test element .clLet fy,. o fi € R bex-independentand g, ..., g € (f1,..., f)*P
Then f¢ (fy,..., fi,..., fi,0,...,g) foralli=1,...,1.
Proof. Fix somefj, let | = (fy,..., f)), J = (fy, ..., fi,..., fi), and K :=
(91, ..., 0), and assume by contradiction thite (J + K)*.

By assumption, we havi C | *P, so there is somgy we havecK 4%l c mlal|[a%]
for all g > 0. Sincel =J +(fj) C (J +K)*, we have

c2| (4%l C cJlam] 4 ckla%] C Jlaw] 4 ylaly [ac] = (J[q[)] +ml [qO])[q}_

As the above containment holds for gjI>> 0 and sinceJ C |, we have
Jlool C | [G] C (J[QO] +ml [OIO])*,

so that an application of Proposition 2 shows th&t! < (J[%)* from which it fol-
lows easily thatl € J*, and thusf; € J*. But this contradicts the-independence of
fi,. .., fi. OJ

Lemma 3. Let(R,m,k) be an excellent analytically irreducible local ring of char
acteristic p> 0 such that k= «(R). Let | be a proper ideal which is nat-primary,
let a be anm-primary ideal let L be a minimal«-reduction of I, and let z be a pa-
rameter modulo | such that & (2) is a x-independent ideafnote that such a z exists
by Lemma 1).

Then there is some powep @f p such that

A, Dawl sglal (] Z)lad] ~ a(11a%l] sglal | [acl
i AT ) ) )
g—00 q g—o0 q
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Proof. LetL =(fy,..., f|) be a minimal generating set af, and letl = (fy,..., f;,
01, - .-, 0 ) be a minimal generating set #f Such a minimal generating set exists by
[2, Lemma 2.2].

Sincea is m-primary, there exists @, such thatm(%! C a, and, sincez ¢ 1*, we
can choose a); such that![d : 20 ¢ ml9/®] py the colon criterion.

Since f1, ..., f|, z are x-independent, there exists a powgrof p such that

|
(3) (L) 29%) + 3 (fy, .., fi, o, f, 2% £9% € gld)
i=1

for all g, by the colon criterion (Proposition 1). We can moreoverog®xy > 010p.
Now, consider the following short exact sequence:

alal | [a%] + (z9%) (1, z)lal (I, z)awl
— —
aldl (1, z)lacl aldl (1, z)lawl aldl| [ag] + (za%)

(4) 0—
The first term is isomorphic t&R/((al9(1, 2)l9%I) : Z9%),
Let u e (ald(l, z)l9%l) : 29%, Then there is soma € al¥ such that

U—ae (ad) ]y 290 |l A%  plan/ml c glaw/@w)] c gl

Henceu € al9. The reverse containment is obvious, so
al® = (@l (1, Z)lacely . 9%,

Hence, the first term of (4) has lengifR/al).
For the third term of the sequence, we have:

(I, 2)fawl | [ac]
aldl | [a®] + (zA®) ~ | [a%] N (aldl | [9%] + (z4%))’

(%)

Claim. We can choosegqto be large enough so that for any, g

i A((11a%l  (glal] %] + (Z3%))) /glal | [a%]) 0
im =0.
q—00 qd

Proof of Claim. First note that the numerator of the abovetigab of ideals equals
aldl| [9%] + | [9%] A (Z9%), Next, by Theorem 2, there is songg such that

[[es] < (L)%l  L[%] 4 (L[G]yrsp

Hence, by replacing thd;’s, the g;’s, andz by their g3 powers, we may assume that
| CL+L*P
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After this replacement, then, there existe L andg/ € L*P such thatg =g/ +h;
for 1 <i <r. We may replace thg; with the g’ and assume without loss of generality
that g € L*P for 1 <i <r. By increasingqo if necessary, we may assung® e
(aL[ly*,

By Lemma 2 we havef; ¢ (f1,..., fi,..., f,0u..., G, 2"

Let Hj :=(01,...,0;), where 1< j <r (sol =L +H,), andHp := (0). We show
that | 19%] A (29%) C qldl | (%] + HI9%! | et x ¢ |[9%] A (29%),

