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1. Introduction

1.1. Problem and Results

We consider the following initial value problem of the Schrodinger equation with
an external electro-magnetic potential on R™ from the point of view of “Hamiltonian
path-integral quantization” in L2(R™). In other words, we construct a parametrix
which exhibits clearly how quantities from the Hamiltonian (not Lagrangian) mechanics
are related to quantum mechanics:

h Ou(t, x) h 0 _
u(0,z) = u(z)

with

(1.2) H(t,m, h ax) _ ! Z (l on; Aj(t, z))2 + AV (¢, z).

Here, M, e and ) are constants, A(t,z) = (A;(t,z)) and V(¢,z) are real-valued
smooth functions on R x R™. For the sake of notational simplicity, we put M = e =
A =1 in this paper.

REMARK. In the following, we use Einstein’s convention of summing up w.r.t.
indeces.

The following assumptions on A(t,z) and V(¢,z) are due to Yajima [18] and
Fujiwara [6]:

(A) Aj(t,z) € C°(R x R™), real-valued and there exists ¢ > 0 such that

|05 Bjk(t,z)| < Col(l + |:1c|)_1_€ for |a| > 1,
|02 Aj(t, )| + |05 0:Aj(t, )| < Cq for |a] >1
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where

Byy(ta) = PAk(t2)  O4i(ta)

Oz; Oz

V) V(t,z) € C°(R x R™), real-valued and for any compact interval I, there exists
a constant C,; > 0 such that

sup |05V (t,z)| < Cqor for |a| > 2.
tel

REMARK. By above assumptions, for any 7' > 0 and «, 3, there exists a con-
stant C, such that

(1.3) sup |8§‘8?H(t,x,§)| < Cop(1 + |z| + |€]) @ letAD+
[t|I<T

where for any v € R, we put y; = max(v,0).

Outline of the strategy of quantization:

(1) We get the complete symbol of H(t,z, —ihd,) denoted by H(t,z,&) indepen-
dent of A, which is called the Hamiltonian function. Using this function, we formulate
the Hamilton equation:

(1.4) { £(t) = O H(t, x(t), £(1)),

£(t) = _aIH(t’ (Ii(t), §(t))

(2) Solving this equation under Assumptions (A) and (V), we construct a phase
function S(¢, s, z,£) which satisfies

0 S(t,s,x,€) + H(t,x,0:5(t,s,,8)) =0,

(1.5) (Hamilton-Jacobi equation
d ){S(s,s,x,é):x-g.

Putting

D(t,s,z,&) = det (8§j§kS(t, s,2,8)),

we have
oD(t, s, x,§)

(1.6)  (continuity equation) ¢ + 0, [D(t, s,2,8)0,; H(t,x,0.5(t, s, z,8))] =0,
D(s,s,z,¢) = 1.
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(3) We define a Fourier Integral Operator on R™ as

(1.7) E(t, s)u(z) = cm/ de DY2(t, 5, z, £)eh S8y ¢)

m

where
() = Cm/ dz e‘ih—lz'gu(x) with ¢,, = (2rh)~™/2.

We show that this operator gives not only a bounded operator on L2(R™), but also
a good parametrix for (1.1) by virtue of (1.5) and (1.6) : Let A be a subdivision of
(s,t) such that
Aitg=s<t1 <---<tp_1 <tg=t and 5(A) = ‘Hllaxlltj _tj—ll-

J=1,-,
Putting

E(Alt,s)u = E(t, te—1)E(te—1,te—2) - - - E(t1, 8),
we claim that {E(Alt,s)} forms a “Cauchy net” w.rt. §(A) — 0 in L2(R™) when
u € S(R™) and that it converges to an evolutional operator U(t, s), which is, as a
consequence, a fundamental solution of (1.1).
Therefore, we have the following:

Main Theorem . Fix T > 0 arbitrarily. Under Assumptions (A) and (V), there
exists a family of operators {U(t,s)|t,s € [=T,T|} acting on L?(R™) with the fol-
lowing properties:

1. U(t, s) is a unitary operator on L*(R™) for each t,s € [T, T).

2. For any u € L%*(R™), U(t,s)u is a L*(R™)-valued continuous function in

t,s € [=T,T) and it satisfies

U(s,s)u =wu for any s € R,
U(t1,t2)U(t2, t3)u = U(t1,t3)u for any tq,to,t3 € [T, T).

3. If u € S(R™), U(t, s)u is a L%(R™)-valued differentiable function in (t,s) €
R? and it belongs to C™(R™) for each (t,s) € R%. Moreover, it satisfies

ko h o
n aU(t, s)u + lHI(t, - ——)U(t, s)u =0,

Oz
h 0 h 0
;-6—S"U(t, S)’U, - U(t, S)H(S,.’E, ;a)u =0.

Corollary. Under Assumptions (A) and (V), there exists a constant C > 0 inde-
pendent of t, s for |t|,|s| < T such that if 6(A) is sufficiently small, we have

(1.8) IE(Aft,s) = U2, s)l| < Co(A).
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1.2. Remarks

(1) In this note, we assume that A; and V are smooth enough in order to clarify
the procedure itself.
(2) Fujiwara [6, 7] constructed a fundamental solution of the Schrodinger equation
when A = 0 and a potential V' satisfies milder conditions than (V), that is,

(1) V is a real-valued measurable function of (¢,z) € R xR™. For any fixed t € R,
V(t, ) is smooth in z € R™.

(ii) For any multi-index a with || > 2, the non-negative measurable function of ¢
defined by

My (t) = sup |07V (t,z)| + sup |V(¢ )|
TER™ |z]<1
is essentially bounded on every compact interval of R.
In [6, 7], he modifies mathematically a part of Feynman’s heuristic argument to con-
struct a “good parametrix” for (1.1) with A = 0. Fujiwara used the Lagrangian formu-
lation without resorting to Fourier transformations, that is, instead of (1.7), he consid-
ered an integral transformation of the form

1 m/2 ih~1 S,T
Plaue) = (=) € i

where S(t, s, z,y) satisfies the Hamilton-Jacobi equation in the Lagrangian formulation.
Afterwards, Kitada [11] and Kitada & Kumano-go [12] reformulated Fujiwara’s result
in the Hamiltonian scheme with a vector potential A of special form. But, Intissar
[10] critisized the method employed by [11, 12] saying that their methods yield a non-
controllable remainder term in order to obtain the pseudo-differential operator (=¥¢DO)
of Weyl type as the infinitesimal generator of that parametrix. Moreover, he proposed
a complicated procedure which is seemingly far from the spirit of quantization. On the
other hand, Yajima [18] constructed a fundamental solution under Assumtions (A) and
(V) using the Lagrangian formulation. As he intends to construct a fundamental solu-
tion and he doesn’t claim his process as quantization, therefore he may apply the gauge
transformation freely to the given Schrodinger equation. (But as we want to claim our
process as quantization, we can’t use gauge transformations to reform the Schrodinger
equation itself before quantization being performed.) Moreover, in [7] (when A = 0)
and [18] (when A exists), they give the kernel representation of the evolution operator
in the Lagrangian formulation,

Ut s)u(e) = | b(t,s,z,y)en SE=20)y(y)dy,
]R‘m

at least |t — s| being small.
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Now, we want to claim that after slightly modifying Kitada and Kumano-go’s
method, we may construct a Schrodinger equation by “Hamiltonian path-integral method”
when the Hamiltonian function belongs to a certain class. In fact, under same condi-
tions to the vector potential A in [18], the Fourier Integral Operator (=FIO), which has
phase and amplitude functions derived from corresponding classical mechanics, gives a
good parametrix of the problem of type (1.1). More precisely, its “infinitesimal genera-
tor” is represented by a Weyl type YDO with a controllable remainder term. Here, we
use a composition formulas of FIO with Weyl type ¥DO. (Seemingly, these composi-
tion formulas are simple but new in the sense being not yet published explicitly.)

(3) This paper is the improved version of Inoue [8], where we have the estimate (1.8)
only for a special class of A;(t,z). Due to K. Taniguchi [17], we have now the proof
of the conjecture concerning a composition formula of FIOs, which we proposed in [8].
Therefore, we have the good estimate of the composition of certain FIOs, by which we
have the operator norm convergence of E(Alt, s) as in the above corollary.

(4) We may regard these constructions as a mathematical procedure of quantization
of certain Lagrangian or Hamiltonian functions (see, Feynman [4] and also Inoue &
Maeda [9]) on Euclidean space (By the technical difficulty, we couldn’t consider the
quantization problem on a curved space).

1.3. Prerequisite
For reader’s sake, we quote here the following notion from Kumano-go [13]:
DEFINITION 1.1. (amplitude function) A C°°-function a(n,y) on R?*™ is said to

be an amplitude function denoted by a € Ql’g’T(RQm) 0<d6<1,0<T,—0<k<
00) if for a, 3, there exists a constant C such that

(1.9 |0208a(n,y)| < Cap(m)*H1Pl(y)™ with ()2 =1+ %, (y)2 =1+ |y|>

Putting

RZm _ U U U Ql& . RQm

0<46<1 —oco<k<o0 0L<T

and introducing semi-norms on A(R?™) by

584 — (k+818]) {, )y T
lale = lrilgrcesup{iaa y)|(n) (v) },

we define a Fréchet structure on 2A(R?™).
From now on, we abbreviate the domain of integration unless there occurs confu-
sion.



