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1. Introduction

1.1. Problem and Results

We consider the following initial value problem of the Schrόdinger equation with

an external electro-magnetic potential on R m from the point of view of Ήamiltonian
path-integral quantization" in L 2 ( R m ) . In other words, we construct a parametrix

which exhibits clearly how quantities from the Hamiltonian (not Lagrangian) mechanics

are related to quantum mechanics:

( h du(t, x)
i dt

ΊdίO x} — u(x\

with

Here, M, e and λ are constants, A(t,x) = (Aj(t,x)) and V(t,x) are real-valued

smooth functions on R x R m . For the sake of notational simplicity, we put M = e =

X = 1 in this paper.

REMARK. In the following, we use Einstein's convention of summing up w.r.t.

indeces.

The following assumptions on A(t, x) and V(t, x) are due to Yajima [18] and

Fujiwara [6]:

(A) Aj(t,x) E C°°(R x R m ) , real-valued and there exists e > 0 such that

\92Bjk(t,x)\ < Ca(l + k l ) ' 1 ' 6 for |α| > 1,

< Ca for |α| > 1
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where

(V) V(t,x) G C°°(R x R m ) , real-valued and for any compact interval /, there exists

a constant Caι > 0 such that

sup|d£V(ί,x)| < Cal for |α| > 2.
tei

REMARK. By above assumptions, for any T > 0 and α, β, there exists a con-

stant Caβ such that

(1.3) sup
|t|<T

where for any 7 6 R, we put 7+ = max(7, 0).

Outline of the strategy of quantization:
(1) We get the complete symbol of M(t, x, —iHdx) denoted by H(t, x, ξ) indepen-

dent of ft, which is called the Hamiltonian function. Using this function, we formulate
the Hamilton equation:

= -dxH(t,x(t),ξ(t)).

(2) Solving this equation under Assumptions (A) and (V), we construct a phase

function 5(ί, 5, x, ξ) which satisfies

/ 1 C λ , „ , τ u . . , , ,
(1.5) (Hamilton- Jacobi equation) <

[ 5(s,s,α:,0 = x ξ.
Putting

we have

(1.6) (continuity equation) < + dXj [D(t, s, x, ξ)dζ. H(t, x, dxS(t, 5, x, £))] = 0,
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(3) We define a Fourier Integral Operator on R m as

(1.7) E(t, 8)u(x) = Cm ί dξ Dl/\t, s, z,
JRrn

where

= Cm ί dxe~ih lχ'ξu(x) with c m - (2π
7 E m

We show that this operator gives not only a bounded operator on L 2 ( R m ) , but also

a good parametrix for (1.1) by virtue of (1.5) and (1.6) : Let Δ be a subdivision of

(s, t) such that

Δ : to = s < tι < - < tι-ι <ti — t and δ(Δ) — max \tj — tj-\\.
3 = * - ι ' " >•*•

Putting

E(Δ\t, s)u = E(t, tt-ι

we claim that {E(Δ\t,s)} forms a "Cauchy net" w.r.t. ί (Δ) -^ 0 in L 2 ( R m ) when

w G 5 ( R m ) and that it converges to an evolutional operator U(ί, s), which is, as a

consequence, a fundamental solution of (1.1).

Therefore, we have the following:

Main Theorem . Fix T > 0 arbitrarily. Under Assumptions (A) and (V), there

exists a family of operators {U(ί, s) \ t , 5 G [-T,T]} αcίmg 0« L 2 ( R m ) w/ί/z f/ze /o/-

lowing properties:

1. U(ί, 5) w α unitary operator on L 2 ( R m ) for each t, s G [-T, T].

2. For any u G L 2 (R m ) , U(ί, s)u w α L2(Rm)-v0/wed continuous function in

t,s G [-Γ, Γ] am/ ίί satisfies

U(s, s)w = u for any s G R,

3. 7/w G 5 ( R m ) , U(ί,s)ιz is a L 2 ( R m ) -valued differentiate function in (t,s) G

R 2 and it belongs to C°°(Rm) for each (t, s) G R2. Moreover, it satisfies

Corollary. ί/«J^r Assumptions (A) and (V), ί/ιere exwίj a constant C > 0

pendent oft,sfor |t |, s| < T swc/z ί/zαί if δ(Δ) is sufficiently small, we have

(1.8)
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1.2. Remarks

(1) In this note, we assume that Aj and V are smooth enough in order to clarify

the procedure itself.

(2) Fujiwara [6, 7] constructed a fundamental solution of the Schrόdinger equation

when A — 0 and a potential V satisfies milder conditions than (V), that is,

(i) V is a real- valued measurable function of (ί, x) £ R x R m . For any fixed t £ R,

V(t,x) is smooth in x G R m .

(ii) For any multi-index α with |α > 2, the non-negative measurable function of t

defined by

Ma(t)= sup \8ζV(t,x)\+ sup \V(t,x)\
xGRm |ar|<l

is essentially bounded on every compact interval of R.

In [6, 7], he modifies mathematically a part of Feynman's heuristic argument to con-

struct a "good parametrix" for (1.1) with A = 0. Fujiwara used the Lagrangian formu-

lation without resorting to Fourier transformations, that is, instead of (1.7), he consid-

ered an integral transformation of the form

where S(t, s, x, y) satisfies the Hamilton- Jacobi equation in the Lagrangian formulation.

