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Abstract
We consider a claim mentioned in [33] p.187 about the refatietween a
symplectic chain complex witlv-compatible bases and Reidemeister Torsion of it.
This is an explanation of it.

Introduction

Even though we approach Reidemeister torsion as a lineabi@ object, it actual-
ly is a combinatorial invariant for the space of represéoiat of a compact surface into
a fixed gauge group [33] [22].

More precisely, letS be a compact surface with genus at least 2 and without
boundary,G be a gauge group with its (semi-simple) Lie algebraThen, for a repre-

Sx
sentationp: 71(S) — G, we can associate the corresponding adjoint bu(dle lﬂ ’ )
S

over S, i.e. Sx, g=Sx g/~, where &, t) is identified with all the elements in its
orbit i.e. (y e X, y ot) for all y € 71(S), and where in the first component the element
y € m(S) of the fundamental group o acts as a deck transformation, and in the
second component by conjugation pyy).

SupposeK is a cell-decomposition o6 so that the adjoint bundl& X, g 0nS
is trivial over each cell. LetK be the lift of K to the universal coverings of S.
With the action of71(S) on S as deck transformationC,(K; Z) can be considered
a leftZ[71(S)] module and with the action of,(S) on g by adjoint representatiory
can be considered as a |éffsr1(S)] module, whereZ[1(S)] is the integral group ring
{>Eimy; meZ yen(S), peN}.

More explicitly, if 7, miy is in Z[z1(S)], tisin g, and 3| njo; € C.(§57),
then (32, min) e (X7 njo;) dem >, NiMi( e0;), wherey acts onoj C S by deck
defn

transformation, and> 1., mjy;) et

p(yite(y))™ )
To talk about the tensor produCi.(K; Z) ® g, we should consider the Iefi[71(S)]-

moduleC,(K; Z) as a rightZ[z1(S)]-module aso e y dgny‘loa, where the action of

1Limj(yj o 1), wherey; ot = Ad,g,)(t) =
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y~1is as a deck transformation. Note that the relationy ®t =0 @ y et becomes
yleo®t=0c®yet, equivalentlyoc’ @t =y ec’ ® y ot, whereo’ is y teo. We

may conclude that tensoring with[7r1(S)] has the same effect as factoring with(S).
defn

Thus, C.(K;Ad,) =" C,(K;Z)®, g is defined as the quotiend, (K;Z) ® g/~, where
the elements of the orbity e 0 ® y e t; for all y € 71(S)} of o ®t are identified.
In this way, we obtain the following complex:

0— Co(K; Ad,) 224 ¢y(K; Ad,) 229 Co(K; Ad,) — 0,

where 9, is the usual boundary operator. For this complex, we cancagsothe

homologies H.(K; Ad,). Similarly, the twisted cochain€*(K; Ad,) will result the

cohomologiesH*(K; Ad,), where C*(K; Ad,) aefn Homz[,,l(s)](C*(IZ;Z), g) is the set

of Z[m1(S)]-module homomorphisms fronC,(K; Z) into g. For more information,
we refer [22] [26] [33].

If p, p': m1(S) — G are conjugate, i.eo’(-) = Ap(-)A~! for someA e G, then
C.(K;Ad,) andC,(K;Ad,) are isomorphic. Similarly, the twisted cochai@$(K;Ad,)
andC*(K;Ad,) are isomorphic. Moreover, the homologids(K; Ad,) are independent
of the cell-decomposition. For details, see [26] [33] [22].

If {€),...,€,} is a basis for theCi(K;Z), thenc := {&,..., & } will be a
Z[m1(9)]-basis forC;i (K;Z), where&, is a lift of €. If we choose a basisl of g, then
G ®, A will be a C-basis forC;(K;Ad,), called ageometricbasis forC;(K;Ad,). Re-
call thatC; (K;Ad,) = Ci(K;Z)®, g, is defined as the quotiel; (K;Z) ® g/~, where
we identify the orbit{y eoc @ y et; y € m1(S)} of 0 ® t, and where the action of the
fundamental group in the first slot by deck transformaticaisd in the second slot by
the conjugation witho( -).

In this set-up, one can also define Tor(K;Ad,), {c ®, A}Z,, {hi}%,) the
Reidemeister torsiorof the triple K, Ad,, and {h;}%,, whereh; is a C-basis for
Hi(K;Ad,). Moreover, one can easily prove that this definition does deyiend on
the lifts é‘j, conjugacy class op, and cell-decompositioi of the surfaceS. Details
can be found in [26] [22] [33].

Let K, K’ be dual cell-decompositions @ so thato € K, ¢’ € K’ meet at most
once and moreover the diameter of each cell has diametertHass say, half of the
injectivity radius of S. If we denoteC, = C,(K;Ad,), C, =C,(K’; Ad,), then by the
invariance of torsion under subdivision, To) = Tor(C.). Let D, denote the complex
C. @ C.. Then, easily we have the short-exact sequence

0->C,—-»>D,=C.,dpC.,>C.—>0.

The complexD, = C,®C. can also be considered as a symplectic complex. Moreover,
in the case of irreducible representatipn 71(S) — G, torsion TorC,) gives a two-
form on H(S; Ad,). See [33] [26].
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In this article, we will consider Reidemeister torsion asiredr algebraic object
and try to rephrase a statement mentioned in [33].

The main result of the article is as stated in [33] p.187 “thesibn of a sym-
plectic complex C., ») computed using a compatible set of measures is ‘triviathia
sense that”

Theorem 0.0.1. For a general symplectic complex,Cif ¢, h, are bases for
Cp, Hp, respectivelythen

(n/2)-1 ,
TOr(Cu, {€p}peor (Bp)peo) =( I1 (det[wp,n_p])<—1>")- (Vetlon/zaal)
p=0

where detlwpn-p] is the determinant of the matrix of the non-degenerate pgiri
[wpn-pl: Hp(C) x Hn—p(C) — R in basesh,, hn_p.

For topological application of this, we refer [26] [33]. Ftre sake of clarity, the
application in [26] will also be explained if3.

Our main interest started with the observation [27] thatfAeilller spacefeich(S)
of compact hyperbolic surfac8 with Weil-Petersson form is symplectically the same
as the vector spack(x; R) of transverse cocycles associated to a fixed maximal geo-
desic laminatiom. on S, where we consider the Thurston symplectic form.

The Teichmuller spac&eich(S) of a fixed compact surfac& with negative Euler
characteristic (i.e. with genus at least 2) is the space @framtion classes of com-
plex structures ors. By the Uniformization Theorem, it can also be interpretedtse
space of isotopy classes of hyperbolic metrics®(i.e. Riemannian metrics with con-
stant—1 curvature), or as the space of conjugacy classes of altedés¢aithful homo-
morphisms from the fundamental group(S) to the group Isorf(H?) = PSLy(R) of
orientation-preserving isometries of upper-half |dfi&c C.

Teich(S) is a differentiable manifold, diffeomorphic to an open eex cell whose
dimension is determined by the topology of the surf&d-rom its origins in complex
geometry, it carries two structures. Namely, it is a compteanifold and admits a
naturally defined Hermitian form, called Weil-Peterssorrrhian form [1], [29].

(, Ywe: T,Teich(S) x T,Zeich(S) — C.

The real and imaginary parts of this pairing respectivelindeon¥eich(S) a Riemannian
metric gwp calledWeil-Petersson Riemannian metrignd a (real) 2-fornwyp called the
Weil-Peterssor2-form.

In [14], W.M. Goldman proved that the Weil-Petersson 2-foras la very nice topo-
logical interpretation and can be described as a cup-ptadubis context. Namely, he
introduced a closed non-degenerate 2-form (or a symplstic) wcoidman H(S; Ad,) x
H(S Ad,) — R, whereH(S; Ad,) is the first cohomology space &with coefficients
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in the adjoint bundle and also proved that this symplectimfand Weil-Petersson 2-form
differ only by a constant multiple.

F. Bonahon parametrized the Teichmiiller space&dfy using a maximal geodesic
lamination 2 on S [3] [28]. Geodesic laminations are generalizations of defition
classes of simple closed curves 8n More precisely, a geodesic laminatianon the
surfaceS is by definition a closed subset &which can be decomposed into family of
disjoint simple geodesics, possibly infinite, called lgaves The geodesic lamination
is maximalif it is maximal with respect to inclusion; this is equivateio the property
that the complemen§ — A is union of finitely many triangles with vertices at infinity.

The real-analytical parametrization given in [3] idensfigeich(S) to an open con-
vex cone in the vector spack(x, R) of all transverse cocycle®r A. In particular,
at eachp e Teich(S), the tangent space,Eeich(S) is now identified withH(x, R),
which is a real vector space of dimensiofy 85)|, where x(S) is the Euler character-
istic of S. Transverse cocycles are signed transverse measuresdvallR) associated
the maximal geodesic laminationon S. The spaceH(A, R) has also anti-symmetric
bilinear form, namely the Thurston symplectic fokghyston Which has also a homo-
logical interpretation as an algebraic intersection numbewas proved that up to a
multiplicative constantwrhyrston iS the same a&goidman [27], and hence is in the same
equivalence class abwp. More precisely,

Theorem 0.0.2 ([27]). Let S be a closed oriented surface with negative Euler
charactersistic(i.e. of genus at least twp and let A be a (fixed maximal geodesic
lamination on the surface.SFor the identificationT ,Teich(S) = H(X; R), we have the
following commutative diagram HS; Ad,) x H(S; Ad,)

H(S; Ad,) x HY(S, Ad,) —— H%(S;R)

Lo

H(R) x H(, R) — 2 SR,

Let S be a compact surface with negative Euler characteristic,oe a cell-
decomposotion of the surface For p=0, 1, 2, letc, be the corresponding geometric
bases forCp(K;.Ad,), and leth! be a basis foH(S; Ad,).

In [26], we provided the proof of the following theorem; howee for the sake of
completeness, we will also explain §8.

Theorem 0.0.3 ([26]).

6g — 6
IH2

Tor(C., {cpYa=0, {0, b, O}) = Pfaff(wy),

where Pfaff(wy) is the Pfaffian of the matrix H = [wooldmadbi, h})], IH|? =
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Trace H'""SP°S§ - and wgeigman H(S; Ad,) x HY(S; Ad,) — R is the Goldman sym-
plectic form

Let A be a maximal geodesic lamination on the surf&e Considering theK;
triangulation of the surface by using the maximal geodeainihation (see [27] for
details), and by Theorem 3.1.3, we proved the following:

Theorem 0.0.4 ([26]). Let S be a compact hyperbolic surfadebe a fixed max-
imal geodesic lamination on,Snd let K, be the corresponding triangulation of the
surface obtained fromk. For p=0, 1, 2,let ¢, be the corresponding geometric bases
for Cp(K;; Ad,), and leth be a basis forH(x; R).

(6g — 6) - /260-6

Tor(C., {epleo (0,5, 0D = ==

Pfaff(c),

where Pfaff(z) is the Pfaffian of the matrix T= [z(h;, b;)], I T|I? = Trace{ Tansposy,
and t: H(x; R) x H(x; R) > R is the Thurston symplectic form

For example, whei = Ap is the maximal geodesic lamination obtained from a pant-
decompositionP of the surfaceS, then since the non-zero transverse-weigh(g.; R)
associated to the leavesofre nothing but the weights associated to the separatisgdlo
curves{cy, ..., Cg_3} leaves ofd coming from the pant-decompositidA. The cell-
decompositiorK; can be obtained as follows. The 2-cells are the pair-ofgny, . . .,
Pag—4}, 1-cells are the separating curves, . . ., Czg—3} and 0-cells are obtained by choos-
ing two distinct points on each separating curve.

The plan of paper is as follows. I§l, we will give the definition of Reidemeister
torsion for a general compleg, and recall some properties. See [19] [22] for more
information. In§2, we will explain torsion using Witten’s notation [33]. Tihesym-
plectic complex will be explained and also the proof of masult Theorem 0.0.1. In
§3, we will also provide the proof of the application in [26].

We would like to thank to all the referees for their criticaélading and many in-
sightful suggestions to improve the manuscript.

1. Reidemeister torsion

In this section, we will provide the basic definitions andt$a@bout the Reidemeister
torsion. For more information about the subject, we refer thader to [22] [33].

1.1. Reidemeister torsion of a chain complex of vector spase Throughout

this section,F denotes the fieldR or C. Let C, = (Cn N Cho1—> - > Cq N

Co — 0) be a chain complex of a finite dimensional vector spaces Bvetet Hy =



6 Y. SOZEN

Z,/By denote the homologies of the complex, wh@g=Im{dy.1: Cpe1 — Cp}, Zp =
ker{dp: Cp — Cp_1}, respectively.