866 A. INOUE

DEFINITION 1.2. (oscillatory integral) For a € A(R?™), we define
/ dndy e~V a(n,y) = lim / dndy x(ey, en)e™" ¥ a(n, y)
with x(n,y) € S(R?*™) satisfying x(0,0) = 1.
Remarking
(y) "Dy =20 = =Y with DR = ?a,,, (D2 =1 - R2A,,
we have

Proposition 1.3. For a € A} (R*™) and —2((1-6)+n < —m, —=2¢'+7 < —m,
we have

/ dndy ="V Ta(n,y) = / dndy e~V (y) =2 (D) () (D) a(n, ).

In the above, the integrand of the right hand side is absolutely integrable w.rt. dndy,
while the left hand side is considered as the oscillatory integral.

REMARKS. (i) Following formulas will be frequently used below: For u €
B(R™), we have

(1.10) u(z) = cfn/ dydn e‘ih-ly"’u(m‘ +y) = cfn/ dydn e @9y ()
R2m R2m

(1.11D)
1=c, / dydn eI, 5(2) = e, / dne T = | dpemtTIE,
Rm

where
B(R™) = {u € C*®°(R™) | 8%u are bounded on R™ for any || > 0}.

(i) For f € A(R>™) satisfying 82, f(y,n) = 0, thatis, f(y,n) = f(y,0)+n;f», (y,0),
we have

(1.12) 2 /R ] dndy eV f(y, ) = £(0,0) +ihd . £(0,0).

(iii) In the following, all integrals are interpreted as oscillatory one, if necessary.
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1.3.1. Pseudo-differential operators (=¥DOs)

DEFINITION 1.4. (symbol function) A C*-function p(z, £) on R?™ is said to be
a symbol function of order £ denoted by p € & if for o, 3, there exists a constant Cap
such that

(113) 10208 p(5, )| < Cap(1 + || + |¢)E-1+BD+

A symbol-function p(z, £) is called classical and denoted by p € &, if w.rt. £, p(z,&)
is a polynomial of degree £.

For P(z,£) € G¢, we define, as oscillatory integral, the (pseudo)-differential oper-
ators of order £:

(1.14) Pz, DMu(z) = em / de P(z, £)en = Eq¢),

(11s)  PW(z, DMu(z) = &2, /dgdyp(%ﬂ’

£ Eugy)

for u € S(R™) with D! = —ihd,.

Proposition 1.5. Let H(t,x,&) be a function derived from H(t, z, —ih0,) in (1.2)

by
(1.16)

H(t,2,€) = e = ¢H (1, %%)em_le o %(gj — A;(t,2))* + V(t,3).
Then,

(1) AY (t,z, DM u(x) and H(t,z, DMu(x) are well-defined for u € S(R™) sat-
isfying

H(t, z, DMu(x) = HY (t, z, DMu(z),

1.17 N R .
I @Y (4,0, 08 - Bi(t, 2, DY) = — 20442
2t Oz
Moreover, for u € S(R™) and ¢ € Z., we have
(1.18) AW (¢, z, D})ulle < Cllulller2 and ||H(t,z, DE)ulle < Cllulles,

where

lallf = >~ [l o5u(@)]?, |IU||2=/dxlU(fv)|2-

lo|-+k<t
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(2) We have
(1.19) HY (t,2, D})u(x) = cm / dg B (t,, )™ 44 ()
with
h 0A;(t,x)
h _ Ihtle’ AN Aad’s
REMARK. We denote by Y, the closure of S(R™) w.r.t. ||| - |||

1.3.2. Fourier Integral Operators (=FIOs)

DEFINITION 1.6. (phase function) (i) For 0 < k < 1 and integer £ > 0, we say
that a real valued function ¢ € PB(k, £) if ¢(z, &) € C*H2(R?™) satisfying

(1.21) e= > sup(|a£ag,](x,g)|(1+|x|+|§|)-<2—|a+a|>+)gn
latBl<e+2 T

where J(z,&) = ¢(z,&) — x - £&. We introduce also

(1.22) [Jlze= > supld?ogJ(z,8)l.

2<|a+pl<t+2 OF

(i1)) We put

Bk, £) = P(k, £) N B>>®(R?*™) with
B*>(R?™) = {¢ € C™(R*™) | 00¢¢ are bounded on R*™ for |a + 8| > k}.

We consider the following integral operator:

(1.23)
F(\an, - a5, @)u(r) = cm / dEay (A, 2, €) - - a(\, 2, €)™ P28 q(e),

where A € A with A being a fixed set in R. Let kK > 1 and let £ = (¢1,--- ,¢;) be a
multi-index with [¢| = Z§=1 ¢; and put M = 2([n/2]+[5n/4]+2)+2|¢|+maxi<;j<k ¢;.
We assume

(Ag) 1. ¢(A,z,£) is real valued and ¢(],-,-) € CMFL(R™ x R™) for any X € A.
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2. sup|0;0:0(\, z,6) — I| < 1.

3. sup 35,a+m5M+2|8§3§¢(/\,x, §)| < oo
18121

(A2) 1. a; € CM(R™ x R™).
2. Supej3|a+ﬁl_<_M Ia:agaj()\,m, {)l < 00.

Lemma 1.7. (Kitada) Define a map

R™ >z - y(\z,€n) = /: droe( A\, z, (1 —7)n+ 7€) € R™.
Then, under assumptions above, there exists an inverse map
R™ >y — 2(\y,&n) € R™
satisfying
y=yAz(Ay,&n),€m),  z =200 y(Az,£n),€,m).

Proposition 1.8. (Kitada) Let a;j(j = 1,--- ,k) and ¢ as above. Then, for any
i€ Cg°(R’§n), we have

(1.24) [1F(a, p)ull < Kxllulle

with

k
Ky = Cpie [[ Di(1+12(2,0,0,0)))!4,

j=1

Dj= sup [028{a;(\,z,€)|+ sup [8287a;(),0,0)].
2 <|a+BI<M |a+B|<;

2. Classical mechanics corresponding to (1.1)

2.1. Hamiltonian flows

For the function H (¢,z,£) defined in (1.16), we want to construct a solution (x(7), £(r))

of
& 23(r) = 0, Hlr, 2(+), £(7)) = &(r) — 45, (7)),
@D\ L) = -0, Hiralr) €(7)

= (&k(7) = A(7,2(7))) 0, Ak(7, 2(7)) — 00, V (1, 2(7)),
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with the initial condition at 7 = s given by

@.2) (2(s),(5)) = (z,§) € R2™

In order to use the anti-symmetry of Bjx, we use Lagrangian reformulation of
(2.1) (see [18]). That is, putting (g(7),v(7)) = (z(7),&(1) — A(7,2(7))), we consider

2.3) ddT
5-vi(7) = Bjk(7, 4(7))ve(7) = 8, 4;(7,4(7)) = 82,V (7, 4(7)),

with the initial data

2.4 (q(s),v(s)) = (z,9), (=€ — Als,z).

REMARK. Above problem (2.1) was treated in [10, 11] only when A;(t,q) =
a;k(t)qx in (1.2).

Following propositions in this subsection are amalgam of results in [6], [11], [12],
[18].

Proposition 2.1. Let H(t,x,£) be given as (1.16). Under Assumptions (A) and
(V), for any (7,s) € R? satisfying |1 — s| < 1, there exists a unique solution of (2.3)
with (2.4) which is denoted by q(7), q(7,s), q(7,s,z,(), v(T), -, etc., depending on
the context.

Moreover, the solution (q(T),v(T)) of (2.3) is smooth in (7,s,z,(). Furthermore,
if [T —s| <1 and |a+ B| > 1, there exist constants C and C,p such that

lg(t,8,2,0) —z — (1 — 8)¢| < C(L+ |z| + [Nl — s/,
IU(T’ S,E_»ﬁ) - Q < C(l + IQ' + IQI)IT - SI>

1020 [a(7,5,2,0) — 2 — (7 = 8)¢]| < Caplr — s[*1H,
0207 [v(7,5,2,0) = (]| < Caplr — 5|/

(2.5)

Proof. Use |V, (z)| < C(z) which follows from Assumption (V). See, Lemma
2.1 and Proposition 2.2 of [18], and also Proposition 1.3 of [6]. Here, we used the fact
Bjkvjvk =0. D
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Theorem 2.2. Under Assumptions (A) and (V), for any (1,s) € R? satisfying
|7 — s| < 1, there exists a unique solution of (2.1) with any initial data (z, [JXS R2™,
which is represented by

(2 6) 17(7', S, I, §) = q(Tv s>£7§ - A(37 Q))a
' &(1,8,2,8) = v(7,8,2,§ — A(s,z)) + A(T,q(7, 5,2, £ — A(s, )))-

Moreover, (z(7,s,z,§),&(,s,,£)) are smooth in (7,s,z,§) for |1 —s| < 1 and
satisfy the following estimates: For any a, 3, there exists a constant Cop such that

1030 (w(r, 5,2, ) — )| < Caglr — 5|(1 + [z] + [¢)71o+AD+,

()
1020 (&(7, 5,2, €) — €)| < Caglr — s|(1+ |z] + |¢])*~l+eD+.