Afterwards, Kitada [11] and Kitada & Kumano-go [12] reformulated Fujiwara's result

in the Hamiltonian scheme with a vector potential A of special form. But, Intissar

[10] critisized the method employed by [11, 12] saying that their methods yield a non-

controllable remainder term in order to obtain the pseudo-differential operator (=ΨDO)

of Weyl type as the infinitesimal generator of that parametrix. Moreover, he proposed

a complicated procedure which is seemingly far from the spirit of quantization. On the

other hand, Yajima [18] constructed a fundamental solution under Assumtions (A) and

(V) using the Lagrangian formulation. As he intends to construct a fundamental solu-

tion and he doesn't claim his process as quantization, therefore he may apply the gauge

transformation freely to the given Schrόdinger equation. (But as we want to claim our

process as quantization, we can't use gauge transformations to reform the Schrόdinger

equation itself before quantization being performed.) Moreover, in [7] (when A = 0)

and [18] (when A exists), they give the kernel representation of the evolution operator

in the Lagrangian formulation,

U(ί, 8)u(x) = ί b(t, s, x, y)eih~ls^x^
JRrn

at least \t — s\ being small.
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Now, we want to claim that after slightly modifying Kitada and Kumano-go's

method, we may construct a Schrόdinger equation by "Hamiltonian path-integral method"

when the Hamiltonian function belongs to a certain class. In fact, under same condi-

tions to the vector potential A in [18], the Fourier Integral Operator (=FIO), which has

phase and amplitude functions derived from corresponding classical mechanics, gives a

good parametrix of the problem of type (1.1). More precisely, its "infinitesimal genera-

tor" is represented by a Weyl type ΦDO with a controllable remainder term. Here, we

use a composition formulas of FIO with Weyl type ΦDO. (Seemingly, these composi-

tion formulas are simple but new in the sense being not yet published explicitly.)

(3) This paper is the improved version of Inoue [8], where we have the estimate (1.8)

only for a special class of Aj(t,x). Due to K. Taniguchi [17], we have now the proof

of the conjecture concerning a composition formula of FIOs, which we proposed in [8].

Therefore, we have the good estimate of the composition of certain FIOs, by which we

have the operator norm convergence of l£(Δ|ί, s) as in the above corollary.

(4) We may regard these constructions as a mathematical procedure of quantization

of certain Lagrangian or Hamiltonian functions (see, Feynman [4] and also Inoue &

Maeda [9]) on Euclidean space (By the technical difficulty, we couldn't consider the

quantization problem on a curved space).

1.3. Prerequisite

For reader's sake, we quote here the following notion from Kumano-go [13]:

DEFINITION 1.1. (amplitude function) A C°°-function a(η,y) on R 2 m is said to

be an amplitude function denoted by a G 2 l£ τ (R 2 m ) (0 < £ < 1, 0 < T, -oo < k <

oo) if for α, /?, there exists a constant Caβ such that

(1.9) \d%dξa(η,y)\ < Ca0(η)k+s^(yΓ with (η)2 = 1 + \η\2, (y)2 = 1 + \y\2.

Putting

2i(R2m)= (J (J (Ja£ τ (R 2 m )
0<(5<1 — oo<fc<oo 0<τ

and introducing semi-norms on 2l(R 2 m) by

|α|, = max sup { d^a(η,y)\(η)-(k+s^(y)-Λ ,
1^ i/•'|_* 7? y *

we define a Frechet structure on 2l(R 2 m ).

From now on, we abbreviate the domain of integration unless there occurs confu-

sion.
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DEFINITION 1.2. (oscillatory integral) For α G 2l(R2 m), we define

ίdηdye-ih~ly ηa(η,y) = limίdηdyχ(ey,eη)e-in~ly'ηa(η,y)

with χ(τ7,y) G <S(R2m) satisfying χ(0,0) - 1.

Remarking

(yΓU(Dh

ηT™e-ih"y η = e-ih~^ with D* = -3n, (D^ = 1 - Λ2Δ,,
fc

we have

Proposition 1.3. For a G 2l£ r (R 2 m ) am/ -2^(1 -5) +ra < -m, - 2 f + τ < -m,

h-1^(yΓ2e\DΪ)-2^(η)-2e(D^^

In the above, the integrand of the right hand side is absolutely integrable w.r.t. dηdy,
while the left hand side is considered as the oscillatory integral.

REMARKS. (i) Following formulas will be frequently used below: For u G

), we have

(1.10)

(1.11)

1

u(x) = (?m ί dydηe-ih~^u(x + y) = c2

m ί
JR2m 7R2

= C2

m ί dydηeih~1(χ-y^, δ(x) = cm ί dηeih~lχ^ = cm ί
jRlrn J R m 7 R

where

τ) = {u e C°°(Km) I a > are bounded on R m for any |α| > 0}.

(ii) For / € 2l(R2™) satisfying tfjr,J(y, η) = 0, that is, f(y, η) = f(y, 0 ) + ^ , (y, 0),
we have

(1.12) m , ,c2

m ί dηdy e-m-1y if(y,η) = f (0,0)
J E 2 m

(iii) In the following, all integrals are interpreted as oscillatory one, if necessary.
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1.3.1. Pseudo-differential operators (=ΦDOs)

DEFINITION 1.4. (symbol function) A C°° -function p(x,ξ) on R 2 m is said to be
a symbol function of order ί denoted by p G &l if for α, β, there exists a constant Caβ
such that

(1.13) \&ζd£p(x,ξ)\ < Caβ(l + \x\ + |£|)<*-l«+fl)+.