Then

X =tz9% = Xl: u £9% + Xr: vig;®,
i=1 =1
so that for each ki <1,
ue(fy,..., fi,oo, fioon.. ., g, 0% £9% C gl
by the colon criterion (increasingo if necessary). Thusx e aldl] %] + H[9%] 55

claimed.
Note that

alal | [9%] alal ][9]

| LAl ( (qld] | [a%] + (29%)) aldl | [ao] 4 pla%]
( RE

by what we have shown immediately above. kcebe a test element. We have:

N alal | [acp] 4 py (9% _t)\ CL[q]|[qu]+|_|j[qf’n] —t)\ R
alal | [ac] = a[q]|[qqo]+Hj[‘i°f] — "\ (qld] | lac] +H[q00) o’

=1

= .rj<am—f<c>):”(am—f@)‘f wo( e

J

The inequality is true becauseg/® e aldILI®] C gldjla®] Thus ol + (c) <
aldljla®l ; g%, which proves the inequality.

The Iast term ig times a Hilbert-Kunz function over théd — 1 dimensional ring
R/c, hence bounded by a constant tingfs?, which proves the claim. ]

At this point, taking limits of lengths oveq? asq — oo in (5) gives:

A(119%] /(1 [a%] A (glal] [a%] 0 (Z9%)))) _ A(I1a%] /glal} [acl)
q—>moo qd - q||—>nc10 qd !
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so that the exact sequence (4) yields that

A1, 2)la%] sglal() | Z)lace]) _ A(R/aldly + p(119%] /qglal | [ac])
qI|_>mOo o = qI|_>moo o
A(11a%l /glal | [ace])
q '

= enk(a) + lim
g—o00

Now we begin the proof of Theorem 1.
Proof. First suppose that(R/J) < oo.
Let K be a minimalx-reduction ofJ. Consider the short exact sequences:

[qen] [qep] [ac]
K J J
©) 0~ kel ~ gaKEw ~ K °
and
3lalyla] 3laa] Jlac]
@) (aJ72) 0.

(@K@ gllKael gl el

Since J (and hence als&, since ideals with the same tight closure have the same
radical) ism-primary, the length of the third term in (6) is the differencf the Hilbert-
Kunz functions ofJ and K. Since these two have the same H-K multiplicity (since
they have the same tight closure), the limitgas> oo of this difference divided by
is 0. Hence the first and second terms are “equal in the limit”.

The same comment applies to the first term of the second skadt sequence,
since we have

aJll c q(K*)l%] C (aK Gy,

Thus, the second and third terms of the second short exaaeseg are also “equal
in the limit". Hence by transitivity,

o a(JMaw] /gldl glace ~ a(KMaw] /qlal K [ac]
lim ( /U; ) = lim ( /c; ).
q—00 q q—00 q

On the other hand, by [7, Theorem 3.5 (a)], we have

N K [ac] (K)o R
Tk ) =R A )

and u(K) =1*(J). These two equations displayed above, then, give thetresaoaseJ
is m-primary. The fact that (1) implies (2) in this case is just dsfinition of Hilbert-
Kunz multiplicities.

Now we drop the assumption thdtis m-primary. Letx =xy,..., X, be R-regular
elements ofR whose images form a system of parameters RyiJ. By Lemma 1,
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we can pick an integer such thatk’ := K + (x) is a #-independent ideal. Moreover,
J =3+ ) C K+ (x) € (K +(x))* =K’ soK’is a minimalx-reduction ofJ’,
both of which are, of coursem-primary. What remains is to connedt and K with
J’ and K’, respectively.

For eachi with 0<i <n, letl; =J+(x},..., %), and fori <n, z =x,;. Then
applying Lemma 3 to each = I; andz =1z with i <n, we have
A(u[ﬁfb]/a[q] |_[q00])

d

i+1

- M(li, zi)lawl /Ll (1, z;)lace])
= lim
q—00 qd

k(|i[q%]/a[q] |i[qu])
qd

lim

g—o0

= ek (a) + lim
g—00

so that, sincel’ =1, and J = |y, after dividing by ek (a) we have:

1 _ )\(J/[qoo]/a[q]‘]/[qu]) 1 ) )\(\][q%]/a[Q]\][qu])
lim 5 =n+ lim d
ek (a) a0 q ek (a) a0 q

However, sincel’ is m-primary, we already know that the left hand side equals
1*(J) = w(K) =n+ u(K) =n+1*J). Then subtractingh from each side gives the
desired result. O

4. Hilbert-Kunz multiplicity

Proposition 3. Let (R, m) be an excellent analytically irreducible local ring of
characteristic p> 0, such that k= K(R_’), where R is the normalization of RLet |
and J bem-primary ideals of R Then there is some powep @f p such that the
following conditions are equivalent
(a) There exist powers,oq’ of p such that §> q > o, and eax (1 J197) and ek (1 3191
are both rational
(b) e (13M1) is rational for all q > qgo.