If we start with bases, = (b3, ..., bp"} for By, andbp = {hi,..., h"} for Hp, a
new basis forC, can be obtained by considering the following short-exagusaces:

(1.1.1) 0> Z,—>Cp,—»By.1—>0,
P P P
(1.1.2) 0— Bp— Zp,—» Hy, = 0,

where the first row is a result of thetisomorphism theorem and the second follows
simply from the definition ofH,.

Starting with (1.1.2) and a sectidg: H, — Z,, then Z,, will have a basish, ®
Io(hp). Using (1.1.1) and a sectiagp: Bp_1 — Cp, C, will have a basish, ®1,(hp) @
Sp(bp-1).

If V is a vector space with basesandf, then we will denote f] ¢] for the deter-
minant of the change—base-matﬂ‘ﬁ from ¢ to f.

DEFINITION 1.1.1. Forp=0,...,n, letcp, by, andh, be bases foC,, By

and Hy, respectively. ToiC., {cp}p=o, (0p)p=0) = [Tp=olbp @1 p(bp) B Sp(bp-1), cp](_l)(pﬂ)
is called thetorsion of the complex Cwith respect to base§p} o, {hp}p-o-

Milnor [19] showed that torsion does not depend on neitherbihisest,, nor the
sectionssp, |p. In other words, it is well-defined.

REMARK 1.1.2. If we choose another basgs b, respectively forC, and Hy,
then an easy computation shows that

n - ] (—1)P
Tor(C., {¢)=r (B)0e) = H([[;f’ ;p]) - Tor(C, {¢p}p=0s {hp}p=0)-
p=0 -'p’ VP

This follows easily from the fact that torsion is indepenideh b, and sections
Sp, lp. For example, if {, cp] =1, and p’,, hp] = 1, then they produce the same
torsion.

If we have a short-exact sequence of chain complexes A, <5 B, > D, — 0,
then we also have a long-exact sequence of vector space

5 Hp(A) 5 Hp(B) I Hp(D) S Hp_1(A) - - --

i.e. an acyclic (or exact) compleg, of length 31+ 2 with Czp = Hp(D.), Cap+1 =
Hp(A,) and Czpez = Hp(B,). In particular, the basesy(D.), hp(A.), andbhy(B,) will
serve as bases f@3p, Cap+1, andCzpeo, respectively.
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Theorem 1.1.3 (Milnor [19]). Using the above setytet cf, ¢, ¢ be bases for
Ap, By, Dy, respectively and let by, b7, hD be bases for the corresponding homo-
logies Hy(A), Hp(B), and H,(D). If, moreoverthe baseScp, cp, c'g are compatible
in the sense thaftep, cp & €71 = £1 wherex (¢€7) = ¢, thenTor(B,, {cp}p-o, (h5)p=0) =
Tor(A., {cp}heos {bﬁ}nzo) Tor(D., {¢p}p=0, (05 )h=0) - TOF(C*, {eap)oetrs (OFLE).

1.2. Complex C,(S Ad,) for a homomorphism p: m1(S) = PSLy(F). Let S
be a compact surface with genus at least 2 (without bounddfgy a representation

p: m1(S) - PSLy(F), we can associate the corresponding adjoint bu(dle pf[Z(F))
S
over S, i.e. Sx,slx(F) = Sx slo(F)/~, where ,t) is identified with all the elements in
its orbit {(y e X, y et); for all y € 71(S)}, and where in the first componeptacts as a
deck transformation, and in the second component by theradjotion i.e. conjugation
by o(y). N
Let K be a fine cell-decomposition @& so that the adjoint bundI& x , sl(F) on
Sis trivial over each cell. IfK is the lift of K to the universal covering of S, then
with the action ofr1(S) on S as deck transformatiorG, (K ;Z) will be a left Z[z1(S)]-
module and with the action of1(S) on slx(F) by adjoint action,sl,(F) will be con-
sidered as a lef&[71(S)] module, whereZ[r1(S)] denotes the integral group ring.
Namely, if 32, miyi is in Z[z1(S)], t is a trace zero matrix, and_{_; njo; €
C.(52), then (3%, mn) e (X njoj) =3, njmi(y e 0j), wherey; acts ono; C

S by deck transformations, an(xzJ _njoj) et "

Ad,()(t) = p(yte(y;) ™

C.(K;Z) can also be considered as a rigtjtr1(S)]-module byo ey d%fny_loa,
where the action of ! is as a deck transformation. Note that the relatosy @t =

o®yet becomesyleo @t =0 @y et, equivalentlyc’ @t =y ec’ @ y ot, where

o' is y™leo. Hence, C,(K;Ad )de—mC (K:7Z) ®, sl(F) is defined as the quotient

C.(K;Z) ® sla(F)/~, where the elements of the orliit eo @ y et; for all y € 71(S)}
of o ® t are identified.
As a result, we have the following complex:

?:1 nj(cj e t), whereoj ot =

0— Co(K; Ad)) 224 ¢y (K; Ad,) 229 Co(K; Ad,) — 0,

where 9; is the usual boundary operator. For this complex, one cam adsociate the
twisted homologiesH.(K; Ad,). Similarly, the cochainC*(K; Ad,) will result the

defn

cohomologiesH*(K; Ad,), whereC*(K; Ad,) = Homz[m(s) (C.(K; Z), slo(F)) is the
set of Z[71(S)]-module homomorphisms frore, (K ; Z) into slx(F).

We will end this section by a list of properties @k (K; Ad,), C*(K; Ad,), and
for the sake of completeness, we will recall the proofs.
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Lemma 1.2.1. (1) If p,p": m(S) — PSL(F) are conjugatei.e. p'(-) = Ap(-)A™t
for some Ae PSLy(F), then C(K; Ad,) and C.(K; Ad,) are isomorphic Similarly,
the twisted cochains GK; Ad,) and C*(K; Ad,) are isomorphic
(2) The homologies HK; Ad,) are independent of the cell-decomposition

Proof. (1) Recall that using the homorphisms,A&d, : sl>(F) — slx(IF), slx(F)
becomes a leff[1(S)]-module. Since Ad: sl>(F) — sly(F) is a homomorphism and the
representations, p’: 71(S) — PSLy(F) are conjugate by, the mappa: sl(F) — sl(F)
defined byga(t) = Ada(t) is actually aZ[r1(S)]-module homomorphism, where in the
domain we consider the action by A@nd in the range by Ad. By the fact that® is
middle-linear and, is homomorphism, i®@a: C,(K;Z) x sla(F) — C,(K;Z)® sla(F)
is also middle linear, i.e. linear in the first componenteéinin the second component
and idRga(c ey, t) =id®¢a(o, y et). Therefore, there exists a unigue homomorphism
®a Cu(K;2)®,512(F) = C.(K;Z)®, sl2(F) such thatb a(o @t) = o0 @pa(t). Similarly,
using the inverse ap,, i.e.¢a-1, we can obtain the unique homomorphigm-:(oc ®t) =
o ® ¢a-1(t). Moreover,®, and® -1 are inverses of each other, and thbig is an iso-
morphism.

(2) This follows from the invariance under subdivision. Tefide H,(K, Ad,),
we started with a fine cell-decompositiéh of S so that over each cell iK the adjoint
bundle is trivial.

Let K be the refinement oK obtained by introducing extra cells as follows. For
example, ifw € K is a 2-cell (say,n-gon, put a pointp, say in the barycenter ab,
and addingn new one-cellsy;, ..., Y, we also obtaim new two-cells: wy, ..., wp.
The refinementK gives a chain complexC = C, @ C., whereC’ := C,/C, is the
chain complex obtained from the added cells. The boundany; afonsists of two new
cellsy;, yi+1 and one of the boundary cell of, thusdj[wi] =[yi+1] —[yi]. Similarly,
since boundary ofy; is the pointp and one of the zero dimensional cell of hence
91[yi1=[p]. Finally, we identify [y;+n] = [yi] for all i.

Clearly, we have a short-exact sequence of chain complexes

0-C. ¢ 5c o,

/
*

which will result the long-exact sequence 8 H,(C,) I;> Ho(C.) Iy Hy(CL) —

Hi(C.) &5 Hi(G.) 25 Ho(Cl) = Ho(C.) &5 Ho(G.) 2 Ho(CL) — O.
We will show that the chain compleg, is exact i.e.Hp(C,)’s are all zero, and
thus will conclude thatH,(C,) = Hp(é*).

. 3 97 a .
Lemma 1.2.2. The chain compleX — C, = C; = Cj = 0 is exact

Proof. Recall that the chain comple®, := CA:*/C* is obtained from the added
cells. If w (n-gon) is inC,, we put a pointp inside w, addn new 1-cellsy, ..., Yn,
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and obtainn-new two-cellsws, ..., w, so thatw = w; U --- U wy. Thus [p] is a
generator forC/, [yi], ..., [yn] @re in the generating set &, and 4], . .., [wy] are
in the generating set faC; with one relation fv1]+ - - -+[wn] = 0. The last is result of
w1U- - -Uwp = w € C,. Moreover, the boundary operators satigfjwi] = [yi+1] —[Vi],
01[yi] = [p]. We also identify ;+n] = [yi] for all i.

Clearly, B, = 0. Letz = >, ai[wi] be in ke{d,: C, — C}}. Since fwi] +
-+« +[wy] =0, we can assume, = Zi”:_ll Bilwi], for some g;. Then, d;z; is equal
to S5 B[yl — [%]) = —Balyal + I (Bi — Bis)[ Y1l + Bo-alyn]. The linear inde-
pendence ofy], . .., [ya] will result that the coefficients are zero, in particular= 0.
Thus, we have the exactnessGit

Note that Infd; : C; — C;} is generated by{[y.] — [vi], ..., [Vn] — [¥n-1]}. Let
z1=>" «[y] be in kefd;: C; — Cj}. Then, since Irfd;: C; — C(} is generated
by [p], XL, e =0. Hencez is equal toas([ya] — [ya]) + (a1 +a2)([y2] — [ya) + - - - +
(ar+- - +an_1)([Yn-1] = [Yn]) + (@2 +- - - +an)([Yn] — [Yn+]), OF 1 € Im{0;: C; — Ci}.
Thus, we have the exactnessGit

Finally, we have the exactness @, because Irfd;: C] — C;} has the basisd],
which also generates the k&f: C; — 0}.

This concludes the Lemma 1.2.2. O

If K1, Kz are two such fine cell-decomposition, considering the ayestl and re-
fining further, we can find a common refinemefit of both K; and K, such that the
homologiesH*(K;Adp) isomorphic toH.(Ky; Ad,) and H,(Kz; Ad)).

This will finish the proof of Lemma 1.2.1. O

Before defining the torsion corresponding to a represemtati 71(S) — PSLy(F),
we would like to recall the relation betweet,(S; Ad,) and H*(S; Ad,). Next section
will be about this. After that, we will continue with the téms corresponding to a
representation.

1.3. Poincaré duality isomorphisms.

Kronecker dual pairing. Let S be a compact hyperbolic surface with surface
(i.e. genus at least 2). Recall thatKf is a cell-decomposition 08, and p: 71(S) —
PSL,(F) is a representation, we associated the twisted chajik;Ad,) and cochains
C*(K; Ad,) = Homyys (C.(K; Z), slo(F)), whereK is the lift of K to the universal
covering S of S.

DEefFINITION 1.3.1. Fori =0, 1, 2, theKronecker pairing{ -, -): Ci(K;Adp) X
Ci(K;Ad,) — F is defined by associating e C'(K;Ad,) ando ®,t € Ci(K;Ad,),
the numberB(t, 6(c)), where B(ty, to) = 4 Trace(ut,) is the Cartan-Killing form.

The well-definiteness of Kronecker pairing can be verifiedalews: Recall that
o®,t eCi(K;Ad,) denotes the orbify ec @ y et; for all y € 71(S)} of o ®t, where



10 Y. SOZEN

the action of the fundamental group in the first componentyigiéck transformations
and in the second one by adjoint action. Since trace is iawaninder conjugation,
andé e C'(K; Ad,), we haveB(y et, 8(y o 0)) = B(t, (0)) for all y € m1(S).
Naturally, the pairing can be extended o, -): H'(S; Ad,) x Hi(S; Ad,) — F.
More explicitly, let6’ =6 +80”, whered” is in C'~1 and § denotes the coboundary
operator, letv’ = o +do”, for someo” € Ci+;. Then, B(t, 6'(¢”)) equals toB(t,0(c))+
B(t, 6(do”)) + B(t, (66")(0)) + B(t, (§6”)(do”)). By the relation betweed and§ and
the choice of6”, o”, the last three terms vanish. Finally, sinBeis non-degenerate
andF=R or C is a field, (-, -): H'(S;Ad,) x Hi(S, Ad,) = F is a pairing, too.