A symbol-function p(x, ξ) is called classical and denoted by p G 6^z if w.r.t. ξ, p(x, ξ)
is a polynomial of degree £

For P(x,ξ) G Θ ,̂ we define, as oscillatory integral, the (pseudo)-differential oper-
ators of order ί\

(1.14) P(x, D)w(x)

(1.15) p ^ ( x , ^ X x ) ^ d ^ ^ p , ^ ( ^

for u G <S(Rm) with ΰ j = -ihdx.

Proposition 1.5. Let H(t, x, ξ) be a function derived from H(t, x, —ίhdx) in (1.2)

(1.16)

(1) Hw(t,x,D*)u(x) and H(t,x,D*)u(x) are well-deβned for u G S(Rm) sat-
isfying

Moreover, for u € <S(Rm) α«d £ € Z+> we

(1.18) \\\Hw(t,x,D$)u\\\e < CΊ| |«| | | / + 2

where

lΓ, H 2 = ίdx\u(x)\2.
^

\H\ =
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(2) We have

(1.19) Hw(t, z, D*)u(x) ^Cmjdξ Hh(t, z,

with

(1.20) H*(ttXtQ
l .

REMARK. We denote by Ύs> the closure of S(R m ) w.r.t. ||| |||*.

1.3.2. Fourier Integral Operators (=FIOs)

DEFINITION 1.6. (phase function) (i) For 0 < K < I and integer ί > 0, we say

that a real valued function φ € Φ ( M ) if Φ(xjξ) £ C * + 2 ( R 2 m ) satisfying

where J(z, ξ) = φ(x, ξ) — x ξ. We introduce also

(1.22) I J | 2 | / -

2<

(ii) We put

φ(M) = Φ(M) nβ2'°°(R2m) with

β fe'°°(R2m) - {0 <E C°°(R2 m) I d^φ are bounded on R 2 m for |α + β\ > k}.

We consider the following integral operator:

(1.23)

ii, ,αfc, Φ)u(x) = Cm I dξaι(X,x,ξ) - α/c(λ,z,ξ)ez ^ >x ^ώ(ξ),

where λ e Λ with Λ being a fixed set in R. Let k > 1 and let ί = (t\, , ^ ) be a

multi-index with |f| = Σk

j=l tj and put M = 2([n/2]H-[5n/4]H-2)+2|^|H-maxi<j<fe^.

We assume

(Aφ) 1. 0(λ, x, 0 is real valued and 0(λ, , -) 6 C M + 1 ( R m x R m ) for any λ G Λ.
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2. sup\dxdξφ(X,x,ξ)-I\<l.

3.

(Aa) 1. aj € C M ( R m x R m ) .

2. oo.

Lemma 1.7. (Kitada) Define a map

Then, under assumptions above, there exists an inverse map

satisfying

y = y(λ, z(λ, y, ξ, ry), ξ, 77), a; = z(X, y(λ, ar, ξ, r/), ξ, 77).

Proposition 1.8. (Kitada) Let a j(j = 1, , fc) α«ί/ φ as above. Then, for any
Cg°(R), we have

(1.24)

with

= Cn,ktι

j = sup

, 0,0,

sup

2. Classical mechanics corresponding to (1.1)

2.1. Hamiltonian flows

For the function H(t,x,ξ) defined in (1.16), we want to construct a solution (x(τ),

of

(2.1)
dτ"
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with the initial condition at r = s given by

(2.2) (x(s),ξ(s)) = (x,ξ)eR2m.

In order to use the anti-symmetry of Bjk, we use Lagrangian reformulation of
(2.1) (see [18]). That is, putting (q(τ),v(τ)) = (x(τ),ξ(τ) - A(τ,x(τ))), we consider

(2.3)
-τ-qj(τ)=υj(τ),

—V j(τ) = Bjk(τ,q(τ)}vk(τ} - $A, (τ,g(τ)) - dXjV(τ,q(τ}},

with the initial data

REMARK. Above problem (2.1) was treated in [10, 11] only when Aj(t,q) =
ajk(t)qk in (1.2).

Following propositions in this subsection are amalgam of results in [6], [11], [12],
[18].

Proposition 2.1. Let H(t,x,ξ) be given as (1.16). Under Assumptions (A) and
(V), for any (τ,s) € M2 satisfying \τ — s\ < 1, there exists a unique solution of (2.3)
with (2.4) which is denoted by q(τ), q(τ, s), q(τ, s, x, £), v(τ), , etc., depending on
the context.

Moreover, the solution (q(τ),v(τ)) of (2.3) is smooth in (r, s,x, ζ). Furthermore,
if\τ — s\ < 1 and \a -j- β\ > 1, there exist constants C and Caβ such that

(2.5)

\q(τ, s,x,ζ)-x-(τ- s)ζ\ < C(\ + \x +

\v(τ, s,x_, ζ) — ζ\ < (7(1 + ^ | + |CI)IT ~ sl>

,s,x,ζ) -x- (τ-s)C]| < Caβ\τ - .

_ \d°d%[v(τ,s,x,ζ)-ζ}\ <Cα / 3 |τ-s| l / 3 1.