() e(l) and eqk(J) are both rational
Moreovery there is some power;qof p such that

ek (3 J39) = (*(3) +q°) e (9)

for all g > g1, where d=dimR. In particular, e (J) is rational if and only if one
sucheqk (J I is rational if and only if all sucheyk(J J)'s are rational

Proof. By Theorem 1, there exists somg such that for allg > qo, we have
®) lec(1) + 9 () = (1 39),
wherel =1*(J). Hence, ifq" > q is another power ofp, then we have

9) l e (1) + 9" enx () = e (13197),
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so that subtracting Equation (8) from Equation (9), we get:

(10) (q’d — g% ek (J) = ek (1 3197y — g (1 31,

On the other hand, if we multiply (8), bg(d and (9) byq9, and then subtract, we get:

(11) @ — %) ew(1) = g enc(13) — q¥ e (13197,

It is trivial that (b) = (a). Equation (8) shows that (¢} (b). Equations (10)
and (11) show that (a3> (c).
The second statement comes from repladingy J in Equation (8). ]

The next Proposition does not refer tespread, but it is a nice base change for-
mula for Hilbert-Kunz multiplicities that works in a very geral situation.

Proposition 4. Let (R, m) — (S, n) be a flat local homomorphism of Noetherian
local rings of prime characteristic p- 0, such that $mS is Cohen-MacaulayThen
for any m-primary ideala in R and any sequence=z,..., zs of elements in S whose
images form a system of parameters foimS, the following two formulas hold

(@)
As(S/(aS, 2)) = As(S/(mS, 2))Ar(R/a)
(b)
ek (aS+ (2) = €¥™(2) efi (a).
Proof. For part (a), we have that

S/z

S/(Cls, Z) = m

= 5/z®r R/a,

and sinceS/z is flat over R,

rs/2(S/2®r R/a) = 15/2((S/2)/m(S/2)) - Ar(R/a)
= Ay/ms((S/m8)/z(S/mS)) - Ar(R/a).
For part (b), we replace by z% anda by al® in (a) so that, lettingd = dim R,
we have
As(S/(aS, 2)!)

Q@S+ (@) = fim ===
_ i Aoms((S/mS)/Z9(S/mS) ir(R/alY)
_q|er;o RE . qd

= 65 (2) e (a) = €5™S(2) e (a).
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The last equality follows from [4, Theorem 2]. 0

5. =-Spread and flat base change

Proposition 5. Let (R, m) — (S,n) be a flat local homomorphism of prime char-
acteristic p> 0 excellent analytically irreducible Noetherian local risgvhich share a
test element.c
(@) If x1,...,%, € R are x-independent elements of, ey arex-independent in S as
well.

(b) If I is a proper ideal of R then F(l) =1*(1S).

Proof. For part (a), suppose that € (X1, .- ., Xn-1)S)*. Then for allg > qp,
cx1 e (X7, ..., x7 ;)S, so that

ce ﬂ(xf, Co X )Sisxd = m((xf, o X ) R xDS)

9=0o q=0o
= <ﬂ (X}, X0 )R xﬂ)S: (0)
q=0o
where the first two equalities follow from flatness 8fover R, and the last equality
is due to the fact thax, ¢ (X1, ..., Xp—1)*, and R is a domain.
This contradicts the fact that is a test element.
As for part (b), letd be a minimal«-reduction ofl. Let xy,..., X, be a minimal

set of generators fod. Then sincel S< J*SC (J9* by persistence of tight closure,
| S has ax-reduction generated by elements, which shows thait(1S) < I*(1).4 On
the other handxy, ..., X, are x-independent elements & by part (a), soJSis a
x-independent ideal, st (1S) > 1*(1). ]
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