Proof. By induction w.r.t. the order |a + 3| of differentiation agaﬁ , we get
estimates (2.7) from (2.5) directly. See also, Proposition 2.3’ of [18]. - n

Proposition 2.3. Under Assumptions (A) and (V), there exists a constant 0 <
81 < 1 such that, for any (t,s) € R? satisfying |t — s| < 61, we have the following:
(1) For any fixed t, s, &, the mapping
(2.8) R™ >z~ I =2(ts,z§) €R™

is a smooth-diffeomorphism. The inverse mapping

R™ >z z=y(t,s,T,£) € R™ satisfies

(2.9) z =zt syt s,z,§),€) forany (t,s,,8),
z=y(t, s,z 8,2,§),§) forany (ts,z,8).

(2) For any fixed t, s, x, the mapping

(2.10) R™ 3> ¢{ €= £(t,s,z,6) € R™

is a smooth-diffeomorphism. The inverse mapping

R™ 3 € € =n(t,s,z,£) € R™ satisfies

z,
(211) EZ E(ta S, X, n(t, S, Z, E)) for any (t’ S, I, )7
§=n(tasa£7£(tvsa_@.7§)) for any (tasagaé)'
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(3) By definition, we have

(2.12)

{ 2(s,5,z,6) =z, &(s,52,8) =¢,
y(ta t, i"é) =1z, 77(75, t,z, £) = §

(4) Furthermore, (y(t),n(t)) is smooth in (t, s, z, &) with the following estimates: There
exist constants Cp, independent of (t,s,x,§), such that for any o, j3,

2.13)
{ 1020 (y(t, s,2,€) — )| < Caplt — s|(1 + |z| + )71+ (z =z, £ =¢),
|020¢ (n(t, s,3,€) — €)| < Caglt — s|(1 + |a| + ¢ 7le¥E+ (@ =g, £ =)

Proof. Take §; satisfying Coo|t — s| < 1 where Cyg is given in (2.7) of Theorem
2.2 and apply global implicit function theorem mentioned in [6]. Concerning estimates,
see, Proposition 3.2 and 3.3 of [11]. OJ

2.2. The time reversing.

As we may solve (2.1) or (2.3) even if s < t and ¢ is the initial time, we consider
the solution z(7,t,%, &), £(7,t,Z,€), etc. of time reversed.
Then, we have

Analogously, for the inverse mappings, we have

(2.15)

{E=y(s,t,§,§_), z =1y(s,s,z,8), {i=y(t,t,f,§), z =y(t,s,&,§),
- resp. _ _ _
é = 77(57ta z, é)’ §= 77(3, sa‘i'aé), P 5 = n(taty£7 5)7 é: n(t737§7 {)

Therefore, we have

(2.16)
77(8,@53,@ =§(t78,y(t,8,i,§),§), res n(tasaﬁaé) =£(37t7y(3’t7§7£-)7€)’
y(s’tvgag) =x(t757§77l(t757§,€_)): a t jvé) =$(37t,f»n(s’t7j»§))-
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By the uniqueness of the solution of (2.1), we have

(2 17) { flf(t,S,Z’(S,T,Q,é),g(S,T,Q é)) - x(t T7$ ‘E)
' &t s,2(s,m,3,€),€(s,7,2,€)) = £(t, 7,2, €),

and also,

)18 z(r, s,2(s, 1, %, €),&(s, 1, T, §)) = z(r, t,7, ),

@19 £(r,5,0(5,4,3,8),£(5,4,5,8)) = £(r, 8,3,

By the same arguments of Theorem 2.2 and Proposition 2.3, we get

Proposition 2.4. Under assumptions (A), (V), we have the following estimates:

{ |3§2‘3@(w( 7,&) — &) < Caplr — t|(1 + |Z| + |€]) A~ le+BD+
(2.19)

10502 (£(7, 8,2, €) — )| < Caplr — t|(1 + |2| + |E) 71>+
Moreover,
(2.20)
1020 (y(s,t,2,€) — )| < Cagplt — s|(1 + [z] + [g)*7lFED+ (2 =3, £ =),
020 (n(s,t,2,€) — )| < Caplt — s|(1 + |z| + |£) 71T+ (z =g, £ =0).

2.3. Action integral.
Define

@21) Solt,5,2,€) = / [6(r) - £(r) — H(r, 2(r), &(r))]dr

where (z(7),£(7)) are solutions of (2.1) with initial data (z,£) € R?>™.
We put

(2.22) S(t,s,2,6) =z €+ So(t, 5,2,€) with z-€=z,€ .

Using integration by parts, we get easily

0S(t, 0ze(t, s, z,
@23) <_a%x_§_> €t 5,2, @MaTSfQ’
8g(t, S, x, é) axl(ta S, Z, 5)
(2.24) — = =g, +&(t, 8,2, ) — .
O€, kTS S 9€,
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On the other hand, by the very definition of the inverse map (2.9), we have

6je 0zy(t, s, z,€) Oyk(t, s, Z,§)
(2.25) 5[] azJ I: 6&]‘; a.i'J ] g:y(t,s,:i,éf
81—72 axﬂ(tasvga E) 8yk(t,8,i‘,£) 61‘2(t,3,_$_,£)
2.26 0=—= = = = .
(2.26) 8§j [ oz, 3§j + 3§j ] z=y(t,5,%,£)
Putting
(2.27) S(t,s,z,8) = S(t,s,y(t, s,z €),6),
we have:

Proposition 2.5. (Hamilton-Jacobi equation) If |t — s| < 61, then S(t,s,%,§) is
smooth in (t,s,%,£) and it satisfies the following:

(2.28) S(s,s,7,6) =7 -&.

229 { 0:S(t,s ;é) + H(t,z,0:5(t,5,2,£)) =0,
8sS(t,5,3,€) — H(s,9S(t, s, 7,€),€) = 0.

(230) aijs(tas7 ja é) = T[j(S,t,(i,é), 6§J.S(t737:i‘7§) = y](ta S,i,é)-

Moreover, S(t,s,Z,§) satisfies the following estimates:

(2.31)
10508 (S(t,5,2,€) — 2 - £)] < Claglt — sl(1 + [2] + |¢)) 1D+ for any o, 5,

@32)  IS(,5,5,€) - S(t,5,3,6)| < C(L+[a] +[&D2(It — ¢] +|s — /).

Proof. For the future use, we give an elementary proof of (2.29) and (2.30).
By the definition (2.27), (2.23), (2.25) and (2.16), we get

Oyx(t, s, Z,
Sz, (t,5,2,€) = Sg, (,5,y(t, 5, %, £), §)ﬂ5;ig
J
_ 6xf(t7sv§’§) . M
= fe(t,&%ﬁ) 6£k: ] g:y(t,s,:i,_&_) 6,’2']

=&t 5,y(t,5,2,6),6) = 15(s, 1,7, §)-
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Using (2.27), (2.23), (2.24) and (2.26), we have

0 s, Z,
S 6029 =[S 02 1 5 2

z=y(t,s,%,£)

Oxe(t, s, z,€) Oyk(t, s, Z,€)
oz, o& ]

>j

haswo

z=y(t,5,%,£)

ail'[(t, S, L, é)]
%,

+ [QJ + gl(ta $,Z, §) o=y(t,5,5,€)

= y](t7 S, 5737@

Oxe(t,s,2,§)  O0x4(t,5,2,8) Oyk(t, 5,7, )
+ et 52,9 % 1 oz € )]

= y](t, S,i‘,é).

z=y(t,s,%,£)

By these, (2.30) is proved.
Remarking S(t,s, z(t,s,z,§),§) = S(t,s,z,§) by (2.27), using (2.9) and (2.22),
we have

ik(t&&»&)gk(taSaﬁaé)_H(tvﬁ(t’ 8,§,§),f(t 5Z 5)) 8f(t 5, L, €)

0z;(t,s,z,§)

= St(ta S, .’L'(t, S, I, é)’é) + Sfj (tv S, .’L'(t, S, I, §)7§) 6t

As we have

Si‘j (t, S, Z’(t, S, Z, §)7 é) = g] (t7 s, Z, é)? H(t? $(t, 5L, §)’ f(t’ S Zy é))lizy(t18’i’§)
= H(t, -7_57 855(12, S7i’§_))’

we get the first equation of (2.29).
Using the integration by parts and (2.1), we get

%5 fts.2.) = “Hosng LrHaD

—j:(sa S, Z, §)§+H(Sy£7 £)+ 8:1:—8"__ é'(t, S, T, §) - T
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On the other hand, differentiating S(t, s, z(t, s, 2,§),§) = S(t,s,z,§) w.rt. s, we have

Ox(t, s) . 0x(t, s)

—ii'(S,S,.’_E_,é) §+H(3,£>§)+ as g(tasa§1§) - 88

t=s

axj (ta S, Z, E)
= Ss(t7 S, Cll'(t, S’E:é)aé) + Sij (t; S, .’E(t, Syg,é),é)T—__'

As we have, by differentiating z = z(s, 5,,£) w.rt. s,

t=s

we get

Ss(t,s,x(t,s,2,8),§) — H(s,z,£) =0,

that is, substituting z = y(t, s, Z, ) and using the second relation in (2.30), we get the
second equation of (2.29).