- s

Proof. Use |V^(α:)| < C(x) which follows from Assumption (V). See, Lemma
2.1 and Proposition 2.2 of [18], and also Proposition 1.3 of [6]. Here, we used the fact

= 0. Π
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Theorem 2.2. Under Assumptions (A) and (V), for any (r, s) E R2 satisfying

\τ — s\ < 1, there exists a unique solution of (2.1) with any initial data (x, ξ) G R 2 m ,

which is represented by

,»^(2.o)

Moreover, (x(τ, 5, x, £), ξ(τ, s, x, £)) are smooth in (r, 5, x, ξ) /or | r — s| < 1 and

satisfy the following estimates: For any a.,β, there exists a constant Caβ such that

( \9ϊdl(x(τ,s,x,ξ)-x)\<Caβ\τ-8\(l+

Proof. By induction w.r.t. the order |a -f /?| of differentiation d%dj, we get

estimates (2.7) from (2.5) directly. See also, Proposition 23' of [18]. Π

Proposition 2.3. Under Assumptions (A) and (V), f/zere exists a constant 0 <

δι < I such that, for any (ί, s) G R2 satisfying \t — s\ < δι, we have the following:

(1) For any fixed ί, 5, ξ, f/ze mapping

(2.8) R m 9 x •-> x - x(ί, 5, x, 0 E R m

/5 a smooth-diffeomorphism. The inverse mapping

Rm 3 x H^ x = y(t, s, x, ξ) e R

(2.9) ίx = x(ί,s,y(ί,s,x,0,0 for any (t,s,

\x = 2/(ί,s,a;(ί,s,x,0,0 for any (t,s,

(2) For any fixed t, 5, x, //ιe mapping

(2.10) Rm 3ξ^ξ-ξ(t,s,x,0 eRm

w α smooth-diffeomorphism. The inverse mapping

Rm 3ξ^ξ = η(t, s, x, ξ) G R m satisfies

(2.11) ίξ = ξ(ί,8,x,r/(ί,s,x,0) for any (ί,s,

1^ = ry(ί,s,x,ξ(ί,5,x,0) for any (t,5,
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(3) By definition, we have

x s 5 x = x s

ί, t, x, 0 = x, ry(ί, ί, x, 0 = £

(4) Furthermore, (y(t), η(t}) is smooth in (£, s, x, ξ) w/YΛ the following estimates: There

exist constants Caβ, independent of (£, 5, x, ξ), swc/i that for any α, /?,

(2.13)

χ

I3?qf fait, «, x, o - oi < σα/3|t - β | ( i + |χ| + \

Proof. Take <Sχ satisfying CΌo|ί — s| < 1 where CQO is given in (2.7) of Theorem
2.2 and apply global implicit function theorem mentioned in [6]. Concerning estimates,
see, Proposition 3.2 and 3.3 of [11]. Π

2.2. The time reversing.

As we may solve (2.1) or (2.3) even if s < t and t is the initial time, we consider

the solution x(τ, ί, x, ξ), £(τ, ί, x, £), etc. of time reversed.

Then, we have

(2.14)

{ x = x(t, ί, x, 0 , £ = α(s, ̂  x, 0> ί * = ^ s ' ^ ' 0 ' ^ = x ( 5 ' 5 ' ^ ' ί) '
< _ _ _ resp. < _

Analogously, for the inverse mappings, we have

(2.15)

( x = 2/(s,ί,x,0> x = 2/(5,5,x,0, ί ^ = y(t,t,x,ξ), x = y(ί,s,x,0»
< _ resp. < _
[ ξ = ̂ 7(5, ί, x, 0 , ξ = η(s, 5, x, 0 , [ ξ = r/(ί, ί, £, 0 > f = ̂ (*> 5^ ̂  O

Therefore, we have

(2.16)

(η(s,t,x,ξ) =ξ(t,s,y(t,s,x,ξ),ξ), ί η(t,s,x,ξ) = ξ(s,t,y(s,t,x,ξ),ξ),
< _ resp. <
( y(s, t, x, ξ) = x(t, 5, x, η(t, 5, x, 0 ) , 1 y(*, «, x, 0 - x(5, t, x, r/(s, ί, x, 0)-



HAMILTONIAN PATH-INTEGRAL 873

By the uniqueness of the solution of (2.1), we have

and also,

(Z.loJ
_ _ _

, 5, x(s, ί, x, ξ)> £(5, *, z, 0 ) = £(r> *> >̂ O

By the same arguments of Theorem 2.2 and Proposition 2.3, we get

Proposition 2.4. ί/nder assumptions (A), (V), we /zαve ί/ίe following estimates:

r , ί , x , 0 - x ) | < C α / 3 | r - ί | ( l + |x| -h l
(2.19)

( \d?dl(ξ(τ,t,x,ξ)-ξ)\<Caβ\τ-t\(l + x\

Moreover,

(2.20)

f |S£af(y(M,s,0 - x)\ < Caβ\t - s\(l + |x| + |£|)<1-lα+/*l)+ (x = ̂ ς = ξ)?

\ ~
I \ftaftP(n(<t + T £\ £\\ < Γ1 n\ί βlΠ -i- M -I- |<h(i-|«+/3|)+ / .̂ _ ™ t _ t\
I |C/χ C/£ ^Ty^o, 6 , X , ζ J — ζJI 2± OQ/^3|6 — δ | ^ l - r | X | - r | ζ | j ^X — X_, ζ — ζ J.