Cup product —g. Here, we will explain the cup product
—g: HP(S Ad,) x HY(S; Ad,) » HPY(S F),

induced by the Cartan-Killing fornB.
Let K be a cell-decomposition of the compact hyperbolic surfaeeithout bound-
ary. Consider the cup product

0: CP(K; Ad,) x CY(K; Ad,) = CP*(S; sl5(F) ® slx(F))

defined by ngeq)(f’pm) = 0p((op+q)front) ®~9q(((fp+q)back)y whereopq is in Cp+q(R;Z)-
Sincefy: Cp(K; Z) — slo(F) and 6y: Cqy(K; Z) — slx(IF) are Z[w1(S)]-module homo-
morphisms andB: slx(F) x slp(F) — F is non-degenerate, we can also define

U': CP(K; Ad,) x CY(K; Ad,) = CP*9(5 )

under adjoint actiong, U’ 6y is invariant under the action ot1(S). Therefore, we
have the cup product

—g: CP(K; Ad,) x CY(K;Ad,) —» CP™(K; F).

We can naturally extend-g to twisted cohomologies. Like twisted homologies,
twisted cohomologies are also independent of the celltdgosition. Thus, we have

—g: HP(S Ad,) x HY(S; Ad,) - HP'Y(S F)
[0p], [6q] — [0p —8 Oq4].

Actually, considering the trivializations, one may alsinkhé, = w, ® t; and 6, =
wq @1t for somewp € HP(S), wq € HA(S), andty, ty € sl(F). As a result,0p —g 0y =

Intersection Form. Let S be a compact hyperbolic surface without boundary, let
K, K* be dual triangulation ofS. Recall that ifc € K is a 2-simplex,s* € K* is
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a vertex ino. If o1, 02 € K are two 2-simplexes meeting along a 1-simplexthen
a* € K* is the 1-simplex with end points;", o, € K* and transversely meeting with

If K, K* are the lifts of K, K*, respectively, then they will also be dual in the
universal coveringS of S. Let a, 8 be in Ci(K; Z), C,_i(K*; Z), respectively. Ifoe N
B =49, then the intersection number. 8 is 0. If « N B = {x}, then it is respectively
1, —1, when the orientation ofya & T48 coincides with that ofT,S, and when the
orientation of Tya @ T8 does not coincide with that of, S.

Using the Cartan-Killing formB of sl>(F), we can define an intersection form on
the twisted chains as follows

(-, ): Ci(K; Ad,) x Coi(K*; Ad,) > F

(01®11,02012) = Zyenl(S)Ul'(y ©07)B(t1, y ot2), where the action of ont, by Ad,),
and onoy as deck transformation, and “.” denotes the above intéseciumber.

Note that the sefy € m1(S); o1 Ny e 0y} is finite, because the action af(S) on
S properly, discontinuously, and freely, amd, o> are compact. Note also that since
intersection number is anti-symmetric aldis invariant under adjoint action,-(, -)
is anti-symmetric, too.

We can naturally extend the intersection form to twisted blogies ¢, -):H; (K ; Ad,) x
Ho_i(K*; Ad,) — F. Recall that twisted homologies do not depend on the cell-
decomposition. Thus, we have a non-degenerate anti-symonfietm

(-, ) H(S Ad)) x Ho—i(S;Ad,) — F.

Finally, the isomorphisms induced by the Kronecker pairargl the intersection
form will give us the Poincare duality isomorphisms. Namely

intersection form Kronecker pairing
~ ~

PD: H;(S Ad,) = Ha i (S Ad,)* = H27(S, Ad,).

Therefore, fori =0, 1, 2, we have the following commutative diagram

H2-1(S; Ad,) x HI(S; Ad,) —— H2(S; F)

- o ]

Hi(S; Ad,) x Ho—i(S; Ad,) ————— T,

whereF — H?2(S;F) is the isomorphism sending 4 F to the fundamental class of
H?(S; F).
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If p: 71(S) = PSLy(F) is irreducible (e.g. whep is discrete, faithful), theklo(SAd,),
H2(S Ad,), H(S Ad,), and H?(S; Ad,) are all 0. Hence, we only have the commu-
tative diagram

HY(S, Ad,) x HY(S, Ad,) —— HZ2(S; F)

o e o T

Hl(S; Adp) X Hl(S; Adp) — T,

Finally, for future reference, we would like to mention thect thatH(S; Ad,),
Hi(S; Ad,) are isomorphic respectively to the tangent spdg&eich(S) and of the
Teichmller space of and to the cotangent spadg Teich(S) and of the Teichmller
space ofS, when the fieldF is R.

1.4. Torsion corresponding to a representationp: m;1(S) = PSLy(F). In the
previous section, for a fixed compact hyperbolic surf&evithout boundary and a
representationo: 71(S) — PSLy(F), we associated the twisted chain complex=0
Ca(K;Ad,) = Ci(K;Ad,) —» Co(K;Ad,). Recall thatC;(K;Ad,) = Ci(K;Z) ®, 5la(F)
is defined as the quotier®;(K; Z) ® sl»(F)/~, where we identify the orbi{y e o ®
yet; y e m (9} of o ®t, and where the action of the fundamental group in the first
slot by deck transformations, and in the second slot by thgugation with p( - ).

We will now explain the torsion of the twisted chain complexd will follow the
notations of [22]. If{e],..., €} is a basis for theCi(K; Z), theng, = {&, ..., &}
is a Z[m1(9)]-basis for C;i(K;Z), where & is a lift of €. If we choose aF-basis
A = {ay, az, ag} of slx(F), thenc ®, A will be an F-basis forC;(K, Ad,), called a
geometricfor C;(K; Ad,).

DerINITION 1.4.1. If S is a compact hyperbolic surface without boundary,
p: m1(S) — PSLy(F) is a representation, anl is a cell-decomposition of5, then
Tor(C.(K;Ad)), {c,®, A}%zo, {bp}%:o) is the Reidemeister torsioof the triple K, Ad,,
and {hp}5.,, whereb, is aF-basis forHy(K; Ad,).

In the next lemma, we will see that the definition does not ddpen A, lifts
é'j, and conjugacy class gf. In later sections, we will also conclude that torsion is
independent of the cell-decomposition.

Lemma 1.4.2. Tor(C.(K; Ad,), {cp ®, A}5o, (hp)5-0) is independent of4, lifts
éjj, and conjugacy class op.

Proof. Independence ofd: Let A’ be anotherF-basis for sl(F) and let T
be the change-base-matrix from’ to A. Using the techniques presented §a,
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Tor(C.(K; Ad,), {(Cp ®, A'Yasg, (hp}2-0) iS [Teolbp @ Hp @ bp_1, ¢y ® A1V, By the
change-base-formula Remark 1.1.2, TK; Ad,), {cp ®, A'}5, {hp}5) equals to
the product of Toi€.(K; Ad,), {cy ®, AYa_o, {hp}a-0) and detl) *9, where the last
term is by the fact thattf @ b; @ bi_1, A’ ® ¢i]1=[b; ® b @ bi_1, A® ] - det(T)*,
and #X denotes the cardinality of the s&t, and f, b] is the determinant of the base-
change-matrix from basis to a.

If, for example, deT =+1, then4 and.A’ will produce the same torsion, because
the Euler-characteristig(S) is even. Or, ifFf =C and A, A’ are two B-orthonormal
bases, wher® is the Cartan-Killing form ofsl>(C), thenT is in O(3,C). Again since
the Euler-characteristig (S) is even, the corresponding torsions will be the same.

Independence of liftsLet ¢ = (& ey,..., & } be another lift ofie], . . ., €, }, where
we take another lift o€}, and leave the others the same. Recallaty @t =8 ®y ot,
where the action in the second slot is by fg. Then, ¢ ® A = ¢ ® Ad,)(A) and
Tor(C.(K;Ad,), (¢, ®, AYao, {hp}=0) is equal to TorC.(K;Ad,), {cp®, AYaLo, {hp)5-0)-
det(T)~*, whereT is the matrix of Agy,): sl2(F) — slx(F) with respect to basisl.

For instance, if deT = +1, then we have the same torsion. Or[Fit=C and.A
is B-orthonormal, thenT will be in SQ3, C). The latter can be verified as follows:
Recall that the adjoint representation Ad: BE8L) — £nd(sl>(C)) assigns to eack e
PSLy(C) the conjugation endomorphism Ads(,(C) — sl(C) by x. Since Ad has
the inverse Ag¢:, the adjoint representation maps BEL) into GL(sl>(C)).

Let A = {a;, ap, a3} be aB-orhonormal basis o0fl,(C) i.e. the matrix ofB in this
basis is the X 3 identity matrix. Note that since trace is invariant undenjagation,
Ady also preserve8. Therefore, the matriX@ of Ady in this basis is an orthogonal
3x 3 matrix with complex entries, becauseld= TIds,3T"@S This gives that déf =
41 and finalizes the proof since the Euler characteristiSa$ even.

Actually, if the matrixx € PSLy(C) is a hyperbolic (e.g. ik is in p(1(S))), then
Ady is in SQ3,C). This is because of the following: determinant of the nxatf

Ad,,) is independent of basis, so considdf = {[g é] [(1) _01], [(1) 8]} which

is not B-orthonormal. Since the surfacgis compact hyperbolic (without boundary),
m1(S) consists of only hyperbolic elements. Thys(y) € PSL(C) is also hyperbolic
i.e. letA, A~ be the eigenvalues gf(y), then Qp(y)Q~1 = D for someQ e PSLy(C),

where D = [g qu]' Hence, if we use the basid’, then it is enough to find the
determinant of the matrix of Agl in the basisA’. An easy computation will result
that the matrix of Ag in the basisA’ is simply Diagonalf?, A2, 1). This verifies
that Ad, € SQ(3, C) and will also conclude the proof of the independence o§.lift
Independence of conjugacy class @f This follows from the fact that ifo, p’
are conjugate representation, then the correspondindetivishains and cochains are

isomorphic. ]
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2. Reidemeister torsion using Witten's notations

Let V be a vector space of dimensiinover R. Let det{/) denote the top exterior
power/\kV of V. A measureon V is a non-zero functional: det(V) — R on det{),
i.e. o € det(V)™, where—1 denotes the dual space.

Recall that the isomorphism between d6i(* and dety*) is given by the pairing
(-, -): det(V*) x det(V) —» R, defined by

(ff A AT e A Ae) = det[fi ()],

i.e. the determinantf]¢] of the change-base-matrix from basis {e}, ..., &} to f =
{f1, ..., f}, where f* is the dual element corresponding tq namely, f*(f;) = §;;.
Below (v1 A - - - A )t will denote E1)* A - - - A (v)*

Note also that f; A---A ff 1A -8) = (€] A---Ag, fia--- fi)7L ie. [, el =
[e, f17t. So, using the pairing,f[e] can be considered a linear functional on d8t(
and e, ¢] can be considered a linear functional on &),

Let C,.: 0 — C, ﬁ> Cho1—> > C 3 Co — 0 be a chain complex of finite
dimensional vector spaces witlolumesa, € detCp)~%, i.e. ap = (C)* A+ A (ch,)*
for some basigcy, ..., ch,} for C,. If, moreover, we assume that, is exact (or
acyclic), thenHy(C,) = 0 for all p. In particular, we have the short exact sequence

i il
0— Im{0p+1: Cps1 = Cp} S8 Co - Im{dp: Cp = Cp_1} = 0.

Bp Bp-1
Let {bf,...,bl}, {bf™ ..., b ]} be bases foB,, By 1, respectively. Then,
{bf,.... b BY™, ..., B 1} is a basis forCp, wheredy(bl, ;) =bl, , and thusbf A

P\ Pl BP-1 i
cAbg Ab T A Ay s a basis for dep).
~o ~p_1r (—1)P .
If u denotes@_o(by A - - - Abg AbY YAA b,fpj)( V" thenu is an element

of ®'-o(detCyp))™Y", where the exponent1) denotes the dual of the vector space.
E. Witten describes the torsion as:

n
Tor(C,) = <u, ® a%—l)p>
p=0

n
- p P pPL bPL (cP) "\
= <b1/\.--/\bkp/\b1 /\-"/\bkp_la(cl) /\"'/\(Cr%p)) '
p=0

which is nothing but [Tpo[{cf, ..., ch,}. {bf, ..., b, BI™" ..., Bf;i}](_l)p or

Mho([{0F, ... b, B~ ..., B} {cb. ..., ch ). The last term coincides
with the TorC., {cp}gzo, {O}';:O) defined in§1.
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We will now explain how a general chain complex can be (umadiy) written as
a direct sum of two chain complexes, one of which is exact &edother isa-zero.

Theorem 2.0.3. If C,:0—= Cy B Chy — --- = C1 3 Co — 0 is any chain
complex then it can be splitted as .G C, & C/, where C is exact and C is 9-zera

Proof. Consider the short-exact sequences

)
0— kerd, < Cp —> Ima, — 0,

0 1M dpsy <> kerdy — Hp(C) — 0.

