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Abstract
In this paper we continue systematic study of the dimensistimate of the
global attractor for the chemotaxis-growth system. Usiranregativity of solu-
tions we manage significantly to improve dimension estimatéth respect to the
chemotactic parameter.

1. Introduction

In this paper we consider the following initial value prablefor a chemotaxis-
growth system of equations:

a—u:aAu—V-{uVX(,o)}+f(u) in € x (0, 00),

at

ap .

— =bAp —cp+du in € x (0, 00),
(1.1) ot

ou 0

M_9% _g on 99 x (0, ),

on  on

u(x, 0) =uo(x),  p(x, 0) =po(x) in L.

This problem arises in mathematical biology, whefg,t) and p(x,t) denote the pop-
ulation density of biological individuals and the concatitn of a chemical substance,
respectively, at the position € @ ¢ R? and timet < [0, o). The mobility of individu-
als is characterized by two effects: one is random walkimgl the other is the directed
movement with the tendency to move toward higher conceatradf the chemical sub-
stance. This phenomenon is called chemotaxis in biology détails see Budrene and
Berg [5] or Murray [15]). The constants > 0 andb > 0 are the diffusion rates af
and p, respectively;c > 0 andd > 0 are the degradation and production ratesopf
respectively. The functiory(p) is a sensitivity function due to chemotaxis. The func-
tion f(u) denotes a growth rate af. In this paper we consider the case wierc R?
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is a bounded convex domain. For simplicity(p) is assumed to be a linear,

(1.2) x(p) =vp
with a chemotactic coefficient > 0, and f (u) is assumed to be a cubic function
(1.3) f(u)= fu?(l—u)

with a growth coefficientf > 0, respectively.

In order to study aggregating patterns due to chemotaxis grodith, there are
several contributions not only from experiments but alsmmfrmathematical analysis.
Budrene and Berg [5] experimentally observed tBatoli bacteria form complex spatio-
temporal colony patterns. In order to understand the@iticsuch a chemotactic pat-
tern formation, several models have been proposed, e.{8, 0D, 13, 16, 20]. Mimura
and Tsujikawa presented in [14] a model (1.1), which is nathieple in the sense
that it is characterized by only four effects: diffusion, ealotaxis, production of a
chemical substance, and growth. In the absence of the grtemh f(u), (1.1) re-
duce to the Keller-Segel equations [12] modeling the ifidia of aggregating patterns
of slime mold.

The formation of the colony patterns by chemotaxis is carsid as to be a proto-
type of various phenomena of Self-Organization, cf. [11]. According to description
by Synergetics due to Haken [11], the chemical substanges pkee role of a conductor
which leads the individuals and is itself produced by theropeawatively. The fractal
dimension of the attractor then corresponds to a reductfother degrees of freedom
in the process of pattern formation which is called the sigvprinciple.

The authors have already established in the previous pa@pénd upper and lower
estimate

(1.4) Civd < dim A < Cy(vd)®,

of the fractal dimension dil of the global attracto®( for (1.1) by applying the tech-
nique given in [2, 4, 19]. There we have not used an importaopgrty, nonnegativity,
of solutions to (1.1), with the intention of comparing thesukts with those in the ap-
proximation case discussed in [8], where we have not prowethegativity of approxi-
mate solutions. However, by utilizing the nonnegativitysolutions, we can revise the
upper estimate shown in [7] to the lower polynomial order lné toefficients in the
equation (1.1).

The paper is organized as follows: In Section 2 we presentdhised upper es-
timate of dim2(. Then, in Section 3, we state the main result of this paper.

REMARK. Numerical approximation to (1.1) by positivity-presergischeme will
be studied in the forthcoming paper [9].
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2. Revised upper estimate

As is already well known, the system (1.1) possesses a ghibalctor, see [1, 2,
7, 18]. In this section we present an upper estimate for theedsion of the global
attractor. To this end we follow [4, 19] and recall some bdaits.

Let X be a Hilbert space with inner product { - )x and norm|| - ||x, let X be
a compact subset oK, and S a continuous nonlinear operator acting &n Then,
S is said to be uniformly quasidifferentiable [4, Definitio®.1.3] onX in the norm
of X if, for eachU € X, there exists a linear operattW = S(U) in X, called the
quasidifferential, such that

(2.1) 1IS(U1) — S(U) — W(U1 —U)llx < y(lU1 = Ullx)IlU1 — U|Ix

holds for anyU; € X, where the functiony(¢) is independent ot) andU; and satis-
fiesy(¢) - 0 as¢ — 0.

Next consider a continuous dynamical systeg &, X). According to [19], the
global attractor of §, X, X) is given by = (o_,_,, SX.

Assume that, for each> 0, § is uniformly quasidifferentiable and that, for each
Up € X, the quasidifferential; = §(Uo) is generated by the evolution equation

d
22) =AUV,

whereU (t) = SUp. It is supposed that the operataf§U) are densely defined, closed
linear operators acting oiX and are defined for alU € X, and that the domains
D(A(VU)) = D are constant. Then, by Babin and Vishik [4, Theorem 10.1dih %l is
estimated from above by the smallest inteder

(2.3) dim2l < N
satisfying
(2.4) gn < 0.

Here, the numbeqy is defined by

L 17
(2.5) a = limin sup - [ 5] -AC Oy, o)

—© Uped

U(t) = SUo, and{¢;} = {¢; € D}j=1,2,. are arbitrary orthonormal systems k.
Now we will apply (2.3)—(2.5) for the system (1.1).
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In a similar manner as in [18], and thanks to nonnegativitysolutions, we can
establish the following a priori estimates for the solutioin the global attractof(
for (1.1):

(2.6) i = [ w0 dx < 210
@7 /OT I dt < |sz|(T . %)
(2.8) /OT luI, dt < |sz|(T . ?)
(2.9) oIz < %mu
(2.10) voi. < T8 D)
(2.11) /OT 12p®)I1% dt < g—;m(T + X f).