2.3. Action integral.

Define

(2.21) S0(t,s,x,ξ)= ί [x(τ) ζ(τ)-H(τ,x(τ),ξ(τ))]dτ
J S

where (x(τ),ξ(τ)) are solutions of (2.1) with initial data (x,ξ) e R 2 m .
We put

(2 22) S(t s x £) = x £ -h <Snfί s x £) with x £ = x £

Using integration by parts, we get easily

( 2 ' 2 3 )

, , ,
(2.24) - 7- — ^ = £fe +ξι(t,s,x,ξ)
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On the other hand, by the very definition of the inverse map (2.9), we have

_

, * ^ * d%t ϊxιt,s,x,ykt,s,x, xet,s,x,ι
(2.26) 0 = •£— = - - -- — -- 1 -- — -

d£. L dxi. d£. d£ . J x=y(t,a,x,Q-J -j

Putting

(2.27) S(ί,s,x,0 = S(ί,s,y(ί,β,x,|),|),

we have:

Proposition 2.5. (Hamilton-Jacobi equation) If \t — s\ < δι, then S(t, s, x,ξ) is

smooth in (t, s, x, 0 and it satisfies the following:

(2, 28) S(s s x £} = x £

( dtS(t, s, x, ξ) + H(t, x, dsS(t, s, x, ξ)) = 0,
(2.29) <

\d.S(t,8,X,ξ)-H(8,diS(t,8,X,ξ),ξ) = 0.

Moreover, 5(ί, s,x, ξ) satisfies the following estimates:

(2.31)

M,x,0-£-0|<^ f o r a n ^ α '

(2.32) ^(ί7, ^, ^, 0 - S(ί, s, x, 01 < C(l + |x + |ξ|)2(|t - t'\ + \s- s'\).

Proof. For the future use, we give an elementary proof of (2.29) and (2.30).
By the definition (2.27), (2.23), (2.25) and (2.16), we get

dxk J lχ=ι/(t,8,ίc,o
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Using (2.27), (2.23), (2.24) and (2.26), we have

(t, s, x, ξ) = 4 f c (*. s, x, 0

S i γ C] fjlh [ ϊ C T* /-)
/ 5 «*>_5 ί^y '-^ί/AC\ t /) l->5'*y5>/

"aϊl aΓ

Sf (t, s,x, ξ)
-J - J lχ=

]

ί, 5, X, ί, S, X, 0

. .

By these, (2.30) is proved.
Remarking S(ί,s,x(t,s,x,ξ),0 = 5(ί,s,x,ξ) by (2.27), using (2.9) and (2.22),

we have

O Q

— (M,x,ξ)

dt

As we have

we get the first equation of (2.29).
Using the integration by parts and (2.1), we get

dS
— (ί, s, x, ξ) = -x(s, s, £, 0
σs - - ' ̂ » 0

~
dxk(τ,s)

" fc

. . .

' ^

9s t=s
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On the other hand, differentiating 5(ί, s, x(ί, s, x, 0 , 0 :

- £(£, s ,x,0 —

As we have, by differentiating x — x(s, s, x,ξ) w.r.t. s,

>̂> 0 w Γ t 5> w e h a v e

t = s

t, s, x,

Π _ j , ( e ς ™ <Λ

VJ — Λ/^S, Λ 5 £.1 ^J

we get

that is, substituting x = ?/(£, s,x,0 and using the second relation in (2.30), we get the
second equation of (2.29).

If \a+β\ > 1, d$d%(S(t,s,x,ξ)-X'ξ) is estimated as (2.31) by combining (2.30)
and (2.20). Using this, (13) and (2.29), we have easily

/•* 9

I ̂ ί'/ <? -r £} Ϋ . £\ < I dr PT(r Ύ ft <3(τ Q Ϋ £\\ < ΓΊt — <ίlΠ -\- l̂ rl -I- lAh 2

L^l i/ jO^tA/.C/ tA/ C _Ξ I W/ JJ l /«»A/« L/g λ_/l/ j Oj Λ/jCyί ^ vy I/ O I X |^ «Λ/ |^ ^ 7 *

- Λ
(2.32) is obtained with (2.31) from

rl

S(tf,sf,x,0-5(ί,5,x,0- / dβ^-ίJStH-ίβ'-sJSβ](flt'+ίl-β)*,θs'+(l-θ)s,x,ξ).
-/o

See also, Proposition 3.2 and 3.5 in [11].

2.4. Continuity equation.

Put

(2.33) D(t,S,z,ξ) = <iet(d*fS

d^Λ=det
V k -3 /

Π

dxk

which is well-defined for (ί, s) G R2 satisfying \t — s\ < δι, because of Proposition 2.5.

Proposition 2.6. (Continuity equation) Let Assumptions (A) and (V) hold, then

D(t, s,x,£) satisfies the following equation for \t — s\ < δ\:

(2.34)
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= 0 ,
( 2 ' 3 5 ) { ΘsD(t,s,x,ξ) - %. [D(t,s,x,ξ)dXjH(s,dίS(t,s,x,ξ),ξ)] = 0.