If 1p: Imd, — Cp, andsy: Hy(C) — kerd, are sections, i.edp olp = idims,,
andmposp =idy,c), thenCy is equal to kebp @ I,(Im dp) or Imdp.1 @ Sp(Hp(C)) &
Ip(Imdp). DefineCy :=1map. @1p(Imadp) and Cy = sp(Hp(C)). Restrictingdy: Cp —
Cp-1 to these, we obtain two chain complexés, (9,)(C/, 9;).

As Cy is a subspace of ke, d;: Cj— Ci_, is the zero map, i.eC{ is d-zero
chain complex. Note also kerj: Cp — C;_,;} equals toCy and Im{ay,,: Cp,y — Cp}
is {0}. Then, Hp(C}) = C/{0} is isomorphic toHp(C), becauseCy = s,(Hp(C)) is
isomorphic toHp(C).

The exactness ofQ, ;) can be seen as follows: Since by, is a subspace of
kerdp, the image of Indp.; underdy is zero. Hence, k¢b,: C, — C,_,} equals to
IM{dp+1: Cpsa — Cp}. Sincedpolp = idima,, andad,: C, — C,_, is the restriction of
dp: Cp = Cp_1, then IMa,: C, — C_;} equals to Infdp : Cp — Cp_y}. Similarly,
|m{a;,_l: C;)_l - C’p_z} = Im{dp_1: Cp_1 = Cp_2} and keta’p_l: C/p_l - C;)_z} =
Im{dp: Cp = Cp_1}, because Ind, is a subspace of kéy,_; andl,_; is a section
of dp—1: Cp-1 — IMmdp_;. Consequently, Ifd,: C, — C,_;} = ker{d,_;: Cp1 —
Cp—2} =Ima, and we have the exactness ©f.

This concludes Theorem 2.0.3. O

In the next result, we will explain Witten’s remark on ([33]185) how torsion
Tor(C,) of a general complex can be interpreted as an element ofdhkal the one
dimensional vector spac®;_q(det(H,(C)))".

Theorem 2.0.4. Tor(C,) of a general complex is as an element of the dual of the
one dimensional vector spa@’gzo(det(Hp(C)))(—l)p_

Proof. LetC, be a general chain complexl of finite dimensional vector spadth
volumesa, € (det(Cp)) ™%, i.e.ap = (ch)* A+ - -A(cg)", for some basis, = {ck, .. ..cf}
of Cp. Let C, =C & C/ be the above (unnatural) splitting &, i.e. C,, =1mdp.1 &
Ip(Imadp) and Cy = sp(Hp(C)), wherelp: Imd, — Cp is the section obp: Cp — IMay
andsp: Hp(C) — kerd, is the section ofr,: kerd, = Hp(C) used in Theorem 2.0.3.
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SinceCp = Im 3,41 @ Sp(Hp(C)) @ 1p(Im dp), we can break the basig of C, into
three blocks as U ¢} L ¢}, wherec] generates IMp.q, ¢} is basis forsy(Hp(C))
i.e. [c5] = mp(ch) generatesdH,(C), anddp(ch) is a basis for Ind,. As the determinant
of change-base-matrix fromy, to cp is 1, the bases), c¢p =l L) L), andc] L)
for Cy, Cp, Cp,, will be compatible with the short-exact sequence of congse

05 C'<sC,=C'®C. - C. -0,

where we consider the inclusion as sect®fj — Cp. Note also thatHp(C”) = C//0
i.e. Sp(Hp(C)) which is isomorphic toH(C).

By Milnor’s result Theorem 1.1.3, we have T@x {cp}gzo, {hp}gzo) is the product
of Tor(C”, {c%}gzo, {Sp(bp)) o), TOr(C,, {cj U c%}gzo, {0}-0), and Tor{+.), whereH,
is the long-exact sequence obtained from the above shadt@f chain complexes.

More precisely,H,: 0 - Hn(C”) - Hn(C) = Hp(C) - Hp-1(C") = Hy—1(C) >
Hn-1(C’) = -+ = Ho(C”) = Ho(C) — Ho(C’) — 0. SinceC. is exact, thenH, is
the long exact-sequence-8 H,(C") - Hy(C) - 0 - Hy_1(C") » Hy-1(C) - 0>
--+ = 0= Ho(C”) - Ho(C) » 0—= 0. Using the isomorphisnH(C) — Hp(C"),
namelys, as section, we conclude that Thf(, {Sp(hp), hp, 0}, {0}%152) =1.

Moreover, we can also verify that Ta{, {c%J U cf;}gzo, {O}?FO) =1 as follows:

/. / / / ;]I:QD /. / /
0— ker{ap. Cp>Coi} > C, > Imfa,: C,— C,_4} =0,
where kefa;): C’p - C;)_l} is Im{dp+1: Cps1 — Cp} and In”{a’p: C’p - C’p_l} is
Im{d,: Cp — Cp_1}. If we consider the sectioh,, then we also have Tdg(,
{ch U)o (0Fhg) = 1.

Therefore, ToIC., {cp}h.o, (hp}h) is equal to TorC/, {2} o, {Sp(hp)}heo)
i.e.TTh-olSp(bp), 2]V where By (hp), ¢2]is the determinant of the change-base-matrix
from c% to sp(hp) of Cj = sp(Hp(C)). Recall thatsy: Hp(C) — kerdy is the sec-
tion of mp: kerd, — Hp(C). So, [c%], i.e. mp(cp), andbp = [Sp(hp)] are bases for
H,(C). Sincesy, is isomorphism onto its image, change-base-matrix ft@nuo sp(hp)
coincides with the one frome}] to by,.

As a result, we obtained that

Tor(C*, {CD}B:O! {bp}T):O) - H[hrh [C%]] (=1)P*D

p=0

= o, [+ [ba, [31] - - - [bn, [ZDCY™,

For p odd, [hp, [c%]](—l)(‘”” is [hp, [3]]l, and for p even, it is pp, [3]] " or

[[<31, bpl-
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By the remark at the beginning §2, for evenp’s, [[c%], e ] is linear functional on
det(H(C)), and for oddp's, [[c%], e]is linear functional on det,(C)*) = det(H,(C)) 4,
where the exponentl denotes the dual of the space.

This finishes the proof of Theorem 2.0.4. O

In particular, considering the complex

C.: 0> Cx(S Ad,) 222 cy(s Ad,) 224 (S Ad,) = 0,

where p: m1(S) —» PSL(R), we conclude Tofg,) is in
(det(Ha(S; Ad, )V @ (det(Hy(S: Ad,)) " ® (det(Ho(S; Ad,)) ",

If, moreover, the representation: 71(S) — PSLy(R) is irreducible (e.g. wherp is
discrete, faithful), therH,(S; Ad,) and Ho(S; Ad,) both vanish. Therefore, TdZ() is
in det(Hy(S; Ad,)) = AY™HMAL) 4, (S Ad,). We should also recall here that when
p: m(S) — PSLy(R) is discrete, faithful, therH;(S; Ad,), H(S; Ad,) can be iden-
tified with the cotangent spacg; Teich(S) and the tangent spack,Teich(S) of the
Teichmiller spacef S, respectively.

We will close this section with the fact that torsion Tor(K; Ad,)), whereK is
a cell-decomposition of compact hyperbolic surfé&@eavithout boundary,p: 71(S) —
PSLy(C), is independent of the cell-decomposition, too.

Lemma 2.0.5. Tor(C.(K;Ad,)) is independent of the cell-decompostidn de-
pends only on the representatign

Proof. LetK be a fine cell-decompositions @& as in the definition. LeiK be
a further refinement oK. As in Lemma 1.2.1, we obtain the chain complefe,s:
C, @ C,, whereC’ =C,/C, is obtained by the added cells. We have the short-exact
sequence of complexes-8 C, — C, > C. = é*/C* — 0, whereC, is obtained by
the cell-decompositiofK, C, is obtained by the refined cell-decompositikn and C.
is obtained by the added cells. Then, we have the followingroatative diagram

0 0 0
Ll

0 Coe C, Cé 0
| o oo |

0 Cye Ci1 C; 0
l o Al o |

0 Coc Co C(/) 0
L o] o |
0 0 0
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Note that each row is exact, and torsion of each row is 1. Moeeigely, forp =
0,1, 2, we have the exact row-8 Cp, — C, — Cp, — 0. Considering the inclusion
s: Cp— C, as a section, we have torsion of each row is 1. Hence, bases @
¢ ¢ Of Cp, C,, and C}, are compatible in the sense that determinant of the change-
base-matrix corresponding to the basgsp sp(c},) andc, @ ¢}, is (clearly) 1.

The short-exact sequence of complexes @, < C, —» C = C./C. — Oalso re-
sults the long-exact sequence of vector spge0 — Hy(C,) — Ho(C,) — H»(C.) —
H1(C.) = Hi(C.) = Hi(C.) = Ho(C.) = Ho(C.) = Ha(C.) - 0. By Lemma 1.2.2,
the chain complexC, is exact. ThenHy(C;,) =0, for p=0, 1, 2, and thuHy(C,) =
Hp(é*). Considering the isomorphianp(é*) — Hp(C,) as section, we have
Tor(H.) = 1.

Since the bases «&,, C,, and C! are clearly compatible, thus by Milnor’s result
Lemma 1.1.3, we get Tdg,) = Tor(C,) - Tor(C.) - Tor(H.,).

_

=1

Lemma 2.0.6. Tor(C.) is also1.

Proof. Recall that the exact complex-8 C % C] & Co — 0, whereC; :=
C./C,, is obtained from the added cells. Namely, foigon w € C,, we added a
point p inside w, andn new 1-cellsyy, ..., Ya, SO that we obtaim-new two-cells
wi, ..., wy With w=w,U---Uwn. So, {[p]}, {[Vi], - - -, [Wn]}, @and{[w4], .. ., [wn]}
are in the generating sets @f), C], and C;, respectively. Because the € C; is
union of wy, ..., wn, [wi] +---+[wy] = 0. Recall also that the boundary operators
satisfy 95[wi] = [Vi+1] — [vi], 91[yi] =[p]. We also identify f;i+n] = [yi] for all i.

The exactness o€, results kefd,: C, — C;} = 0. Thus, from the short-exact
sequence, 6 ker{d;: C;, - Cj} — C;, — Im{9;: C;, — C;} — 0, we have the iso-
morphismC;,, = Im{d;: C;, — C;}. Consider the inverse o€}, — Im{d;: C, — C/} as
sections,: Im{d5: C, — Ci} — Cj, namely, S;([yi+1] — [yi]) = [wi]. Recall also that
{[y2] =il [ys] = [yal, - - -, [¥n] = [¥n-1]} are in the generating set of [A}: C;, — Cy}.
Clearly, determinant of the change-base-matrix @ris 1.

For the short-exact sequence-9ker{d;: C; — Cj} — C; — Im{d;: C; = Cj} —

0, consider the sectios: Im{d;: C; — C{} — C; defined bys;([p]) = (—1)"*[yn].
Here, recall thaf[p]} is in the generating set of Iffy: C; — C;}. SinceC; is exact
complex, hencd[ys] —[yil, [Vl = [Y2], - . -, [¥n] —[¥n=1]} also in the generating set of
ker{d;: C; — C(}. Then, the determinant of change-base-matrix frigm], [y-], . . .,
[y]} o {[y2] = [yal, - -, [¥n] = [¥n-1], (=1 Hyal} = (=1) - - - (=1)(=1)"* = 1.
n-1
Therefore, TorC.) = 1, which concludes Lemma 2.0.6. O
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~ f—_]-‘ ,_L-
As a result, we proved that T@2() = Tor(C,)- Tor(C.) - Tor(H.) = Tor(C.), i.e. Tor
is invariant under subdivisionlf K1, K, are two fine cell-decompositions, considering
the overlaps and refining as before, we get a common refineteior both K; and
K>. Hence, the corresponding torsions will be I&rx
This finishes the proof of Lemma 2.0.5 ]

E. Witten describes the fact thabws of the short-exact sequenfe— C, —
C. > C. = C./C. — 0 has torsionl by saying that the short-exact sequence of com-
plexes isvolume exact Hence, Lemma 2.0.5 says that in a short-exact sequence of
complexes which is also volume exact, then the alternatinglyct of the torsions is
1i.e. TorC.) Tor(C,)* Tor(C.) = 1, which is actually Tof{.).

2.1. Symplectic chain complex.

DEFINITION 2.1.1. C,: 0— C, i Cho1= =2 Cp—---2C N Co— 0
is a symplectic chain complexf
e n=2 (mod 4) and
o there exist non-degenerate anti-symmetricompatible bilinear maps i.&p n—p: Cpx
Cn-p = R s.t.wpn_p(@ b) = (—1)P"Pw,_p (b, @) andwp n-p(dp+18, b) = (—=1)P*1 x
@p+1.n—(p+1)(@, In—pb).