If |o+8]| > 1, 8%6?(S(t, 5,%,§) —-§) is estimated as (2.31) by combining (2.30)
and (2.20). Using this, (1.3) and (2.29), we have easily

H(r,%,0:5(7,5,%,£))| < Clt — s|(1+ |z| + [¢])*.

|S(t,$,1—),§)—1—3‘§' S/th

(2.32) is obtained with (2.31) from

S, s, z,&)—S(t,s, E,é)=/ldO[(t'—t)St+(s'—s)S’s](9t'+(1—0)t, 0s+(1-0)s,z,§).
0

See also, Proposition 3.2 and 3.5 in [11]. J

2.4. Continuity equation.

Put

2 - A _
(233) D(t,s,z,§) = det (____6 St 8’$’§)> = det (—a% (& s,x,é)) ;

a:zkagj Oy,
which is well-defined for (t,s) € R? satisfying |t —s| < §;, because of Proposition 2.5.

Proposition 2.6. (Continuity equation) Let Assumptions (A) and (V) hold, then
D(t,s,,§) satisfies the following equation for |t — s| < 0;:

(2.34) D(s,s,,€) = 1.
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235) 0:D(t,s,%,€) + 0z, [D(t,5,%,£)0, H(t,Z,0:5(t, 5,7,£))| =
‘ 9,D(t,5,2,€) — % [D(t, 5,2 §)8zJH(5 3S(t,s,7,6),£)] =

Moreover, for any a, (3, there exists a constant Cq g independent of x,& and t, s with
[t — s| < 61 such that

(2.36) 020 (D(t,5,%,€) — 1)| < Caglt — s|.

Proof. By differentiating the first equation of (2.29) w.r.t. §j, we get

35S, , 0Sa,
35 0¢

He, =0 for j,£=1,-
2j

Differentiating once more w.r.t. Ty, we have

7S, 98, S OH;,
— + == et 57 =
8$k6§_j amkaéj 8§ja$g 8xk

Putting Si; = %S/ 3:7:k8§j and rewriting above, we get

95y , OSky
ot 0%,

OH,

Oy =0.

(2.37) He, + Sij
In general, for any invertible m x m matrix X depending on parameter 7, we have

(2.38) a%_det X =tr(X'X,;)det X =det X tr(X, X 1).

Here, we use the following convention:

As D = det(Sk;) = det S and using the second equality of (2.38), we have

_,0D _108k;
b Bt =Sk ot
Remarking also
D
(2.39) 5;09% _ p-19D S:tSe; = Oex,

ik OZyp 33)3’
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and multiplying Sj‘kl to (2.37), we get

dD 8D
D_IW + D—IEH& +

OHg,
0Ty

=0,

that is, we have the first equation in (2.35). The second one is also obtained by the
same fashion. (This proof is essentially due to Mafies & Zumino [16].)
Estimates: By the definition of D and (2.31), we have easily

(2.40) |020E D(t, 5,%,6)| < Caplt — 5| for |a+p]>1, t—s| <é <1.

Applying the method of characteristics to (2.35), we have the representation

t
(2.41) D(t,s,Z,£) = exp ( - / dr [szgk('r) + Szpar (T)Hee, (T)])

where H.(1) = H*(T,X(T),n(s,t,X(T),é)) and S, (1) = Si(7,s, X(7),€), respec-

tively. Here, we put X(7)=z(7,s,y(t,s,%,£),€), which is the solution of

dX;(7) o
dr

t
—-1= /s do%D(a, 5,Z,§), we have

= Hg, (1, X(7),n(s,t, X(7),£)). Therefore, by (1.3), (2.31) and D(t,s,Z,§)

t o
D5, =11 < [ do]Hae (0) + Suems () Hes ()| exp ( — [ dr[Huucu(r)

+ S-Tlxk (T)H&Ek (T)])

< CJt - s,

since |Hg,e, (-) + Szpay () Hepe ()] < C and |t — s| < 81 < 1. This yields (2.36) with
a+8=0. O

Now, we put
(2.42) u(t, s, 2,8) = DY2(t, 5,7, )

which is called the van Vleck determinant (see, [9]).
By using Proposition 2.6, we get easily the following:

Proposition 2.7. For |t — s| < 61, pu(t, s, ,§) satisfies the following:

(2.43) u(s, s, z,€) = 1.
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( at:u/(ta S, j’é) + a:ijlu'(ta $,Z, é) aﬁjH(tv z, a:is(t’ S, j’é))
1
+ Sult, 5,7, €)0s, [0, H(t,%,0:5(t,5,2,£))] =0,
Osplt,s,Z,§) — Béju(t, 5,,§) 6sz(s,6£S(t, 5,%,§),§)

1
— 5H(t,,8,£)% 0., H(s,0cS (¢, 5,2,€),)] = 0.

(2.44) !¢

\

Moreover, for any «, 3, there exists a constant Cy g independent of x,€ and t,s with
|t — s| < &1 such that

(2.45) 1020% (u(t, 5,7, €) — 1) < Caglt — s.

3. Composition formulas for FIO with YDO

3.1. Composition of FIO with YDO from the left

We give some composition formulas of the operator H" (z, D) with FIO F (a, ?)
defined by

3.1) F(a, $)u(z) = cm / de a(z, €)em *@Oq(¢).

m

Theorem 3.1. Let F(a,d) be FIO defined by (3.1) with ¢ € P, a € A Let
HY(z, D) be a Weyl type pseudo-differential operator with symbol H(z,¢) € G%(R?™)
given by (1.16) disregarding the time-dependence. Then, there exists cp=cr(x,n) €
C>(R?™) such that
(3.2) HY (z, DM F(a,$) = F(cL, d).

Moreover, cy, has the following expansion

1
(3) e, =Ha—ih{0,H 00+ (02 H+ 32,6 0% H)af+r.

Here, the argument of H is (x,0,¢(z,n)) and that of ¢ and 7y, is (z,n). Moreover,
rr(x,n) € C®(R?™) is given by

h2
(3'4) TL ("l’.i 77) = _?821‘:5] H(x’ aﬂ?(ﬁ(x’ 7])) a:;l):jzka(x7 77)
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Proof. By definition, we have

(3.5)
HY (z, DIYF(a, ¢)u(z) = cfn/dé dy dn H(mTw, §)a(y, n)eth” (@) E+ewm) g (p)

= e fanes (o, e " Hei),

Here, we put

(3.6) co(@n) = &2, / 4t dy q(z, €y, m)ein V@Ew)

with

02, &,ym) = (=) €+ 6(3,7) — $(a,n) and q(a,&y,m) =H (5L, €)aly, ).

(I) Before giving the full proof, we calculate rather formally which yields (3.3). As

BT dy,n) — ¢(@,n) = (y; — 2;)8s,0(x,y —,n) = (y — ) - Doz, y — 2, 1)
where

1
Og;0(x,y —x,m) = / dt Oz, 0(x + 7(y — x),m),
0
we introduce a change of variables by
y=y -z, y=y+uw,
(3.8) { - — — { .~
§=§—3m¢(377y—17,71)a §=§+3x¢(1'7y,"7)
Inserting these into (3.6), we get

69 culen) = [dedge TR (24 5.6+ 8200w, 5,m)ala+ 5.

By Taylor’s formula w.r.t. §~, we have

(3.10)
H(m+g, f-i—@)(x, U, n)) =H<J;+g, 5;25(13, Y, 77)) +5~ja£jH<$+%» 5:(;5(:5, Y, 77))

~ o~ 1 77 ~ ————
+ fjé.k/ dTl(l - Tl)angkH<.’I} + %,7'15 + aqu(z’g’ 77))
0
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Using (1.11), we get easily that
(3.11)

/dyd{e e yﬁH(erg 0:9(z, y,n)) (z + §,n) = H(z, 8:6(z,n))a(z, n).

On the other hand, remarking £; e~ih "9 = ih&gje‘"‘_lg‘g and applying (1.11) after
integration by parts, we have

(3.12) )
t, [ didée ™40, H (1 + 5, 02000, 5vm) ) ol + )
— _ihc2, / dydé e=h 7, [ang( 2 8:6(w,5,m) )a(z + §,1)]
— —indy, [0, H (c+ ¥ 820(a,5,m)Jale + 3]
= —in{ 8, H d,0+ - (32 Ho+ 82, 008, H)a}.

Thus, we get the main terms of (3.3) formally.
The remainder term is derived from

(3.13)
rr(x,n) = Cfn/dgdée_m_lg'ééjék

1 7] ———
X [/ dTl(l - Tl)angkH(l‘ + %»T1§ + 8x¢(I,g, 77))} G,(.’L' + ga 77)
0
As the coefficient of |¢|? of H is constant in x, we have, for any 7, € (0,1), £ € R™,

Y ;o5 LY
G4 e H(o+ 5 né+ 0@, 5m) = 08¢, H(z +5,8:6(x,5,m))-
Using integration by parts and applying (1.11), we have readily
(3.15)
P [ ggaie 0[5 02, H(o+ Y, 00, 5,m)) Os,a(z + §,1m)
rr(z,n) = ;cm gdé e &k e, H (2 + 5, 020(2,9,m) | Oz;a(z + 9,
agkg ('Tv aﬂﬂ(t)(l‘a 77)) agjzk a(xv 77)'

(II) To make the above procedure rigorous, we need to justify the usages of the chang-

ing the order of integration and those of delta functions. But, these are readily justified
by using oscillatory integrals and therefore omitted here. O
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REMARKS. (i) The main term is easily obtained from

1 —ih |e] ~ _
ale Y EN o (eH( + L é+ Bgta,g,m) -ale+50)

lee}=0

=0,-
=0

&

(ii) The term —27'ihd2 ¢ H -a in (3.3) will not appear if we use H(z, D) instead of
HY (2, DM).
(iii) Above arguments are applicable for more general symbol P(x, &) satisfying, for
any j,k,f=1,---,m and z,¢§,
(3.17) Ryoye, P(@,6) =0 and e, ¢ P(x,€) = 0.