Moreover, for any α,/3, f/zere ex/sfs a constant C^β independent of x,ξ and t, s with
\t — s\< δι such that

(2.36) \d2d%(D(t,s,x,ξ) - 1)| < Caβ\t - s\.

Proof. By differentiating the first equation of (2.29) w.r.t. £., we get

dSt dSχe _

Differentiating once more w.r.t. x^ we have

, <

' Λ^. Λ<r ^ ' Λί Λ ^ Λ Λ^,.

Putting Skj = d2S/dxkdξ. and rewriting above, we get

^ - n— υ.
9Skj

—

In general, for any invertible m x m matrix X depending on parameter r, we have

(2.38) ^-det X = tτ(χ-lXr) det X = det X tτ(Xτ X~l).

Here, we use the following convention:

,dx\ = dxjk

\dτ)jk Or

As D = det(Skj) — det S and using the second equality of (2.38), we have

dt ]k dt
Remarking also

(2.39) c-ι^i = u-ι_ c-i,
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and multiplying S~£ to (2.37), we get

that is, we have the first equation in (2.35). The second one is also obtained by the

same fashion. (This proof is essentially due to Manes & Zumino [16].)

Estimates: By the definition of D and (2.31), we have easily

(2.40) \d£dD(t,8,x,Q\<C^\t-s\ for a + β\ > 1, \t - s\ < δl < 1.

Applying the method of characteristics to (2.35), we have the representation

(2.41) D(t, s, x, | ) = exp ( - Γ dr [HXkξk (τ) + SXeXk (r)Hξeζk (r)]
V Js

where H.(τ) = H*(τ,X(τ),η(s,t,X(τ),ξ)) and 5*(τ) - 5*(r,β, X ( r ) , | ) , respec-
tively. Here, we put X(τ) = x(τ, s,y(t, 5 , x , 0 , 0 , which is the solution of

= H^(τ,X(r),η(s,t,X(τ),ξ)). Therefore, by (1.3), (2.31) and
/ * j

dσ—— D(σ, s,x,ξ), we have
dσ

dτ[HXkξk(τ)

< C\t-s\,

since |ίfχfcξfc( ) + SXlXk( )H£lξk( ) < C and |ί - s\ < δl < 1. This yields (2.36) with

α + /? = 0. D

Now, we put

(2.42) μ(t,s,x,ξ)

which is called the van Vleck determinant (see, [9]).
By using Proposition 2.6, we get easily the following:

Proposition 2.7. For \t - s\ < δι, μ(ί, 5, x, ξ) satisfies the following :

(2.43) μ(s,s,x,0 = l-
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(2.44)
+ -μ(f , 5, x, 03* . [0fc if (ί, x, 0*S(*, β, x, 0)] - 0,

dsμ(t, s, x, 0 - #ξ μ(ί, 5, x, 0 dXj H(s, dξS(t, s, x, f ) , ξ)

- 0., x, , 5, x,

Moreover, for any a,β, there exists a constant Caβ independent of x,ξ and t,s with
\t — s\< δι such that

(2.45)

3. Composition formulas for FIO with ΦDO

3.1. Composition of FIO with ΦDO from the left

We give some composition formulas of the operator Hw(x, D%) with FIO F(α, φ)

defined by

(3.1) F(a,φ)u(x) = cm ί ^ α ( x ,
JR™

Theorem 3.1. Let F(a,φ) be FIO defined by (3.1) with φ G φ, α G 2L L ί̂
F w ( x , D*) be a Weyl type pseudo-differential operator with symbol H(x, ξ) 6 6 2 ( R 2 m )
given by (1.16) disregarding the time-dependence. Then, there exists CL=CL(X^) G
C°°(R2 m) such that

(3.2)

Moreover, CL has the following expansion

(3.3)
ξjH - dXja+ % d2. r L .

/ẑ  argument of H is (x,dxφ(x,η)) and that of φ and

rL(x,η) G C°°(R2m) is given by

is (x,ή). Moreover,

(3.4) rL(x,r/) = -—
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Proof. By definition, we have

(3.5)

Here, we put

(3.6) cL(x,η) =

with

x + y
ψ(x,ξ,y,η) = (x-y) ξ + φ(y,η)-φ(x,η) and q(x,ξ,y,η) = H{

(I) Before giving the full proof, we calculate rather formally which yields (3.3). As

(3.7) φ(y,η)-φ(x,η) = (% - Xj)dXjφ(x,y - x,η) = (y - x) - dxφ(x,y - x,η)

where

dXjφ(x,y-x,η) = I dτdXjφ(x + r(y - x),η),
Jo

we introduce a change of variables by

(3.8) | y ~ y _ ! L _ }^}_y~ + X~(

Inserting these into (3.6), we get

(3.9) CL(x,η) = c%n dξdye~τh ^'^H(x-\--,ξ-\-dxφ(x,y^η)ja(x-\-y,η).

By Taylor's formula w.r.t. ξ, we have

(3.10)

φ(x,y,r/)).
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Using (1.11), we get easily that

(3.11)

x + | , d^φ(χ, y, η))a(x + y,η)= H(x, θxφ(x, η))a(x, η).

On the other hand, remarking ξj e~ih~y = iKdy.e~ih~ and applying (1.11) after

integration by parts, we have

(3.12)

C2

m I dydξe-ih-1y ^jdζjH(x + | , £φ(χ, y, η))a(x + y, η)

= -iWy. \dζjH(x + | , dxφ(x, y, η)}a(x + y, η)] \ _
L \ Z / J \y=()

Thus, we get the main terms of (3.3) formally.