In the definition, sincexr=2 (mod 4) i.e.n is even and/2 is odd, wp n—p(a, b) =
(=1)Pwn—p,p(b, a).

Using the d-compatibility of the non-degenerate anti-symmetric ngr maps
wpn—p: Cp x Chp = R, one can easily extend these to homologies. Namely,

Lemma 2.1.2. The bilinear map[wp n—p]: Hp(C) x Hn_p(C) — R defined by
[wp.n—pl([X], [Y]) = @wp,n—p(X, ¥y) is anti-symmetric and non-degenerate

Proof. For the well-definiteness, lat, x" be in kerd, with x — X" = dp+1x” for
somex” € Cye1 and lety, y' be in kerd,_p with y — y' = 8n_ps1y” for somey” e
Ch_p+1. Then from the bilinearity and-compatibility, fwpn—pl([X], [¥]) is equal to
@pn-p(X', ¥) + (=1)Pwp_1n-pe1(3pX, ¥) + (= 1) @pstn-p-1(X", dn-py’) + (=1)P** x
®p+1,n—p-1(X", In—p © In—p+1Y”) = @pn-p(X’, ¥').

Assume for someyp] € Hn—p(C), [wp,n-pl([X], [Yo]) = O for all [x] € Hy(C).

Lemma 2.1.3. yp is in IM On_p+1.

Proof. Lety: Cp/Zp — R be defined byp(x + Z,) = wpn—p(X, Yo). This is a
well-defined linear map becausexf— x' € Z,, thenwp n—p(X, Yo) — @pn—p(X’, Yo) =
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9
[wp.n—pl([X —X'], [Yo]) equals to 0. By the Skisomorphism theoremC,/Z,, = Im op =
Bp-1, Whered(x + Zp) is dp(X).

Consider the linear functiona := ¢ o(3,)~! on Bp_1, where §p)~1(9py) = y+Zp.
Extend ¢ to ¢: Cp_1 = Bp_1 @ (Cp-1/Bp-1) = R as zero on complement dB,_;.
Since wp_1n—p+1: Cp-1 x Ch_p+1 — R is non-degenerate, it induces an isomorphism
between the dual spadé;;_l of Cp_1 and Cn_p+1. Therefore, there exists a unique
Ug € Cp_p+1 such thatp{ - ) = wp_1n—p+1( -, Uo).

For x € Cp, v =0pX is in Bp_1. Then, on one handyp(d) is wp—1,n—p+1(dpX, Ug)
or (—1)Pwpn-p(X, dn—p+1Uo) by the d-compatibility. On the other hand, by the con-
struction of ¢, @(v) = wpn—p(X, Yo) SO Wpn—p(X, Yo) IS wp,n—p(X, (—1)Pd_p+1lo) for

all x e Cp.
The nondegeneracy @b, finishes the proof of Lemma 2.1.3. O
This concludes the proof of Lemma 2.1.2 O

We will define w-compatibility for bases in a symplectic chain complex.

DEFINITION 2.1.4. LetC,:0— Cp B Crg > -+ > Cpp—> -+ — C 3
Co — 0 be a symplectic chain complex. Basgs on_p of Cp, C,_p are w-compatible
if the matrix of wp n_p in basesop, op_p is

n

Idkxk; p 7 >
Ome Idmxm . - E
_Idmxm 0m><m , p 2

where k is dimC, = dimCn_p and 2n = dimC, ;. In the same way, considering
[wpn—pl: Hp(C) x Hi—p(C) — R, we can also defineuf, n—p]-compatibility of bases
Bp, bBn-p of Hp(C)v Hn—p(c)-

In the next result, we will explain how a general symplectimio complexC,
can be splittedv-orthogonally as a direct sum of an exact ahdero symplectic com-
plexes.

Theorem 2.1.5. Let C,: 0 — Cq 2% Cpq — --- — C1 3 Cy — 0 be a sym-
plectic chain complex Assumeo, on—p w-compatible Then G can be splitted as a
direct sum of symplctic complexeg,C, where C is exact C/ is 9-zero and G is
perpendicular to C.
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Proof. Start with the following short-exact sequence

9
0— kerd, < Cp —> Ima, — 0,

0 IM 9y = kerdp 3 Hy(C) — 0.

Consider the sectioly: Im d,— C,, defined byl ,(3,x) = X for dpx # 0, andsp: Hp(C)—
kerdp by sp([x]) = x.

As C,, disjoint union of Imdp.1, Sp(Hp(C)), andl,(Imap), the basiso, of Cy, has
three blockso}, 0%, o9, whereo} is a basis for Imdp.1, of generatessy(Hp(C)) the

rest of kerdp, i.e. [o3] generatesH,(C), and 8,03 is a basis for Imb,. Similarly,

On_p = 0p_p, Lod_, Loy . Because d]pnp: Hp(C) x Hop(C) — R defined by
[w]p.n—p([@], [B]) = wp,n-p(a, b) is non-degenerate and basgs on—p of Cp, Ch_p are
w-compatible, wp n—p( -, Si—p(Hn-p(C))): Cp — R vanishes on By @ 1p(Im dp).
Likewise, wpn-p(Sp(Hp(C)), -): Chp — R vanishes on Indy_p+1 @ In—p(IM 9n_p).

SetCy, = Im dp1 @ 1p(Im 3p) andCyy = sp(Hp(C)). Note thatCy, with basisor, L 03
andC{_, with basisoﬁ_p arew-orhogonal to each other. Henc&!(d), (C/, ) will be
the desired splitting, where we consider the correspondisgictions ofwpn—p: Cp x
Chp —> R.

Clearly, C/,0) is 9-zero forCy being subspace of k&g. Since fpn-pl: Hp(C) x
Hn-p(C) — R is non-degenerate, the restrictian,,—,: Cy x C{_, — R is also non-
degenerate. Being the restriction®f n—p, it is alsod-compatible. Henc€; becomes
symplectic chain complex witld-zero.

Dp+ ) .
In the sequenc€’,,, —> C,, = Cj,_y, first mapdp.1 sends INdpez, | pe1(IM dpea) to

p+l p—1’
zero and Imdp.q, respectively. Hence, kfitp.a: Cp,; — Cp} equals to Infdpsz: Cpep —
Cp+1} and IMdpsa: Cpyy = Cpbis IM{oper: Cpix — Cp). Similarly, kefdp: Cp —

Cp-1} = IM{dp+1: Cpi1 = Cp} and IM(dp: C, — C_y}bis Im{dp: Cp — Cpa}. Thus,
C! is exact.

Moreover, sincewpn-p: Cp x Ch_p — R is non-degenerate, an@,, C_, are
w-perpendicular teCy_,, Cg, respectively,wpn-p: C, x C,_, — R is non-degenerate.
Also, it is d-compatible for being restriction of the-compatible mapwpn—p: Cp x
Chp—=> R.

This concludes the proof of Theorem 2.1.5 0

Above theorem is a special case of Theorem 2.0.3. The onfgrdifce is using
w-compatible bases, the splitting isw-orthogonal, too.

We will now explain how the torsion of a symplectic complextwb-zero is con-
nected with Pfaffian of the anti-symmetried;on/2]: Hn/2(C) x Hn/2(C) = R. Then,
Pfaffian will be defined. After that, we will give the relatidar a general symplectic
complex.
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Theorem 2.1.6. Let C, be symplectic chain complex withzera Let h, be a
basis for H,. Assume the bases,, o, of Cp, Cy—, are w-compatible with the prop-
erty that the bases,;; and h,,», of H,,2(C) are in the same orientation clas3hen

(n/2)-1 )
TOI’(C*, {Up}?;:oy {[)p}r:):o) :( H (det[a)p,n—p])(_l)p)' (\/ det[wn/z,n/Z])(_l)/ )
p=0

where detfwp n—p] is the determinant of the matrix of the non-degenerate pairi
[wp,n—pl: Hp(C) x Hh_p(C) = R in baseshp, hn_p.

Proof. C, is d-zero complex, so alBy's are zero andZ, = C,. In particular,
H,(C) is equal toCp/{0} and hence the baslg, of Hy(C) can also be considered as
a basis forC,. Recall TorC,, {op}',‘):o, {hp}’r‘,zo) is defined as the alternating product

[Ttop 517" =00, 50l - [on/2, b2l ™" - - - [on, Ba] V',
p=0

of the determinantsol, bp] of the change-base-matrices frdjg to op,. If we combine
the terms symmetric with the middle termfz, hn/2] D", torsion becomes

(n/2)-1
— —1\— _1\y/2
( [T lop 5] [on-p, ba—pl ™Y ")[on/z, bny2] Y.

p=0

Moreover, note thatolp, hp] Y [on—p, hn—pl " = {[0p, pllon—p, bn_p]} V" for
n being even. Lefl”, T;"" denote the change-base-matrices fromito o, of Cy,

and from hn_p to oq_p of Cn_p, respectively, i.e.hi = > (T, %), 0¢ and hL_p =

hp ai P
Zﬁ(Th"n”_‘p")ﬂjoﬁ_p, where h!, is the i""-element of the basig,.
If A and B are the matrices ofopn_p in the baseshy, hn—p, and in the bases

Op

0p, On_p, Tespectively, thenA = (Thp)”a“Spos‘BTb"n”_’p". By the w-compatibility of the
baseso, on—p, the matrixB is equal to gy, [ Omscm Idmxm] for p#n/2, p=n/2,

—Idmxm  Omx
respectively, wherk is dimC, = dimC,_, and an:mdin:gn/z. Clearly, determinant
of Bis 1= (-1)"(—1)" or 1.

Hence, deA equals de't'h"p”detTh"n”:pp or [op, hpllon—p, hn-p] for all p. In particular,
for p=n/2, itis [on/2, hn/z]z. Since 2n is even, ando, 22 is Nnon-degenerate skew-
symmetric, the determinant dat,, is positive actually equals to Pfaf{;n2)?, and
thus fon/2, bn/2] = /detA, ;. Becauseon,, b2 are in the same orientation class,

then [pn2, bnj2] = /detA, 2.

The proof is finished by the faabp,n—p(hiy, h)_p) = [wp,n-pl(h, h_p). O
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Before explaining the corresponding result for a generahgctic complex, we
would like to recall the Pfaffian of a skew-symmetric matrix.

Let V be an even dimensional vector space over reals.«l.e¥ x V — R be a
bilinear and anti-symmetric. If we fix a basis fof, thenw can be represented by a
2m x 2m skew-symmetric matrix.

If Ais any 2nx 2m skew-symmetric matrix with real entries then, by the sgctr
theorem of normal matrices, one can easily find an orthogdmek 2m-real matrix Q

so that QAQ! = diag((_?jll %1), e (_gm aé")) whereay, ..., an are positive

real. Thus, in particular, determinant éf is non-negative.

DEFINITION 2.1.7. For In x 2m real skew-symmetric matrid, Pfaffian of A

will be VdetA.

Actually, if A=[g;]is any 2n x 2m skew-symmetric matrix and if we leba =
Zi<j aj& A€, then we can also define Pfal( as the coefficient 08 A - - - A& in

m-times
e e
the productwa A - - - A wa /ml.
A o 0 & 0 am :
For example, ifA is the matrix dmi(_al 0 ) Cees (—am 0 )) then wp is

Zi”ll a - &i_1 A 8. An easy computation shows thais A wa A - - - A wpa €quals to

m-times
mb(ag---am)& A A&m.
——

Pfaffian of A
For a general & x 2m skew-symmetricA, we can find an orthogonal matriQQ

such thatQAQ ! = diag(( _%1 3(‘)1), e (_gm r )) As a result,

WQAQ1 /\a)QAQ-1 AN /\a)QAQ_1

m-times

equals tom! (a;---am) & A-- Ay i.e. PlafQAQ™Y) =./detQAQ1) or /det(A).
—
Pfaffian of QAQ™!

On the other hand, one can easily prove that for anyx22m skew-symmetric
matrix X and any 21 x 2m matrix Y, Pfaf(Y XY!) is equal to Pfaffp) det(8). Conse-
quently, sinceQ is orthogonal matrix, we can conclude that PA9f= det(A) for any
skew-symmetric &1 x 2m real matrix A. In other words, both definitions coincide.

Using Pfaffian, we can rephrase Theorem 2.1.6 as follows.

If C, is a symplectic chain complex withr-zero, b, is a basis forH,(C), op, 0n_p
w-compatible bases fo€,, Cn_p so thath,> and pn2] are in the same orientation
class, then

(n/2)-1

Tor(C., {op}p=0 {hp}p=0) :( H (det[wp,n—p])(_l)p) - (Pfaflwn/2,0/2) ",

p=0
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where Pfaffpnon/2] is the Pfaffian of the matrix of the non-degenerate pairing
[a)n/z’n/z]: Hn/z(C) X Hn/z(C) — Rin baSESf)n/z, f’)n/z.