3.2. Composition of FIO with YDO from the right

Theorem 3.2. Let F(a,¢), HY (z, D?) be FIO and Weyl type pseudo-differential,
respectively. We assume that a, ¢ as above and H(x, &) is given by (1.16). Then, there
exists cr = cg(x, &) € C®(R?*™) satisfying

(3.18) F(a,$)HY (z,DF) = F(cr, ¢).

with the following expansion:
1
(3.19)  cp=aH —ih{0g,a- 0, H + 50 (08, H+ 0% 6 8,0 H) } +7r.

Here arguments of cg, a and ¢ are (x,£) and that of H is (O¢¢(x,€), &), and rr(x,§)
is expressed as

(3.20) ra(z,€) =) (@08 + 1% (z,).
Proof. As before, it is enough to calculate formally which yields (3.19).
(1) By (1.20), putting

_ 0Ai(z) _ 9*H(z,¢€)
- (?xi h 81‘13&' ’

HMz,€) = H(z,8) - 2.G(@), G(a)
we have

(3.21) F(a,$)HY (z, DMu(z) = cp, / dé cr(z, &)e™ ¢@q(¢).
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Here, we set
(3.22) | cr(z,8) =2, / dydn e G@m =@ =v-(1- g (z, y) HY(y, £).
Using
¢(.’L‘, 77) - ¢(:L‘,§) = @’(%faﬂ - 6)(77] - é]) = 55\‘/15(93,5»77 - f) : (77 - 5),
where
. 1
(3.23) 8§j ¢(£L‘,£, () = /0 dTa£j¢(x7€ + TC)a

we define a change of variables as

(3.24) {g:y_@(m’f’"‘f)’ (_}{y=17+5:¢(w,§,ﬁ),

Then, we get
(325  cr(z,8) = / djdije™ """ a(z, i+ €) HM§ + De(x, €, ), £).
(i) Using Taylor’s expansion for H"(---) w.r.t. §, we decompose

H"§ + 0¢(e,&,7),€) = H"(0c(x, €,7), €)
+ ?jjazj Hﬁ(éﬁ\(}(‘z‘v ga 77])7 6) + gjng&j)(ﬁf, 57 'ga ﬁ)

with
N 1 _
Hl(@,6307) = [ dri(1= )02 B+ 00(e. €,7).€)
So, we put
cr(z,§) =1 + I + I3,
where

(3.26) I = cgn/dﬂdﬁe‘mvlg'ﬁ a(z, 7i + €) HMBed(, €, 7), €),
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(3.27) L =2, / djdije= ™7 a(z, 7j + €)§;0,, H B (. €, 7), €),
and
628)  h=d, [ dgdie ™ V(e i+ ik Hl (0,657

(iii) Using (1.11), we get readily
(3.29) I = a(z, &) H"(8¢¢(2, €), €).

Remarking 95 e~ — _ifi~1§;e~"" 97, integration by parts and applying (1.11),
we get

(3.30)
1
I2 = —ih [aﬁj (CII, €)ng (¢€(I? E)? §) + 50'(‘1" 6) ¢€j§e (l’, 5) Ha,':izmj (¢§($, §)a €)] .
Therefore, we have,
(3.31)
IL+I,=aH — ih{anij =+ la(Hze& + (]55],& Hzﬂj)}

2
h? 1
- —5 [anijxl& + §a¢§j§£ Hxﬂjwnﬁn]v
with arguments of a., ¢, are (z,£) and those of H, are (0¢¢(z,§),&), respectively.
From this, the main terms of (3.19) by picking terms of order up to 1 w.r.t. & from
I + I5.
(iv) By integration by parts, we get

(332) Iy = —h*c2, / djdije= ™ T102 . [a(x, 7+ €) Hf ) (2,6, 5,7)].

Therefore, we get

—~— —_~— —_—~—— —_—~— —_—

9 . —~—
07 7 la- H(hkj)] = anEkH&j) +2a¢, ¢ kO HT, - +a [¢(Jke)H?ekj) + ¢(ke)¢('1n)H(hn£kj)]

where

—_— 1
¢ (z,&,7) = / dr P11 ¢ (x, € + 777)
0
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and arguments of a., fI:h and :;’): are (z,7+ &), (z,&,9,7) and (z,€,7), respectively.
Putting, for any F’, :

— 1 ——~—
F(a)(a:v{,g, f’) = A dTl(]- - Tl)ach(Tlg + a{‘ﬁ(:z’é’ﬁ))a

we have

—_~ o~

— h —— . 1
H iy = Ai k)6 + Werg) — TGy with W(z) = SAi(2) 4i(2) + V (2).
Therefore, we have
Iy =) (2,66 + 79 (z,£).
Here
(3.33)
rhl (@, &) = —hc, / djdiie™"" V7 [agg, Ai(rg) + 2a¢, %0 Aicens)

+ a($0*0 Aygig) +6*O 0™ Ay

(3.34)
7o) (z,€) = —h2c2, /dﬂdﬁ e_mﬁlg'ﬁ[aéjﬁk% + 2‘151&797)%
+ a(WW//(Z;) + mmm))]
+ ih;cfn /d@dﬁ e ag, e, Gy + 206, 6O G iy
+ a(TFOG gy + 6FD G0N G g,

where arguments of a., A, and ¢* are (z,7+8), (z,¢,5,7) and (x,£,7), respectively.
Finally, we put

K2 1 <
(335) Tg))(zvé) = _? [aészjzz& + §a8§j€e¢Hxn‘jzn§n] + rg))(x’ f)a

where arguments of a, and ¢, are (z,£) and those of H, are (O¢¢(z,§),€&), in other
lines, arguments of integrand functions are the same as before. O
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REMARKS. (i) The main term of expansion of cg is given by

L (=ik)* (ih)?
Y. 5 9205 (a(x E+6)- 6"‘8'8H( + 7+ ez, &, 6),
(3.36) |*HAI=0

In fact, this formula is obtained for any YDO P as follows:
Using u(2) = ¢, [ dé’e™” =€ 4(¢’), we have

3.37)
F(a,$)P" (z, DE)u(z)

= cfn/dédydndz eih ™ (@) -yE+y—2)m) g (g f)P(yTHJI) u(z)
= tm / de' M7 0@ ez, €Y €").

Here, we set

63%)  en(o€) = ch [ dedydnds VS (a6 4,1, 2)

with

1/1(33,5»117%3,5/) = _y€+ (y—Z) ’7I+Z'§I+¢($ﬂa§) —¢(x,§l)a

q(xaéayvna ) ($ {) (y_;_z 7])
Using (3.23) and
9(@,6) = 9(x,€) = I 9(@,€',6 —€)(& — &) = Bed(@,£ .6~ €) - (€~ ),

where

— 1
85;(]5(;&6’,() :/0 dT8§;¢(x7€/+7-<),

we define a change of variables as

E=¢- 5’, =&+

(3.39) y=y- o y=§+Z%+09(z,¢,6),
Z=2z-— §'¢(x>£/a€_£/)v 2+a€ ¢(.’L‘§ f)
n=mn-4, n=ﬁ+§+§’.
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Rewriting

d)(z’gayﬂ?,zaf,) = (y'—Z) (n_€)+(z—8 '¢) (6,_6)7

we get

(3.40)
CR(.’L', 5/) =

c‘,‘n/dédﬂdﬁdi eih_l(g'ﬁ_z'é)a(m’,g—i-£')P(

NI

+2+ 000, E,€) i+ E+E).

+ Z, we have (3.36) as the first and

N |

Applying Taylor’s expansion for P(---) w.r.t.

second terms.
(ii) If the so-called Coulomb gauge G(z) = 0 is imposed, then the expression of the
remainder term in (3.31) and (3.34) is considerably simplified.

4. Definition and properties of parametrix

4.1. Definition of parametrix

Using functions S(t,s,x,&) and u(t,s,x,&) = DV/2(t, s, x,£) defined in §2, we
consider an integral transformation E(t, s) on S(R™):
4.1)

E(t,s)u(z) = E(t,s: u,Su(z) = ¢ [ d€ p(t, s,z,f)eih_ls(t’s’z'f)ﬁ(f)
]Rm

=2, /]R2 dedy u(t, s, @, €)™ St O=v 0y (y).

Lemma 4.1. Assume (A), (V) and |t — s| < 8§, (defined in Proposition 2.3). Then,
for any @ € C§°(R™), there exists a constant C such that

4.2) IE@, s)ull < Cllu].-
Proof. Since we have (2.31) and (2.45), we may apply Proposition 1.8. O
Proposition 4.2. (1) For each u € L?(R™), we have
4.3) ls—lilmOE(t, Sfu=u  in L*(R™).
t—s|—

(2) If we set E(s,s) = I, then the correspondence (s,t) — E(t,s)u gives a strongly
continuous function with values in L?(R™).