Next we exploit that, for each fixet > 0, the operatorS is uniformly quasi-
differentiable orR( in X. For eachJy= [;3] e, the quasidifferentialM; = §(Up): X —
X is generated by the linearization equation for (1.1):

9 .
8—’; =aliv— V- @Vp+uvy)+ fu—3udv in  x (0, 0),
9 .

(2.12) 8_7t7 =bAn—cy+dv in Q x (0, ),
8_1):%:0 on 8QX(0,00),
an _ an

ul _JTu)] - Uo T . . . . . .
where[p] = [p(t)] = S[po] is a solution of (1.1) whose trajectory is contained in
2. We omit the proof here.

Now we will apply (2.3)—(2.5) to obtain an upper bound for dim

Let us define the family of operators

(2.13) AUV :[—aAv— f(2u—3u2)v+vv.(vvp+uvn)}

—dv—bAnp+cy

where

U:[;]e%, v:[:]eH,ﬁ(Q)ng(m.
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Then we can see thad(U) is a densely defined, closed linear operator actingXon
L?(Q) x HY(RQ) and is defined for every e X c H2(Q) x H3(R), and that the domains
D(A)) =D = H3(Q) x H3(Q).

Let

SHEN

be an orthonormal system K. Hereafter, the inner product of is given by

(215) @1 ¢/)X = (yr y/)L2 +§<A§1 AEI)LZ! d) = [g]’ ¢/ = [g/i| € X,

where A = (—A+1)2, and¢ > 0 is an arbitrary fixed number, which will be specified
below.

Now we calculateqy. In a similar manner as in [7, Equations (2.13)—(2.18)]
we have

(=AU ), dj)x
= —al|VyjliZ, + v(y; Vo, Vyj)z + v{uVEj, Vyj)z + F((2u — 3u?)y;, yj)L2
— ¢bIVAE| 12, — CCll A 12, + ¢dy), A%Ej)2

v f
< —allVy; 2. + S1Aplcallyiifs + viuls I VE Tl Vy; e + < Iy I
(2.16) 22 , , 3
— ¢BIVAE 2. — sl A& 172 + ¢dlly; 2 A%l 2
a 3¢b C2v?
< —SIAYIIE: = T IA%E I F + 22— Ul A& IESI A% 1)
f, Cch? 2 2 ¢d? 2
+(a+§+ - ||Ap||Lz)||y,-||Lz+; b—c+ == JIAg I

Here, C; and C, are some positive constants determined from embedding e
and hence may depend @ but are independent of the coefficients in (1.1).
Summing up inj,
(2.17)
N

Y (AU i)x

i=1
a N N
<=5 D IAliE. —¢b Y 1A%
j:]_ j=1

Chv? . 2/31 £ 2, 43 f ¢d? CH?
+T”““L3;”Afi”u IAZE 1% +jatb—ct o+ =+ =

||Ap||fz}N.
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Here we used the fact that

(2.18) ;112 + ¢ lIAEj 12, = 1,
and hence
N N
(2.19) DTUyillZe < N, DT IAE 2 < ¢ TIN.

Integration with respect to € (0, T) and dividing by T vyield that

1
s ;( AU®);, 91)1er it

N N
a 3¢b
(220 <23 1Ayl - S A%, + KuZnAs, e A% 1
j=1 j=1
f 2 Cc2y2
+{a+b—c+§+%+—i: KP}N,
where
6 \ 23
(2.21) ——f ||u(t)||L3dt<|9|2/3<1+fT> !
1 (7 8c+ f
222 <=1 [ 1kt a1+ 211,

from (2.8) and (2.11). Applying Holder’s inequality and X9) to the third term on the
right-hand side of (2.20) and choosigg= v?/(ab), we have

1T
;/O DAV, i

2.23 1/2
(2.:23) <- 1/a+1/bZ(HAyJHLz+CIIA £ill22)
f v2d?2 C2? 64CSh
+la+b—c+—+ + 27 Ko+ 27 K3IN.
{a 3T ar T aa 0T o7 “}
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By the similar discussion as in [6, 7], we obtain

N/2

N
D UAY;IZ +IA%E 1) = > Ay 12, + ¢ 1 Ag 1122)
j:]_ j=1
(2.24) s

N 2
S co<—> .
. 2
j=1

Here, A1,..., Ay are the firstN eigenvalues of-Ay +1 =A?, andCy is some positive
number.
Then we have

1 Ty
: /0 ;(—A(ua»«m,mxdt

(2.25) - /2 Co,p2

= 1l/a+1/b 4

v2d?  C%? 64CSh
+ K, + —2-K3IN.
ab? Y “}

f
+Ja+b—c+—-+
{a c 3

Using (2.21) and (2.22) and taking limits, we obtain

Co/8 5

2.26 " _WN
e +1a+b—c+ f +v2d2 +Cfv2d2|g2|+ 64Cgb|§2|2 N
3 ak?  4ak? 27 '

The smallest integeN satisfyingqn < O will be at least

v2d?  C212d2 64CSh. Co/8
+ |2] + 199 —
ab? 4ak? 27 a~l+b1

N > {a +b—-c+ i +
(2.27) 3
~ O((vd)?).
Thus, the number on the right-hand side gives the estimata &bove for dinfl.

3. Main result

We have already obtained in [7, Section 3] a lower bound fan i Combining
this bound with the result given in the preceding section, caa state main result of
the paper.

Theorem 3.1. The dimension of the global attract® satisfy the estimate

(3.1) Cyvd < dimA < Cy(vd)?
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with some positive constants; @nd G.
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