Theorem 2.1.8. Let C, be an exact symplectic chain complek cp, c¢h—, are
bases for G, Cn_p, respectivelythen Tor(C,, {cp}gzo, {0}';:0) =1.

Proof. From the exactness @f,, we haveH,(C) =0 or kerd, = Imdp+1. Using
the short-exact sequence

0— kerdp — C, = Imao, — 0,
we also haveC, = kerd, @ |,(Im dp,), where we consider the sectidp(dpx) = x for

dpx # 0.
Let 0, on—p be w-compatible bases fa€,, Cn—_p, respectively. We can break, =

11,08 1 - 3 L _
opUoy, Whereoy generates ke, = Imap.1, anddpoy, generates Iy, Similarly, on—p =
o%_puoﬁ_p, whereo},_, generates kéh_p = IMdn_pe1, andan_poﬁ_p generates Iréh_p.

Sincewpn—p: Cp x Ca_p — R is non-degeneratei-compatible, themopn_p(o}, 0f_,) =
0, andwp n_p(0p, 05_,) does not vanish. Also by the-compatibility of op, on_p, for
everyi there is uniquej; such thatwp,n_p((o%)i, (oﬁ_p)a) =8j «. Likewise, for every
k there is uniquegk such thatwp n_p((03)k, (07_p)s) = 8. 5-

Recall torsion is independent of basks for Imd, and section I, - C,. Let
A, be the determinant of the matrix @bp,_, in basescy, cn_p, and let O, be
the determinant of the matrix abn_p in basesojLio}, of_,u03 . Since the set

n—p
9p03 = {3p((03)1), - . ., 3p((03)s)} generates Ind,, so does the sefd,(ApOp(03)1),
3p((03)2), - . ., 3p((03)s)}. Hence, image of the latter set undey, namely, &3 =
{Ap - Op - (03)1, (03)2, ..., (03)s} will also be basis forl,(Imdp). Keeping 33_,

as o3__, we have

n—-p’
Wp,n—p in _ (Tc" )transpos Wpn—p in Tcnip
oL Udd, o U0, 0puTH Cpy Cnep | On-pton-p’
Determinant of left-hand-side i€\, - O, - Op, or A, because of the determinant of
wpn-p in the w-compatible base®,, on_,. Thus, for p Z n/2, we obtained that
[ep, 0p U B3][enp, 0p_p Uos ] = 1. | |

For p = n/2, we can prove the same property as follows. Sin¢g8 is odd,
ny2.n2: Cnj2 x Cn2 = R is non-degenerate and alternating, then the matrioo.f n/2
in any basis ofC,,, will be an invertible 2n x 2m skew-symmetric matrixX with real
entries, where & = dimCy2. Actually, we can find an orthogonah®x 2m matrix Q
with real entries so that

o= ( 2 B) (2 %))
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So, the determinant ab,/n/2 in any basis will be positive, in particular, the de-
terminantsAy, 2, On/2 Of wn/2n/2 iN basiscyz, oﬁ/zu oﬁ/z respectively will be positive.
Having noticed that, leB} , = {/An/2 - /On2- (03 2)1, (022, - - - (03 2)a)-

. . w, in7 .
As explained above, on one side, we have tha[an ’5/253 ] is equal to,/An/2-
n/2 n/2

VA/2/Ons2 - /Ony2 det[ /a2 m] or A,2. On the other side, it is the product

1 3
0n/2 u 0n/2
[en/2, oﬁ/zuaﬁ/z] - Anj2-Lens2, oﬁ/zuﬁﬁ/z]. Consequently, ¢z, oﬁ/zuﬁﬁ/z]z is equal to 1.
If oﬁ/z U Eﬁ/z and ¢y, are already in the same orientation class, th@mz,[oﬁ/z U
55,1 = 1. If not, consideringgy , as {—/An/2 - /Onjz - (0521, (03,2)2, - - - » (052}
we still have fny2, of , UG 5] = 1.
As a result, we proved that

Tor(C,, {¢p}p=0- {0}=0)

n
=[lcp, opu i)’
p=0
(n/2)-1
~ _ ~ _1\/2
= H ([ep, 0%3 U 0?3][Cn—pa oﬁ—p U Uﬁ_p])( v [cn/2s 0rji/z u 02/2]( V=1, O
p=0

Theorem 2.1.9. For a general symplectic complex,Cif ¢y, h, are bases for
Cp, Hp(C), respectivelythen

(n/2)-1 ,
Tor(C,, {cp}?)zo- {hp}?nzo) :( H (dEI[a)p,n_p])(_l)p). (\/m)(—l)/ '
p=0

where detlwpn-p] is the determinant of the matrix of the non-degenerate pgiri
[wpn-pl: Hp(C) x Hn—p(C) — R in basesh,, hn_p.

Proof. SinceCy, is disjoint union Imdp.1 U sp(Hp(C)) Ll p(Im dp), any basisy, of
Cp has three partsy, a3, a3, whereay, is basis for Imbp.1, af generates,(Hy) the rest
of kerd, i.e. [a3] generatesH ,(C), andd,a’) is basis for Imd,, wherel,: Im 9, — Cy
is the section defined Hy(d,x) = x for dpx # 0, andsy: Hy, — kerd, by sp([X]) = x.

If 0y, on_p arew-compatible bases fo€, andC,_,, then we can also write, =
op Lof Loy andon_p = op_, Lio5 ,Los .. We may assumeof2] and by are
in the same orientation class. Otherwise, switch, say tisé élement ¢,,2)! and the
correspondingo-compatible elementof;2)™? i.e. wn/2.n/2((0n/2)% (0n/2)™?) = 1, where
2m = dim H,2(C). In this way, we still havew-compatibility and moreover we can
guarantee thatof2], hn/2 are in the same orientation class.

Using thesav-compatible bases,, as in Theorem 2.1.5, we have theorthogonal
splitting C, = C, & C;, whereCj, and Cyj are Im@p+1) & Ip(Im dp), sp(Hp(C)), and
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lp: Imdp, — C, is the section defined bly,(d,x) = x for 9,x # 0, andsy: Hp — kerdp
by sp([x]) = x.

C, is the disjoint union I, L1 S(Hp) U lp(Imdp), so the basis, of C,, has
also three blocksy, ¢, ¢, wherect is a basis for Inb,., ¢ generatess,(Hp) the
rest of kerdp, i.e. [5] generatesH,(C), and dpc? is a basis for Iy,

Consider thed-zero symplecticC” with the w-compatible bases?2, oﬁ_p. Note
that by thed-zero property ofC;, Hy(C") is C;/0 or sp(Hp(C)). Hencesy(hp) will
be a basisHy(C”). Recall also thatoﬁ/z] and bﬁ/z are in the same orientation class.
Therefore, by Theorem 2.1.6, we can conclude that

(n/2)-1 )
Tor(Cy, {Oé}n:o. {sp(hp)}p=0) :( H (det[a)p,n—p])(_l)p)' (V det[a)n/z,n/z])(_l)/ ,
p=0

where detp,n_p] is the determinant of the matrix of the non-degenerate inmir
[wp,n—pl: Hp(C) x H—p(C) = R in baseshp, hn_p.

On the other hand, it}, is any basis forC, then by Theorem 2.1.8 the torsion
Tor(C,, {dp}gzo, {0}',‘)=0) of the exact symplectic comple®, is equal to 1.

Let A, be the determinant of the change-base-matrix fegnto 2. If we consider

the basiscy U ((1/Ap)c3) for the C,, then for the short-exact sequence
0->C/—C,=C.epC/ »C.—>0

the base®3, cp, ¢y U ((1/Ap)c3) of Cy, Cp, C;, respectively will be compatible i.e. the
determinant of the change-base-matrix from bagis 05 L ((1/Ap)c3) to ¢p = ¢} Lich LI
3 is 1.

Thus, by Milnor's result Theorem 1.1.3, Tax(, {cp}',;:o, {bp}gzo) is equal to the
product of TorCl, {o3}h-o {Sp(hp)ipeo): TOM(CL, {cp U ((1/Ap)ei)} gy {0}3o0), @nd
Tor(H..,{sp(h p),bp,O}gzo,{O}%’;BZ), where?H, is the long-exact sequence-9 H,(C") —
Hn(C) » Hn(C) > Hn—1(C”") = -+ > Ho(C”") - Ho(C) —» Hp(C') —» 0 obtained
from the short-exact sequence of complexes. Si@feds exact, Hy,(C’) are all zero.
So, using the isomorphismid,(C) — Hp(C”) = C;/0, namelys, as section, we can

conclude that Tof{., {Sp(hp), bp, O} o, {O}%QBZ) = 1. From Theorem 2.1.8, we also
obtain TorC,, {cj U ((1/Ap)cf;)}’;:0, {013=0) = 1.
Therefore, we verified that

Tor(C,, {Cp}n:o: {bp}g:o) = Tor(C/, {0%}?):0: {Sp(hp)}?):o)-

This finishes the proof of Theorem 2.1.9. ]
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3. Application

We will present an explanation of the relation between Ragister torsion and
Pfaffian of Weil-Petersson form and hence Pfaffian of Thurstgmplectic form [26]
in this section.

3.1. Thurston and Weil-Petersson-Goldman symplectics fons. In this sec-
tion, we will explain the Teichmiller space of a hyperboliarface, Weil-Petersson,
Goldman and Thurston symplectic forms of the Teichmilleacgp For more informa-
tion about the subject, we refer the reader to [2] [13] [15][1and [27].

3.1.1. Teichmdller Space. Let S be a fixed compact surface with negative Euler
characteristic.

The Teichmuiller spac®&eich(S) of Sis by definition the space of isotopy classes of
complex structuresn S. Recall that a complex structure &is a homotopy equivalence

. f . .
of a homeomorphisn® — M, whereM is a Riemann surface and where two such homeo-

S S
morphisms( Lf ) ~ ( L ) are equivalent if there is a conformal diffeomorphism
M M’

M > M’ such that §')~L o go f is isotopic to Id.

Fix a complex a structure o8, and conformally identifyS with H?/T", whereT’
is a discrete group of conformal transformations of the ugyf-planeH? c C. The
deformation of the complex structure will produce Beltratifferential.

Namely, if {S£> S} is a path inTeich(S) differentiable with respect to, and

. . . fot f
if we consider the composition map® — S — S, then these can be extended

to quasi-conformal map#l? 3 ®? such that 99:/02)/(0g;/02) is a tensor of type
(0/0z) ® dz with measurable coefficient and finite*-norm. In other words, we have
a differentiable path in the complex Banach sp&¢&) of I'-invariant Beltrami differ-
entials, wherel' = 7;(S). Then, €/dt)((39:/9z2)/(d9:/32))|t=0 is also inB(C'). Recall
that a Beltrami differential is an element of the complexaBeh space of -invariant
tensors of typeu(z)(9/9z) ® dz with measurable coefficients and finite®-norm and
satisfying thatvy € ', u o y(dy/dz) = u(dy/d2).

By the uniformization theorem, Teichmudiller spa®eich(S) of S can also be in-
terpreted as the space of isotopy classes of hyperbolicianain S (i.e. Riemannian
metrics with constant-1 curvature), or as the space of conjugacy classes of alledésc
faithful homomorphisms from the fundamental grom(S) to the group Isof(H?) =
PSLy(R) of orientation-preserving isometries of upper-half Idfie c C as follows.

A complex structure or8 lifts to a complex structure on the universal coveriBgf
S. SinceS has genus at least 2, then by the uniformization theor@is,biholomorphic
to the upper-half-plan@l> ¢ C. Recall that every biholomorphic homeomorphism of
H? is of the form f(2) = (az+ b)/(cz+ d), wherea, b, ¢, d are real numbers with
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ad—bc=1. This defines a representation from the fundamental gra@$) of S into
PSLy(R) which is discrete, faithful and well-defined up to conjugatby the orienta-
tion preserving isometries dfi>. This enables us to identiffeich(S) as the set of all
conjugacy classes of discrete faithful representations16%) into PSL(R).

If we set?R = Homys(1(S), PSL(R))/PSLy(R), where Homg(1(S), PSL(R)) is
the set of Discrete Faithful representationsmafS) into PSLy(R), then it is a well
known fact that the image of the embeddifeich(S) — R is open ([30] [23]).

3.1.2. The Goldman symplectic form. Consider the real-analytic identification
of Teich(9), i.e.

R = Homy(m1(S), PSL2(R))/PSLa(R).

Fix a point ¢ € Teich(S) C R. The standard deformation of representation will
enable us to identify the tangent spagefdich(S) = T, to the first cohomology space
H(S; Ad,) of Swith coefficients in the Lie algebraix(R) of PSLy(R) twisted by the
adjoint representation Ad 71(S) — Aut(s(z(R)).