Proof. See Lemma 4.2 of [11]. O
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4.2. Approximate estimate

Proposition 4.3. Let u € S(R™). For any fixed x € R™, E(t, s)u(x) is abso-
lutely continuous in t, and its derivative is represented as

0

(4.4) e

, 3 . )
E(t, s)u(z) = cm/d§ En [,u(t,s,x,é)e’h ‘S(t’“f)]u(g).
Moreover, for any x € R™, we have
ho W 5

4.5) ZaE(t, s)u(zr) = —H" (t,xz, D})E(t, s)u(z) + GL(t, s)u(z).
Here, G1,(t, s) satisfies
(4.6) IGL(t, s)ull < CR2[t — s]|ull,
where C' is independent of t, s, wand h, 0 < A < 1.

Proof. (4.4) follows directly from the definition of the oscillatory integral and

Lebesgue’s dominated convergence theorem. Using the Hamilton-Jacobi and the conti-
nuity equations with the product formula in Theorem 3.1, we get

h oy .
;(Mt +ih ISt #) = zh[/"IjHﬁj + (1/2)(sz§j + Hﬁj{ksﬂljzk )/L] -uH

= —[amplitude part of the “symbol” of (HW (t,z, D,;)E(t,s))] + 7.

4.7

Here, arguments of 71, u and S are (¢, s,z,£) and those of H are (z,0,5(t, s, z,£)).
2

Moreover, as r;, = rp(t,s,z,£) = —%Az,u(t, s,x,&) by (3.4), it has the following

estimate: for any multi-indeces o and (3, there exists a positive constant C, g such that

4.8) |020F L (¢, 5,2,8)| < Caph?|t — s|.
Therefore, putting
Gr(t,s)u(z) =cm /d§ rL(t,s,x,é)eih_ls(t’s’z’g)ﬁ(ﬁ),
we get (4.6) by (4.8). ]
REMARK. One of the main reason why we use p instead of 1 as the amplitude

of E(t,s), is to have the equality (4.7). More essentially, see Inoue-Maeda [9] for the
introduction of the intrinsic Hilbert space. Analogously as above, we have
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Proposition 4.4. Let uw € S(R™). For any fixed x € R™, E(t,s)u(z) is abso-
lutely continuous in s, and its derivatives are represented as

0

4.9) 5 Bt 9)u(@) = cm / de¢ %[ﬂ(t, 5,z,€)e™ SEe2O]g(¢),

Moreover, for any x € R™, we have

h%E(t, syu(z) = E(t, s)HY (s, z, Dy )u(z) + Gr(t, s)u(z).

(4.10) e

Here, Gg(t, s) have the following estimates.

(4.11) IGR(t, s)ul < CR?[t — s| [lullx

where C' is independent of t, s, u and h, 0 < h < 1.
Proof. We claim that for any «, 3, we have

102077G) (8, 5,7, )| < Caph?|t — s,
102021 (t, 5,2, €)| < Caph?|t — s|,
where rgi)(t, s,z,€) and rg)) (t,s,x,&) are defined in (3.33) and (3.34). As other terms

are analogously estimated, we only prove the first term in (3.33) satisfies the claim:
Thus putting

—~—

~ ~ —7 _1.'..‘ ~ ~ ~
bz(t': S,l’,é) = _hQCfpz/dydne g n#’ﬁjﬁk (t,S,l’,é + T’)Ai(kj)(s) wvéa Y, 77),
we may claim

0288 bi(t, 5,3, £)| < Caph?|t — s|.

This follows from the definition of oscillatory integrals appearing in Proposition 1.2,
see, for example, [13] and [12]. In fact, taking 2¢,2¢' > m, we have

—~—

/ dijdi e~ T g ¢ (85,2, € + 1) Ay (5, 7, £, 5, 7)
= / didije= ™ TN (7) 2D 2 (5) 2 (DBY T2 g g, (8, 5,3, € + 1)
X Ai(kj)('s’ T, 67 ga ﬁ)
= / i [(7) 24 () ~2¢ {bounded functions} + etc.. O
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Corollary 4.5. In case A;(t,x) = a;;(t)x;, we have

4.12) IGR(t, s)u|| < ChE|t — s]||ul|.
Proof. In this case, as Z;(j:) =0,|a| > 2, we have rgi) =0. O

Proposition 4.6. There exists a positive constant C such that for u € S(R™),

(4.13) I(E(t,51)E(s1,8) — E(t, 8))ull < Ch(It — s1]* + [s1 = sI*)[[ull,
(4.14) I(E(s1,)* E(s1, ) — E(t, 8))ull < Ch([t = s1[* + [s1 — s[*)|u]]-

Proof. Let u € S(R™). Then, we have by Propositions 4.3 and 4.4,

2 B(t,0)E(0, s)ull = i\ Gt 0)B(a, s)u + ih™ E(t, )G (0, )ul

(4.15) “da
< Ch(|t — o] + |o — s|)lu/l:-

After integrating with respect to ¢ from s to s;, we get (4.13). On the other hand,
remarking

(Blsn, ), Blss, tyw) — (B, o)) = (B, s, B, )|

T=s1
we get (4.14). O
As a corollary of (4.14), we get
Corollary 4.7.
(4.16) IE(, s)| < eChlt=sl",

4.3. Regularity

Fix T > 0 arbitrary, and assume t, s, s; € [—T,T] such that t,s; € [s — 01/2,s +
81/2), where 6; is defined in Proposition 2.3.

Lemma 4.8. (Proposition 6.1 of [11]) Let [t — s| < 6; and u € S(R™). Then, we
have the following:
(1) For any multi-indices c, 3 and j (1 < j < m),

4.17) { %02 (0s;, Bt s)lull < Coslt =l ot

2%[2;, E(t, 8)]ull < Calt = s [lullja+1
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where constants Co and C,, are independent of t, s and wu.
(2) Moreover, we have, for any o, (3,

(4.18) lz*0ZEt, s)ull < e“1~*!||z*0Zul| + Caplt — sl llulllal+is

for some constants C and C,p independent of t, s and u.
(3) For k € Z_., we have

(4.19) B syullle < e'*~*llullx
with some constant C > 0. This implies that E(t,s)u € S(R™) for u € C§°(R™).

Proof. (4.19) follows from (4.17). Using (4.19) and the Sobolev imbedding theo-
rem, we get the last assertion. In fact, we get for any ¢, o, there exist constants C, C’
and k such that

(4.20) (@) 02 E(t, s)u(z)| < CIE(R, s)ullle < C"llullk. 0O

5. Composition of FIOs

In order to apply diectly the theorem of Fujiwara or Kitada, the estimate (4.13) is
insufficient. We calculate the quantity ||E(¢, s)E(s,r)u — E(t,r)ul| directly.

Lemma 5.1. Let |t — s| + |s — 7| be sufficiently small. For any x,&, there exists a
unique solution (X, =), X = X(t,s,r,x,£), E = E(t, s,7,%,&) of

X; =0 S(t,s,z,E),
(5.1) ta e, S(t,s,2,Z)
=5 = 6sz(S,7‘, X’ 5)
Moreover, we have
10208 (X; — )] < Cap(1+ x| + [¢])7Ie+AD+,

(5.2)
1020 (25 — &)| < Ca,p(1+ |z] + [¢[)*le+AD+

Proof. See, Kumano-go, Taniguchi & Tozaki [15], Propositions 2.2 and 2.4 of
[12). 4

Putting

®(t,s,r,2,8) = S(t,s,2,8) — XE+ S(s,1, X, €),

we have,
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Lemma 5.2.
0
$<I>(t,s,r, z,&) =0,
(5.3) %@(t,s,r,x,ﬁ) = —H(t,z,0,9(t,s,71,1,8)),

Ja(t,5,7,2,€) = H(r, 068(t,5,7,,€),€).

Proof. The first equality is obtained by using the Hamilton-Jacobi equation and
(5.1) as follows:

0
—é;d)(t, 8,7, 2, &)

= , 92 -  O0X _ o=
= 635(t,8, Z, \_,) + aagS(t, s, T, ._.) - g._. - ng—
F0,85(5,7,X,) + 2 0.5(5,7, X, 6)

= H(s,0¢S(t,s,x,E),E) — H(s, X,0;5(s,7r, X,£)) =0.
Analogously, we have other equalities. O

Corollary 5.3. Let |t — s|+ |s — 7| be sufficiently small. For any s satisfying this,
we have

(5.4) ®(t,s,r,x,€) = S(t,rz,§).
Proof. In fact, by making s — 7,
Ej =05,8(r,1, X,8) =&, X;=0gS(t,rz,8),
we get
o(t,r,r,z,8) = S(t,rz,E)— XE+ S(r,r, X, &) = S(¢t,rz,§).
By the first equality in (5.3), we have

0= / dS%@(t, s, T, T, ‘f) = Q(ta S, Taz7§) - (D(tv T, T,(E,{). U

REMARK. ®(t,s,r,z,£) is called a #-product of S(t,s,z,&) and S(s,r,z,§),
and which is denoted by S(t, s, z,-)#S(s,r,-,€) in [15]. Now, we have, as an oscilla-
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tory integral,
E(t,s)E(s,r)u(z) =

(55) ih~! s - s,T ~
C?n A3 dﬁdydglt(t,S, l‘,’f])y,(s’r’ Y, é‘)e R™ (S (t,s,z,m)—yn+S(s,7y,£)) u(g).