The remainder term is derived from

(3.13)

rL(x, η) =

[/
UO

As the coefficient of \ξ\2 of H is constant in x, we have, for any τ\ 6 (0, 1), ξ G Rm,

(3.14) ^ f c f f ( x + | , r ι | + ^ ( a : , j / , 7 7 ) ) = ^ f c f f ( x + | , ^ ( x , ^

Using integration by parts and applying (1.11), we have readily

(3.15)

-rL(x, f,) = -c^ dydξe-ih~^ [ξk dl^H(x + | , ^ ( x , y, η)) dXja(x + y, η)}

(II) To make the above procedure rigorous, we need to justify the usages of the chang-

ing the order of integration and those of delta functions. But, these are readily justified

by using oscillatory integrals and therefore omitted here. Π
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REMARKS, (i) The main term is easily obtained from

Σ
|α|=0

(ii) The term -2~lihdljξ.H - a in (3.3) will not appear if we use H(x, D%) instead of

(iii) Above arguments are applicable for more general symbol P(x, ξ) satisfying, for
any j , fc, £ = 1, , m and x, ξ,

(3.17) 3 U ί , J'fo 0 = 0 and ^ ^ ( x , ξ) = 0.

3.2. Composition of FIO with ΦDO from the right

Theorem 3.2. Let F(a, φ), Hw (x, £>£) be FIO and Weyl type pseudo-differential,
respectively. We assume that a, φ as above and H(x, ζ) is given by (1.16). Then, there
exists CR = cR(x,ξ) e C°°(IR2m) satisfying

(3.18) F(a, φ)Hw(x, Dh

x) = F(cR, φ).

with the following expansion:

(3.19) cR = aH- ih{dζja 3XjH + ^a(s^x .H + ^ φ dlkXjH) } + rR.

Here arguments of CR, a and φ are (x, £) and that of H is (dξφ(x, ξ), ξ), and TR(X, ξ)
is expressed as

(3-20) rR(x, ξ) = 4V (x, ξ)ξi + r(^(x, ξ).

Proof. As before, it is enough to calculate formally which yields (3.19).
(i) By (1.20), putting

, , ,

we have

(3.21) F(a,φ)Hw(x,D*)u(x) = cm J
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Here, we set

(3.22) CR(x,ξ) = C

Using

φ(x, η) - φ(x, 0 = d^φ(x, ξ,η~ £)(%' - ξj) = d^φ(x, ξ, η - ξ) (η - ξ),

where

(3.23) fζφ(x, ζ, C) = /
Jo

we define a change of variables as

Then, we get

(3.25) CH(X, ξ)=c2

ΐnj dydή <Γih^™a(x, ή + 0 ff Λ(j/ + ̂ ( x , ξ, ίy), 0-

(ii) Using Taylor's expansion for Hh(- ) w.r.t. y, we decompose

(x, ξ, ίy), 0 =

with

So, we put

where

(3.26)
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C\ r)rj\ T — f» I /J'Γirl'ri & y ' ^ n f ' Ύ rί -L- £\rίΊ •/") tf ( f)*fh( Ύ £ Tl\ £\

\j.ΔI) ±2 — C m I ayCLTl G CL^X^Tf ~τ ζjyj(Jχ.22 {uξψ{Ju, ζ , //^, ζ^,

and

(1 98^ To — f& I rHϊfJΎΊ f>~^ y'^nίv T) -I- £\'Γι iΊι 77"^ fV A iί r?^

^j).z,o^ ^3 —(^rn i ayuίi e α^x, // -|- ζ)yjyk π ficj\\ Lι s, ί/5 '/y

(iii) Using (1.11), we get readily

Remarking d^e~lh ^ = —ih~lyje~lh ^ , integration by parts and applying (1.11),
we get

(3.30)

/2 - -<ft [α f e . (x ,O^x,(0ξ(^,0,0+ 2 α ( X ' ^ ^ ^ ^ ' ^ ^ ^ ^ ( x > ^ ' ^

Therefore, we have,

(3.31)

- ih{a^HXj + - α (HX£^ + ̂ ξ ^ jF/X£Xj)}

/i2r „ 1 ,

with arguments of α*, 0* are (x, 0 a n (^ those of f/* are (dξφ(x,ξ),ξ), respectively.
From this, the main terms of (3.19) by picking terms of order up to 1 w.r.t. h from

/1+/2-

(iv) By integration by parts, we get

(3.32) h = ~n2c2

m dydή e-*-1™^ [a(x, ή + ξ) H^j}(x, ξ, y, ή)} .

Therefore, we get

where

«ι

7o
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and arguments of α*, H$ and φ* are (x, ή + £), (x, ξ, i/, 77) and (x, ξ, 77), respectively.
Putting, for any F,

we have

ξi + WoS - -rG^) with W(χ) - - ^ ( x ) ^ ( x ) + V(x).