For the sake of completeness, we will roughly describe thsiification. We re-
fer the reader to [31] [23] [14] for detalils.

Take a patHot} C R throughe and differentiable with respect to the real variahle
Thus, for eacly e 71(S), we have a differentiable patl: (y)}: throughg(y) € PSLy(R).

By the fact that the inversion in a Lie group is also a difféie@nie map, we can get a dif-
ferentiable patho(y)~*ot()} through! e PSLy(R). Then, @/dt)(e(y) " ot(y))k=0 €
H(S; Ad,) is in the first cohomology space &with coefficients twisted by adjoint rep-
resentation.

The first twisted-cohomology spad¢'(S; Ad,) can be defined as follows. The ac-
tion of 7r1(S) on the universal coves turns the group of the chain compl€&x(S; Z) into
Z[r1(S)]-module. Similarly, the adjoint action by Adnakess(>(R) a Z[71(S)]-module,
whereZ[71(S)] is the integral-group-ring.

The twisted cohomology modulés* (S, Ad,) are defined as the homology of the com-
plex C*(S;Ad,) = Homy (s (c*(§), s15(R)) =512(R) 72,51 C.(S). Namely, C"(S;Ad,)
is the group homomaorphisnG,(S,Z) — sl3(R) that commute with the action of,(S).

Since the Cartan-Killing bilinear formB: sl>(R) x slx(R) — R, defined byB(ty, t) =
4 Tracefity), is invariant under adjoint action, then one can define a prgduct
—p: CY(S Ad,) x CY(S Ad,) » C%(S;R) by assigninge, ¥ € C(S;Ad,) to ¢ —
¥ € C%(S, R). More precisely, ifA € Cy(S;R) is a two-simplex inS, and A is a
fix a lift A in the universal coverinds, then ¢ —g W)(A) = B(¢(Afront), ¥ (Aback),
where Afont, Apack denote the front and back faces af The well-defineteness will
follow from the invariance ofB under conjugation. The product also induces an ant-
symmetric bilinear forrrwGo|dman HY(S; Ad,) x HY(S Ad,) » H?(S;R) ¥ R, where
the isomorphismH?(S; R) = R is obtained from the integral of the fundamental class
of the oriented surfacé&.
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Fig. 1. Geodesic lamination with 3 leaves. Maximal geodesic
lamination obtained from pant-decomposition.

In [14], W.M. Goldman proved that for the isomorphisrpTkich(S) = H(S;Ad,),
the Weil-Petersson form coincides with the Weil-Peterssom wwp of T,Teich(S), up
to a multiplicative constant. More precisely,

Theorem 3.1.1 (Goldman, [14]). If u,v € H}(S;Ad,) are two cohomology clases
with coefficients irsl>(R), then wwp[S] = —8wsoidmadU, v), Where[S] € Hi(S;Z) is the
fundamental class of the oriented surface S

3.1.3. The Thurston Symplectic Form. Endow the surfacé& with a hyperbolic
metric mg, namely with a Riemannian metric of constant curvatwike

A geodesic laminatioris a closed subset o6 which can be decomposed as a
union of disjoint complete geodesics which have no sebsgction points. Such a no-
tion is actually a topological object, independent of thetriogin the sense that there
is a natural identification between-geodesic laminations ama’-geodesic laminations
for any two negatively curved metrias and m’. A geodesic lamination isnaximal
if it is maximal for inclusion among all geodesic laminatsprwhich is equivalent to
the property that the complemeBt— A consists of finitely many infinite triangles. See
Fig. 1.

A fundamental example of a maximal geodesic lamination iiaobd as follows.
Start with a family 1, of disjoint simple closed geodesics decomposgnto pairs
of pants. Each pair of pants can be divided into two infinitanigles by two infinite
geodesics spiralling around some boundary components.uifiioe of A; and of these
spiralling geodesics forms a maximal geodesic lamination

A transverse cocycle for A on S is a real-valued function on the set of all arcs
k transverse to (the leaves) afwith the following properties:

e o is finitely additive, i.e.o(k) = o(ky) + o(k2), whenever the ar& transverse to.

is decomposed into two subarks, k, with disjoint interiors, and

e o is invariant under the homotopy of arcs transverse.ta.e. o (k) = o (k') when-
ever the transverse akcis deformed to ark’ by a family of arcs which are all trans-
verse to the leaves of the geodesic lamination

The transverse cocycles for the geodesic laminatioform a fnite dimensional
real-vector spacéi(1), whose dimension can explicitly be computed from the topol
ogy of A, see [5]. In particular, if the geodesic lamination is maximthen (1) is
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isomorphic toR!X®I where|x(S)| denotes the Euler characteristic 8f This compu-
tation is done by using a (fattened) train-tradkc S carrying the lamination.

Recall that a fattened train track ® on the surfaceS is a family of finitely many
‘long’ rectanglesey, . . ., €, which are foliated by arcs parallel to the ‘short’ sides and
which meet only along arcs (possibly reduced to a point)aioet in their short sides.
In addition, a train trackd must satisfy the following:

e each point of the ‘short’ side of a rectangle also belongsntutleer rectangle, and

each component of the union of the short sides of all recéani an arc, as opposed
to a closed curve;

e note that the closur&§ — & of the complementS — ® has a certain number of

‘spikes’, corresponding to the points where at least 3 rggles meet; we require that
no component ofS— @ is a disc with 0, 1 or 2 spikes or an annulus with no spike.

The rectangles are called tlelgesof ®. The foliations of the edges ob in-
duce a foliation of®, whose leaves are thées of the train track. The finitely many
ties where several edges meet are $dtchesof the train track®. A tie which is
not a switch isgeneric The geodesic laminatioa is carried by the train trackd if
it is contained in the interior ofb and if its leaves are transverse to the tiesdaf
There are several constructions which provide a train trhckarrying A; see for in-
stance [21] [6].

For a fixed train-trackd, let WW(®) be the vector space of adldge weight systems
for ®. More precisely, mapa assigning a weigha(e) € R to each edge of ® and
satisfying, for each switcls of ®, the following switch relation

p p+q
>a)= > ale),
i=1 j=p+1
whereey, . . ., e, are the edges adjacent to one side of the swateimd ep.q, . . ., €pq

are the edges adjacent to other side.

If the geodesic lamination. is carried by the train-trackb, a transverse cocycle
o € H()) defines an edge weight systean € WW(®) by the property thag, (€) = o (ke),
where ke is an arbitrary tie of the edge. This gives an injective additive map [5].
Moreover, this map gives isomorphiski(1) = W(®), if & snuggly carries the lami-
nation A, a technical condition that can be realized whers maximal.

It is also possible that we can arrange the train-trécko that it isgenericin the
sense that each switch is adjacent to exactly 3 edges. Thusach switchs of @,
there are one incoming touching the switchs on one side and two outgoing™,

&9 touchings on the other side, where as seen from the incoming alfgand for

the orientation of the surfacs, e'fﬁ branches out to the left amafght branches out to
the right.
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The Thurston symplectic fornon W(®) is the anti-symmetric bilinear form
WThurston: W(CI)) X W(@) — R defined by

1 a(e™) a(el™)
Thursto@, b) = 2 Z det|: b(elseft) b(elionty |’

where the sum is over all switches of the train-tragk wherea(e?™), a(egght) denote
the multiplicities assigned to the edges diverging respelgtto the left and to the right
at the switchs, and where ‘det’ is the determinant ofx22 matrices.

Using the isomorphisnt (1) = W(®), this induces thelhurston symplectic form
oN wthurston: H(A) x H(X) —» R defined by

1 Ul(elsen) Ul(egght)
WThurstor{01, 02) = 2 Z del|: Gz(elseft) Uz(e;ight) ’

whereoi(e) € R is the weight associated to the edgdy the transverse cocyclg.
It can be proved that is actually independent of the train-tradk In fact, r also
has a homological interpretation as an algebraic intemectumber. See [21] [3].

3.1.4. Shearing coordinates of Teichmuiller space.Let . be a maximal geo-
desic lamination on the surfac8. The shearing coordinates for Teichmdiller space
Teich(S) of S, as developed in [3], define a real-analytical embeddingZeich(S) —
H(2). For p € Teich(S), the transverse cocycle, (o) associates to each transverse arc
k a numberg; (0)(k), which, intuitively, measures the ‘shift to the left’ bexen the
two ideal triangles inS=H?/p(1(S)) corresponding to the components $f A that
contain the end points d&.

The precise definition of, can be somewhat technical, but we only need to un-
derstand its tangent map, which induces an isomorphism degtvthe tangent space
T,Teich(S) = H(S; Ad,) and the vector space of transverse cocyGifs).

For this, it is convenient to lift the situation to the unisetS of S. Fix an iso-
metric identification betweer$ endowed with the hyperbolic metric corresponding to
o € Teich(S) and the hyperbolic plan&l?, and choose the geodesic laminatibras
geodesic lamination for this metric. Lét be the preimage of. in S. If k is an arc
transverse td. ando € H()), we defines (k) = o (k), wherek is the projection ofk.

If we differentiate the explicit formula foap;l given in [3] §5, we obtain the fol-
lowing formula

Lemma 3.1.2 ([27]). If o € H()) is a transverse cocycle for the maximal ge-
odesic laminatiomk, then the element,ﬂ,b;l(o) e T,Teich(S) = HY(S Ad,) is repre-



32 Y. SOZEN

sented by a cocycle,ue C1(S;Ad,) such that for every oriented ark transverse to.

u, (k) = o(lZ)t% + > olka)ty —tg),

d#d*,d-

where the sum is over all components diof i that are distinct from the components
d* and d~ respectively containing the positive and the negative esidtp of k, where

kq is a subarc ofk joining the negative end ok to an arbitrary point in the compo-
nent d where ¢ and g; are the leaves of. respectively passing through the positive
and negative end points of d and are oriented to the lefkoénd where § € s(R)

is the hyperbolic translation along the oriented geodesiofgS = H2.

Using these coordinates, in [27], we also proved that up toultiplicative con-
stant, wthurston IS the same a®gogman @aNd hence is in the same equivalence class of
wwp. More precisely,

Theorem 3.1.3 ([27]). Let S be a closed oriented surface with negative Euler
charactersistic(i.e. of genus at least twp and let A be a (fixed maximal geodesic
lamination on the surface.SFor the identificationT ,Teich(S) = H(x; R), we have the
following commutative diagram

H(S; Ad,) x HY(S Ad,) —— H%(S;R)

Lol ]

HO:R) x H(L R) — 2 SR,

3.2. Proof of Appication. In this section, we will apply the ideas explained so
far to the complexC,(K;Ad,), whereS is compact hyperbolic surface without bound-
ary, p: m1(S) —» PSLy(R) is a discrete faithful representation, akd is a fine cell-
decomposition ofS so that the adjoint bundI& x, slo(R) is trivial over each cell.

The twisted chain complex

0— Cy(K;Ad,) —» Cy(K; Ad,) —» Co(K;Ad,) = 0

gives us the twisted homologids,(S; Ad,), which are independent df. Moreover,
H.(S;Ad,), Ho(S;Ad,) both vanish forp being discrete, faithful and thus in particular
irreducible.

Recall thatCy(K; Ad,) = Cp(K; Z) ®, sl2(R) denotes the quotien€y(K; Z) ®
slo(R)/~, where the orbitly eoc ® y o t; y € m(9)} of o @t is identified and where
the action of the fundamental group in the first slot by deeakdformations, and in the
second slot by the conjugation wig(-). Let {e,...,&f } be basis for theC,(K;Z),
thenc, == (&, ..., &R} is a Z[ri(S)-basis forCi(K; Z), where&l is a lift of €. If
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we choose @-basis A = {ay, ay, ag} of slx(R), thenc, :=c, ®, A will be an R-basis
for C,(K, Ad,), called ageometricfor C,(K;Ad,). Leth, be a basis foH(S;Ad,).

We defined the torsion Tog((K; Ad,), {Cp}%:oy {bp}%zo) is the Reidemeister tor-
sion of the triple K, Ad,, and {bp}%zo. We proved in Lemma 2.0.5 that Tay) is
independent of the cell-decomposition.

For the rest of the paper, we consider tRebasis A = {t, tp, t3} of sl(R) as

10 0 -1 01 ;
{(1/J§)(0 _1), (1/\/&_3)( 10 ) (1/\/53)<1 0)}. Note that the matrix of the Cartan-
Killing for B of sl>(R) in this basis is Diag(1;-1, 1) whereB(a, b) = 4 Traceéb).