Using the change of variables
y=X+9, n=E+1,
and (5.4), we have
(5.6) S(t,s,z,n) —yn+S(s,ry,&) — S(t,r,z,&) = —yn+ R(t,s,r,z,&,9,7)
with

R(t’ 57 /r’ x’ 6’ g’ ﬁ)
=S, s, z,2+17) — S(t,s,2,8)— X0+ S(s,r, X +9,€) — S(s,7, X,€) — §E

1 1
= ﬁkﬁj/ dT(l—T)ng.gk (t,s,z,= + Tﬁ) + kT / dT(l_-T)Szjzk (S, X +74,§).
0 0
Therefore,

I ~
an _/]Rg dndy“(t>3>$’77)ﬂ'(3a7',y’§)6m (8(t,s,z,m)—yn+S(s,7,9,8))

=M SCre0 (2 [ didgpt, s, 3, Z+A)uls, 7, X+, §)e Rlbanse i D=in]

R2m
Putting
(5.7 E(t,s)E(s,r)u(z) — E(t,r)u(z) = cm/ dg b(t, s,r,x,ﬁ)eih—ls(t’r’z’g)&(ﬁ)
]Rm

with
b(t7 s’ r’ m, £) =

ch / _dndgp(t, s,z Z+a)u(s,m, X + 7, £)ein” Rbsne 8 BM=T) _ (¢t 7, 7, €),
R m

we want to have
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Proposition 5.4. Under the assumptions (A) and (V), if |t — s| + |s — r| is suffi-
ciently small, we have

(5.8) |020£b(t, 5,7, 2, )| < Cayp(lt — s> +|s —r[?).

This estimate is conjectured in [8] and then proved by K. Taniguchi [17].
From (5.8), we have proved

Corollary 5.5. There exists a constant C such that if [t — s| + |s — r| < 6 and
u € S(R™),

(5.9 IE®, )E(s,r)u~ Et, r)ull < C(1t — s> + |s — r[*)][ul.

6. Proof of Main Theorem

We apply the abstract theorem in Appendix A: Put

Xo = X1 = L*R™), with norm [| - [lo = || - [, = | - [,

D=SR™), W=Y,, F(t,s) = E(t,s), a=v=2,
Ao(t) = ik YHY (t,z, D"), A(t) = the closed extension of ih~*HW (t,z, D*) with

domain Y.

Then, we have that U(t,s) = limsa)—o E(Alt,s) in the operator norm in L?(R™).
More precisely, (Al) is given by (4.16), (A2) is proved in (5.9), and Proposition 4.2
gives (A3). Therefore, there exists a family of bounded operators {U(t, s)} satisfying
(1) and (2) of Main Theorem. Assumption (iii) of Proposition A4 is proved by re-
marking (4.19) (see the proof of Theorem 4 of [6]). (A6) is proved in Proposition 4.3.
These imply (3) of Main Theorem. The isometry of the operators U(t, s) and U(s, t)

are derived from the formal self-adjointness of H(t,z, D?) and the equations (3) in
Main Theorem. Therefore, the operator U (¢, s) is unitary. O

REMARK. In case when we have only the estimate (4.13) instead of (5.9), we
show the strong convergence of the Cauchy net { E(Alt, s)u}. In fact, we may apply
the abstract theorem by putting '

Xo = L*(R™), X1 =Yy with norms || flo = [ - |, |-l = Il ll1,
D=8SR™), W=Y,, F(t,s)=E(t,s), a=v=2,
Ap(t) = ih”lfiw(t,x, D™), A(t) = the closed extension of b THY (t, 2, D) with
domain Y5.

Then, for U € D, we have U(t, s)u = s — lims(a)—o0 E(A|t, s)u, that is,

IU(t, s)u — E(AJt, s)ullo < CO(A)*Julls.-
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A Abstract Product formula

For the self-containedness of this paper, we modify and extend slightly Fujiwara’s
argument (see also Theorems 2.1, 2.4 of [11], Theorems A, B of [10]).

Theorem Al. Let X; (j = 0,1) be two Banach spaces with norms | - |lo, || - |1,
respectively. X, is assumed to be continuously and densely imbedded in X,. Let
D be a dense subspace of each X; (j = 0,1). Let a family of linear operators
{F(t,s)|(t,s) € [-T,T)% |t —s| < 1} for T > 0 acting on X;, be given with
the following properties:

(1) For each j, F(t,s) is a bounded operator on X; such that there exist a con-
stant Cy > 0 and v; > 1 satisfying

(Al) IF(t, s)ully < 1= |lull; for j=0,1.
(2) There exist o > 1 and Cs such that for any u € X1,
(A2)  |[(F(t,s1)F(s1,8) — F(t,8))ullo < Co(lt — s1]* +[s1 — 5|*)|ull1.

(3) For v € D, F(t,s)u is a Xo-valued strongly continuous function in (t,s) € R?
and it satisfies

F(s,8)u=u for any s € R,
(A3)

}im |F'(t, s)u — ullo = 0.

—S

For a subdivision A of (s,t) such that

Aitg=s<ty<---<tp_1 <tg=1t and 6(A) = _nllaxeltj —tj_1l,
J=1,,

we put

F(A't, s)u = F(t, t[_l)F(tg_l, te_g) s F(tl, S).

Then, for any u € D, there exists a limit

= s-lim F(Alt, in X
(A4) U(t, s)u 6?A;r£0 (At,s)u in Xo

such that

(A5) (U, s) — F(Alt, )ullo < Calt — s[8(A)*Jullx,
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Here, C3 = C3[(1 —2'7)~1 + 2(@=1) (¢(q — 1)log2)~1]. We have also,
(A6) U, s)ull; < eCle=*lju); for j=0,1.

Moreover, if we put U(s,s) = I for |s| < T, then
1. the mapping: [-T,T)% > (t,s) — U(t, s)u € Xy is continuous for any u € X,

2. (evolutional property)

Ul(t1,t2)U(t2, t3)u = U(t1,t3)u for any |t;| < T.

For the proof, we prepare the following lemmas:

Lemma A2. Let A; = {t;} with t; = s+ jL™(t —s) for j =0,1,--- ,L and
8(AL) = L7t — s|. We have

(AT) I(F(t, s) = F(Alt, s))ullo < Cslt — s|*e“ = Ju]|1,
where F(Ath, S)U = F(tL, tL-—l) s F(tl, to)’u.
Proof of this lemma is obtained from Lemma 5.7 of [6].

Lemma A3. Let two subdivisions of [s,t] be given by

Al:s=tg<t1 <---<tp_1<tp=t

Ay:s=53<8 < - <spy-1<sym=t.

Assuming that 6(A;) < §; and §(Az) < 61, we get

(A8)
I(F(Aslt, 5) = F(Aalt, 8)ullo < Calt — s|(8(A1)* " +8(A2)* eI |ufl1.

This lemma corresponds to Lemma 5.8 of [6], therefore the proof is omitted.

Proof of Theorem. Al By the above lemma, we get (A4). Moreover, as is proved
in Theorem 4 of [6], we have the estimates (A6).

Concerning the evolutional property for s < r < t, we take the subdivision A
containing r, i.e.

A=AUA, with Aj:s=tg <ty <---<tp=r<try1, Ar:tp
=r <t <---<tymg=t.
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Then, remarking F(A,|t,r)F(Alr, s) = F(Alt, s), we get

U, U, s)u—U(t, s)ullo < [I((U(t, ) = F(Arft,r))U(r, s)ullo
+ |F(Art, r)(U(r, s) = F(Adlr, s))ullo
+ ||[(F(A|t,7)F(Ayr,s) — U(t,s))ullo — 0 when §(A) — 0.

In fact, for u € D, we have

(Ut 1) = F(Arlt, U (r, s)ullo < Clt = rl6(A) U (r, s)ulls
< Clt = r(6(Ar)* " e ufly — 0 when 6(A) — 0. 0

Proposition Ad4. Under the same assumption as above, we assume that:
(i) There exist a closed operator A(t) with domain D(A(t)) in Xo.
(ii) For u € D, F(t,s)u € D(A(t)) and F(t,s)u is Xo-valued differentiable in t € R
and
0 N |
—F(t,s)u| + A(t)u =0, that is, lim |- (F(t + h,t) — Hu+ A(t)ullo = 0.
ot s=t h—0 " h
Gii) U (¢, s)ull; < Cllul; for u € D.
Then, we have

QU(t, s)u+ A(t)U(t, s)u =0,

(A9) o
%U(t’ s)u—Ul(t,s)A(s)u = 0.

Proof. The first one is easily seen from

I3 U+ h,5) = UGt 5)u + A@UE, )l
< U+ h,0) = F(e+ b)) s)ull
I (Bt + hyt) = DU s)u+ AU, sl

—0 as h—0.

Because, the first term is majorized by h*~!||ul|; and the second term tends to 0 when
h — 0 by (ii) and U(t, s)u € Y; for u € D by (iii).
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The second one is given by

I|%(U(t, s+h) =U(t,s))u—Ul(t,s)A(s)ullo
< Ol U5 +h,5) — D+ Als)ullo + CI(T ~ Us + b, ) Als)ulo

Here, we used the evolutional property and ||U(t,s + h)|| < C and A(s)u € X, for
u € D. U

B The comparison with two formalisms

B1. Lagrangian formulation revisited.

When we treat the problem in the Lagrangian formalism, we have the following
theorem:

Theorem B1. A parametrix of the initial value problem (1.1) is given by

E(t, s)u(x) = ém /dy fi(t, s, z,y)e™ SOseDy () with Gy = (2mik) ™/

(B1) = cpe T/,
Here, S(t,s) = S(t, s, ,y) satisfies the following Hamilton-Jacobi equation;

S(t,s) + H(t,z,0;5(t,s)) =0,
(B2) _ ) . ,
lim (t — s)S(t,s) = 5[1‘ - y|%,

t—s
and [i(t,s) = a(t, s, z,y) satisfies the following continuity equation;

(B3)
Oui(t,5) + 0a, it 5) He, (6,2, 0:5(1,)) + 5l s)—ai H, (t,,0:5(t, 5)) = 0,
J
lim (t — s)™/2i(t, s) = 1.

t—s

To have this formula (B1), we introduce a classical path v(1,s) = ~(7,s,z,y)
which satisfies

(B4)
2

() = Bir(r,1(r, 5)) (7, 5) ~ iy (12(7,9)) = B,V (7,37, 5),

v(s,8) =y, 7(t,s) = x.
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The unique existence of this path is guaranteed by the assumptions (A) and (V). Then,
defining

t
(B5) 5(t,5,2,y) = / L(r, (7, 5), 3(r, 8))dr,

we have not only (B2) but also the estimates of |8§855'(t, s,z,y)| as in [18]. More-
over, it satisfies

(B6) Bsg(t, s) — H(s,y, —ayS‘(t, s))=0.
Defining

it ,2,9) = [aer (25052

we have a solution of (B3) with estimates [6;"85 (@(t, s,x,y) — 1)|, and which satisfies
also

(B7)

- - x . 0 =
Osfi(t, s) — Oy, fi(t, s)He, (s, y, —0yS(t,5)) — = fi(t, s)a—Hgk(s,y, —0,5(t,s)) = 0.

1
2 Yk
Proposition B2.

(B8)

%E(t, s)u + H(t,z, DVE(t, s)u = GL(t, s)u, with ||GL(t,s)u|| < CH[t — s||u].

Proof. In fact, using the differentiation under the oscillatory integral sign and
applying (B2) and (B3), we have readily

GL(t, s)u(z) = h? /dy Agfilt, s,z,y)e™ SEse)y(y).
As |Af(t, s, z,y)| < C|t — s|, etc., we have the desired result. O
Proposition B3.
(B9)

(-%E(t, syu — E(t, s)H(s,y, D"yu = Gr(t, s)u with |Gr(t,s)ul| < CR2|t — s||ul].
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Proof. By the integration by parts under the oscillatory integral sign, we have
/dy (t, s,x,y)em—l‘é(t’s’z’y)H(S,y,DZ)U(y)
1 h S
/ dy [5G g5+ 4i(5:8)" ~ V(s w] (it s,z )e™ ) u(y)

On the other hand, we have

———E(t s)u = /dy At s, z,y)e™ 1S(t’s’“”’y)) u(y).

As is shown before,

%(ﬁ(t’ S)eih—lg(t’s)) (fis(t, ) + iR S (t, 8)i(t, s))em_lg(t’s),

applying (B6) and (B7), we get readily that

Gr(t,s)u(z) = hz/dy Ayﬁ(t,s,x,y)eih*lg(t’s”’y)u(y).

From these propositions, we have

Proposition B4.

(B10) IE(t,s)E(s,r) — E(t,r)|| < Ch(|t — s|* +|s —r[*),
(B11) IE(s, t)*E(s,r) — E(t,7)|| < Ch(|t = s* +|s — 7).

B2. The difference.

(1) In calculating (4.13) and (4.14), we derive an operator ﬁw(t,w,Dﬁ) from
H(t,x,£) using the Fourier transformation. While proving (B10) and (B11), we use
H(t,x, D?) as a given operator without considering from where it stemms.

(2) In the Lagrangian formulation, the time reversing and taking the adjoint are
rather nicely related. To show this, we have

Proposition BS. Under Assumptions (A) and (V), we have

(Blz) S’(t»s7x,y) = —S(S,t,y,.’lf).
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Proof. Putting z = Z, y = z, we use the results in §2. Let g(7) be a solution of
(B4) with ¢q(s) = z, ¢q(t) = T where 7 moves from s to ¢. Then,

(B13) S'(t, $,Z,x) = /t dr L(7,q(7),v(1)) with v(r) = ¢(7).

Using the change of variable 7 = s + 6(t — s) with 0 < 6 < 1, we have
B 1
S(t,s,z,z) = (t — ) / dOL(s+6(t—s),q(s+6(t —s)),v(s+ 0(t — 5))).
0

Moreover, for v;(0) = g;(s + 6(t — s)), we have

(B14)
2
(t— 87 -375(6) = (¢~ 9)Byi(s +0(t — 5),7(6)) S5 (0)
(9200, (s + 6(t — £),7(6)) — (¢~ %05,V (s + 0(t — £),7(9)),
7(0) =z, ¥(1) = Z.

Analogously, let §(7) satisfy (B4) with ¢(t) = Z, G(s) = z where ¥ moves from ¢
to s. Then, by putting 7 =t + (1 — )(s —t) = s + 6(t — s), we have

(B15)

S(s,t,z,%) = —(t — s) /1 dOL(s+6(t—s),q(s+6(t—s)),0(s+6(t — s)).
0

It is easily checked that ¥(6) = ¢(s + 6(t — s)) satisfies the same equation as (B14).
By the uniqueness of the solution of (B14), we have the desired result. O
Therefore, combining above with the definition of fi(t, s, z,y), we have
Corollary B6.
ity s,z,y) = filt, s,y,2) = (=1)™ s, 1,9, ).
Now, we have

Proposition B7. Under these circumstance, we have

(B16) E(t,s)* = E(s,t).
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Proof. We have readily

B(t,5)v(z) = &n / dy it 5, g @)~ Stswaly(y)
(B17)

= &m / dy ji(t, 5, y, )™ P V(y) = B(s, t)o(c).

In fact, E,fi(t, s, y,T) = émji(s,t,z,y) follows from directly. O

REMARKS. (1) In this formulation, we have (B10) from (B11) and (B16) without
calculating (B9).
(2) If we knew the uniqueness of the solution of (B2), we had (B12) combining (B2)
and (B6).

But in the Hamiltonian formulation, this relation does not seem to hold in general.
We have the representation

(B18) E(t,s)*v(z) = cfn // d€ dymeihvl(I'g"s(t’s’y’g))v(y).
Using (4.14) and the proof of Proposition 5.4 of [6], we have

IE(t, s)"v — E(t,s) "l < Clt = s*|lv]],
and by (5.9),

IE(s,t)v — E(t, s) " ol| < Clt — s|[v]]-

This yields at least
Proposition BS.
(B19) IE(t, )" — E(s,t)l| < Ct — 5.

B3. Problems.

(1) In [7], Fujiwara gives a kernel representation of the fundamental solution of
(1.1). There appears the Maslov index. From the definition of the Maslov index,
it seems natural to formulate the kernel representation in the phase space, in other
word, the Hamiltonian path-integral will be helpfull to understand the appearance of
the Maslov index.

(ii) In the Lagrangian formulation, we have (B10) with the explicit dependence of
h. But, we have not such explicit dependence in (5.9) for the time being.
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(iii) The singularity w.r.t ¢ — s or others in S(¢,s,---) or u(t,s,---) diminishes in
the Hamiltonian formulation comparing with the Lagrangian one. As an example, we
consider the Hamiltonian H(z,¢) = 1(€ — az)? + 10?22, and then we have

G b 2,2 @2 2y~ b
t =3 t - g — =
5(t,0,2,y) = 5(cotbt)(z” +v°) — —ay + 5(2° —y%), At 0,2,9) = —0,
2bz€ — (€2 + (a® + b*)z?) sin bt b
2(bcos bt — asin bt) bcosbt — asin bt

S(t,O,.’L‘,E)

More precisely, the singularity at time ¢ = 0 of [i(¢,0,z,y) stems from the delta func-
tion character when ¢ — 0 in the Lagrangian formulation. But in the Hamiltonian one,
there is no singularity for u(t,0,z,&) when t = 0.

On the other hand, Yajima [19] claims that there exists no smooth fundamental
solution for the Schrgidin2ger operator with time independent super-quadratic potential
in R, e.g. ?% — %% + z*. From Yajima’s interpretation, this is because for any
spatial points  and y and any time ¢, there are trajectories with arbitrarily high energy
that leave y at time zero and reach x at time ¢.

Therefore, we want to ask even after Yajima’s claim whether we have a fundamen-

tal solution for the above operator in the form

/ dE u(t,0, 2, )¢ S@0 g g

with smooth functions S(t,0,z,&) and u(t,0,z,£)?
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