Let K’ be the dual cell-decomposition & corresponding to the cell decomposi-
tion K. Since torsion is invariant under subdivision, it is notslaf generality to as-
sume that cellsr € K, ¢’ € K’ can meet at most once and moreover the diameter of
each cell has diameter less than, say, half of the injegtiatlius ofS. If we denote
C.=C.(K;Ad,), C. =C,(K’;Ad,), then by the invariance of torsion under subdivision,
Tor(C.(K;Ad,), {cp ®, A}%:OY {bp}%:o) =Tor(C.(K'; Ad)), {C/p ®p A}%:OY {bp}%:o)- Let
D. be the complexC, @ C,, then by considering the inclusidd, — D, and the pro-
jection D, — C., we clearly obtain the short-exact sequence

0—-C,—>D,=C,®C., »C.—>0.

Considering the inclusios: C, —» D, as a section, we can conclude that bases
c¢p of Cp, ¢p @ ¢, of D, and ¢, of C, are compatible in the sense that determinant
of the change-base-matrix from), & s(c},) to ¢, & ¢}, is (clearly) 1. Therefore, by
Milnor’s result Theorem 1.1.3, Tol., {cp ® ¢},}5.0, {hp @ hpl5,) €quals to the prod-
uct of TorC.,, {cp}%:o, {hp}%:o), Tor(C!., {c’p}%:o, {hp}%zo), and Tor¢t,), where M, is
the long exact-sequence obtained the above short-exagtses] of complexes, more
precisely

H.:0— Hz(C.) = Ha(D.) = Ho(C,) @ H2(C;) — H2(C))
— Hl(C*) - H]_(D*) = H1(C*) D H]_(C;) - Hl(C;)
— Ho(C.) = Ho(D.) = Ho(C,) @ Ho(C;) = Ho(C;) — 0.

As p discrete, faithful, it is irreducible, and henég(C,), Hy(C.), Ho(C.), Ho(C.)
are all zero. ThusH, is actually

0— Hl(C*) - H]_(D*) = H]_(C*) [S3) H]_(C;) - Hl(C;) — 0.

If we consider the inclusion as sectidfy (C.) — Hi(D.), then we can conclude that
Tor(H.) =1 and thus we proved that:

Lemma 3.2.1. Let cp, ¢, be the geometric bases of .G Cp(K;Ad,), C, =
Co(K’; Ad,) respectivelyand leth; be a basis for H(S; Ad,). Then

Tor(D., {cp ® ¢/, }520, {0® 0, b1 & b1, 06 O}) = [Tor(C., {cp}50, {0, ba, O]
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We will now explain how the compled, =C, & C., can be considered as a sym-
plectic complex. Following the notations é1.3, let (-, -)p2-p: Cp x C;_, = R be
the intersection form defined by

(O1®t, 02@L)p2p= D, o1#(y e0r)B(ty, v e t2),
yem(S)

where the action oy ont, by Ad,,), and ono, as deck transformation, “#” denotes
the intersection number form ar is the Cartan-Killing form ofs[>(R).
Recall that #:Co x C;, — R is the map

1, if aep;
0, otherwise

a#ﬁ:[

#:Cy x Cj — R is defined as

# .
pia 0, otherwise

[1, if oep,;

and #:C. x C] — R is the mapa #$ =0, 1,—1, wherew, g are in the corresponding
generating sets. So, #£, x C,_, — R satisfiesa # g = (—1)PB #«. Note also that

intersection number form “#” is compatible with boundaryeogtor in the sense that
for p=0, 1,2, fa)#B = (—1)P 1o # (38).

Since the action ofry(S) on S properly, discontinuously, and freely, and, o,
are compact, the séiy € 71(S); o1 N (y e 02)} is finite. Note that because intersection
number form “#” is anti-symmetric an® is invariant under adjoint action,- ( -)p 2—p
is anti-symmetric. Moreover, as # is boundary compatibleaso (-, - )p2-p. Define
(v *)p2-pONCpx CopandCy, x C,_, as 0. Ifwpop: Dpx Doop — R are map
defined using (, - )p2—p, then D, becomes a symplectic complex.

The existence ofv-compatible bases can be obtained from the natural bases. Re
call the cells ofK and K’ can meet at most once. So, {i€", ...,elfp} is a bases
for p-dimensional cells irK, then the corresponding du{a(lef)/, ce (efp)’} will gen-
erate (2— p)-dimensional cells inK’. Qp meets with (aip)’ exactly once and never
with the other ¢). Fix the lifts {&], ..., &) of {e[,..., e} so that the corre-

sponding dual{(/(;lpJ)’, . (/ez/pp)’} is already fixed. Recall thatl = {ty, t5, t3} denotes

the basis{(l/\/é)((l) _01), (1/J§)((1’ —01), (1/¢§)((1’ é)} for sI,(R). Note that the
matrix of the Cartan-Killing forB of s[>(R) is in this basis is Diag(1+1, 1), where
B(a, b) = 4 Traceéb).

By the property t@lthe size of the cells are less than halthefinjectivity ra-
dius, the intersectior((e”) ® x, (€]) ® ) becomesB(x, y) - () #(e). The

—_———
=8ij

p.2—p
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w-compatible bases are obtained by using the following. pot 0, 1, 2, Iet{élp ®

ty, ..., élf’p ;& Rt ..., éfp Rt 8 1, . . ., éfp ®t3} be basis forC, and {(ef)’@

o @) @t ey @ (-t . (@) ® (—1): ) @1, (6 @ ta] be basis

for Cé_p. Recall that torsion will be the same (i.e. the well-definéss) if we change

the basisA of sl>(R) as long as the change-base-matrix has determitant
Therefore, we can apply Lemma 2.1.9.

Theorem 3.2.2. If ¢, ¢, are the geometric bases of .G Cp(K;Ad,), C] =

Co(K’; Ad,) respectivelyand if b1 is a basis for H(S; Ad,), then

Tor(D., {cp @ cpl50, {0© 0, 1 @ b1, 06 0}) = (Pfaf(w],1) ™

where [w]11: Hi(D,) x Hy(D,) — R is the map[_(_o‘)11 ("0')1'1], where
(-, )11 Hi(C,) x Hi(C.) — R is the extension of the intersection form

(-, )11 Ci(K; Ad,) x C1(K'; Ad,) = R,

and wherePfaf([w]1 1) = \/ de |[rt10 ]t1>§sish1 @® by ]

RecallH;(D.) = H1(C.) @ H1(C.) and each component is canonically isomorphic to
Hi(S; Ad,). So, we can consider

(-, )11 Hi(C.) x Hi(C;) - R

as (-, -)1.1: Hi(S Ad,) x Hi(S;Ad,) — R, and thusg]y,1: Hi(D.) x Hi(D,) = R can
be considered ag)1,1: H1(S;Ad,)® Hi(S;Ad,) x Hi(S;Ad,) @ H1(S;Ad,) — R. Note
that because-( -)1,1: Hi(S;Ad,) x Hi(S; Ad,) — R is non-degenerate skew-symmetric,
det(-, -)1,1 in basishy, which actually is Pfaf((, -)1.1)?, is positive. Thus, Pfaf(]: 1)

(- ), 2 (- )y,
equals to\/(de in baslislhl ]) , or de in baslislhl]'

Therefore, Theorem 3.2.2 saysff, ¢}, are the geometric bases©f = Cp(K;Ad,),
C, = Cp(K’; Ad,) respectively, and if; is a basis forHi(S; Ad,), then

-1

7 — ( ' ) )
Tor(D., {cp @ ¢j)50, (0 0, b1 @ b1, 08 0)) = (de - baslislhl D

On the other hand, by Lemma 3.2.1, we also have

Tor(D*1 {Cp 2] c/p}%:O! {OG9 07 bl 2] hlv 069 O}) = [Tor(c*1 {cp}%:@ {01 bla O})]21
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and thus TorC,, {cp}%zo, {0,h1,0}) =% /det[i(n' ’bé)sli’slhl ] Let H = [hij] be the non-

degenerate skew-symmetric matrix of (- )q,1 in basishy, i.e. hij = ((ho)i, (h1)j)1,1,
where 1); denotes thé™ element of the basig;.
Recall the commutative diagram 61.3

H(S; Ad,) x HY(S Ad,) —— H%(S;R)

TPD TPD o T
()

Hi(S; Ad,) x Hi(S Ad,) — " SR,

whereR — H?(S; R) is the mapping sending 1 to the fundamental clas$ié(S; R)
and the inverse of this the mdp — H?(S; R) is integration over the surface, where
B is the Cartan-Killing form ofsl>(R).

If h! is the basis ofH(S;Ad,) corresponding to the basig of Hi(S;Ad,), then
from the commutative diagramy; = ((h1)i, (h1);)1,1 equals tofy(b%)i —e (h)j. The
last term is actuallywgoigmad(hi, (HY) i), where wgolgman iS the Goldman symplectic
form on Teichmiuller space Teicg( of S, namely

HY(S Ad,) x HY(S;Ad,) =% H(SR) f—% R.

So, the non-degenerate skew-symmetric matfix= [h;;] is also the matrix of
the anti-symmetricwgoigman in basis b of H1(S Ad,). Let A = [a;] be the skew-
symmetric matrix Ha"sPos§-1  Consider the 2-formw, associated toA defined by
> @i A (pY);. Recall that, using the de Rham theory, element$id(S; Ad,)
can be considered (locally) as® t, wherea € HY(S; R), andt € sh(R). If a3 ®ty,
@ty are inHY(S;Ad,), thena; ®ti Aax®t, is nothing butay AazB(ty, tp) € H2(SR),
i.e.a1 @t —p a2 ® .

Note that Pfafpa), which iswa A - -+ A wa/(3g — 3)!, is det(d). Combining all
these, we can conclude that TOr( {cp}%zo, (0, b1, O)) = £/detH)~1 = £./det(A) =
+ Pfaf(wa). Actually, by Theorem 2.1.9 and the existencesdtompatible bases ob-
tained from the natural bases, we have

Tor(C,., {cpl5zor {0, b1, 0}) = Pfafa).

Consideroy € H*(S;R) associated to the matridd by > _; hij(h)i A (bY);,
then wa = awy for H2(S;R) being 1-dimensional. Integrating both sides o®mand
recalling that [((h")i —& (h); = ((h2)i, (h1)j)1,1, i-e. hij, we obtain > _; a&;hij; =
a3 highiy, or X ag HEE %= o 3y HPPOST or STP9T0(A - Hiransposy, =
o S%95(H - HUansposy,  thus o = (69 — 6)/||H (|2, where |[H|? is the inner product

i=1
(H, H) = Tr(H HUransposy,
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the lamination A

. a swich s
the triangle Ay

an edge subdivided into
two triangles by a diagonal

Fig. 2.

Thus, Pfaffa) equals to ((§ —6)/||H 12393 Pfaf(wy) i.e. ((6g—6)/|/H|?)3%93.
«/det(H), where hij = ((bl)i! (bl)j)l,l = wGoIdmar{(hl)i- (bl)])

Therefore, we have proved that

Theorem 3.2.3. If bt is a basis for H(S; Ad,), and for p=0, 1, 2,¢, are the
geometric bases of {K; Ad,), then

6g—6
IH112

3g-3
TOY(C*, {Cp}%zoy {0, by, 0}) = ( ) Pfaf(wGoldmar),

where Pfaf(wgoiamay denotes,/det(H), and H is the matri{wgoiamad(hLi, (61);)].

Let & be a maximal geodesic lamination on the surf&elLet K, = K¢ triangu-
lation of the surface by using the maximal geodesic lamimafsee [27] for details.)
Namely, let® be a fattened train-track carrying the maximal geodesidration. For
each switchs of ®, choose in the incoming edg®' an arcs’ transverse to. with the
same end points asbut interior disjoints. Then,suUs’ will bound in " a triangle As
whose edges arg, sneet, andsnel®™ see Fig. 2. The complement i of all these
triangles Ag is a disjoint union of rectangles. Split each rectangle itwto triangles
by a diagonal transverse foso that we have a triangulation @f whose edges are all
transverse to the leaves af Extend this triangulation arbitrarily to a triangulatior
the surfaceS.

Considering the above triangulation 8fand by Theorem 3.1.3, we conclude the
proof of Theorem 0.0.4.

Theorem 3.2.4. Let S be a compact hyperbolic surface be a fixed maximal
geodesic lamination on,Sand let K, be the corresponding triangulation of the sur-
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face obtained fromk. For p=0, 1, 2,let ¢, be the corresponding geometric bases for
Cp(K;; Ad,), and leth be a basis forH(x; R).

(6g — 6) - ~/269-6

2 —
Tor(C,, {cptp=o, {0, 5, O}) = 2 T2

Pfaff(z),

where Pfaff(z) is the Pfaffian of the matrix T= [z(hi, h;)], [ T[> = Trace{ T"ansposy,
and 7: H(A; R) x H(x; R) — R is the Thurston symplectic form
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