Therefore, we have

Here

(3.33)

(3.34)

(3.35)

+

where arguments of o*, A, and 0* are (ar,η + ξ), (x,ξ,y,f/) and (x,ξ,η), respectively.
Finally, we put

where arguments of α* and 0* are (x,0 and those of H* are (9ξ(/>(x,ξ),ξ), in other

lines, arguments of integrand functions are the same as before. Π
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REMARKS, (i) The main term of expansion of CR is given by

1 / *-\ΛV /'ϊ-\/? /

(3.36)
|α+/3|=0

j/=z=0,

In fact, this formula is obtained for any ΦDO P as follows:
Using u(z) =cmfdζ'em~lz ξ'iι(ξ'), we have

(3.37)

F(a,φ)Pw(x,D*)u(x)

Here, we set

(3.38) CΛ(Z, O = Cm / dξdydηdz eih~^(x^v^z^q(x, ξ, y, η, z)

with

φ(x, ξ, y, ry, z, CO = -y ξ + (?/ - z) η + z ξ7 + 0(x, 0 - 0(x, ξ ;)5

Using (3.23) and

φ(x, 0 - φ(x, £') = 9^>(x, ξ',

where

^ ( ^ ί ; , C

we define a change of variables as

(3.39) = y-z,
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Rewriting

ψ(x,ξ,y,η,z,t') = (y-z) (η-ξ) + (z- fyφ) (ξ1 - ξ),

we get

(3.40)

,f) =

dξdydήdz eih-l^-^a(x, ξ + ξ ')P( | + z + d^Φ(x, I ξ'),

y

Applying Taylor's expansion for P( - - ) w.r.t. - + z, we have (3.36) as the first and

second terms.

(ii) If the so-called Coulomb gauge G(x) = 0 is imposed, then the expression of the

remainder term in (3.31) and (3.34) is considerably simplified.

4. Definition and properties of parametrix

4.1. Definition of parametrix

Using functions S(ί, s,#,ξ) and μ(ί, s,x,ξ) = P 1 / 2 ^ , s,x,ξ) defined in §2, we
consider an integral transformation E(t,s) on <S(Rm):

(4.1)

:μ,S)u(x) = cm ί
JR

Lemma 4.1. Assume (A), (V) and \t — s\ < δι (defined in Proposition 2.3). Then,

for any u G (70° (Rm), there exists a constant C such that

(4.2) \\E(t,8)u\\<C\\u\\.

Proof. Since we have (2.31) and (2.45), we may apply Proposition 1.8. Π

Proposition 4.2. (I) For each u <Ξ L 2 (R m ) , we have

(4.3) s-lim E(t,s)u = u in L 2 ( R m ) .
|t-β|->0

(2) If we set E(s,s) — I, then the correspondence (s,ί) — > E(t,s)u gives a strongly

continuous function with values in Z/2(Rm).

Proof. See Lemma 4.2 of [ 1 1 ] . D
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4.2. Approximate estimate

Proposition 4.3. Let u e <S(Rm). For any fixed x G E m , E(t, s)u(x) is abso-
lutely continuous in t, and its derivative is represented as

(4.4) £(ί, s)u(x) = C m d ξ t [μ(t, s, x, Oe i f t~ l s ( t ' e ' I ' « ] fi(0

Moreover, for any x € Rm, we have

(4.5) ~E(t,s)u(x) = -Hw(t,x,D*)E(t,s)u(x)
i at

Here, GL(£, s) satisfies

(4.6) \\GL(t,s)u\\ < Ch2 \t-s\\\u\\,

where C is independent of t, s, u and h, 0 < H < 1.

Proof. (4.4) follows directly from the definition of the oscillatory integral and
Lebesgue's dominated convergence theorem. Using the Hamilton- Jacobi and the conti-
nuity equations with the product formula in Theorem 3.1, we get

-.(μt + ih-lStμ) =ik[μXjHξj + (l/2)(ffx,& + HξjξkSXjXk)μ] - μH

= -[amplitude part of the "symbol" of (Hw (t, x, Dx)E(t, s))} + rL.

Here, arguments of ΓL, μ and 5 are (t, s, x, ξ) and those of H are (x, dxS(t, s, x, ξ)).
Moreover, as rL = rL(t,s,x,ξ) = -^Δxμ(t,s,x,ξ) by (3.4), it has the following
estimate: for any multi-indeces α and /?, there exists a positive constant Cα?/# such that

(4.8) | ^ β r L ( ί , β , x , O I <Caβtf\t-s\.

Therefore, putting

GL(ί, s)u(x) = crnj'dξ r L (t, β, x, Oe ί Λ~ l 5 ( t 'β '* '«fi(0,

we get (4.6) by (4.8). Π

REMARK. One of the main reason why we use μ instead of 1 as the amplitude
of E(t,s), is to have the equality (4.7). More essentially, see Inoue-Maeda [9] for the
introduction of the intrinsic Hubert space. Analogously as above, we have
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Proposition 4.4. Let u G <S(Rm). For any fixed x G Rm, E(t, s)u(x) is abso-
lutely continuous in s, and its derivatives are represented as

(4.9) -E(t, s)u(x) = c m d ζ - s (μ(t, s, x, ξ)eih

Moreover, for any x G Rm, we have

(4.10) ~E(t,s)u(x) = E(t,S)Hw(S,x,Dx)u(x)

Here, GR(t,s) have the following estimates.

(4.11) | |G Λ ( ί ,5H|<Cft 2 | ί -5 | |H | |

where C is independent of t, s, u and h, 0 < h < 1.

Proof. We claim that for any α, β, we have

where r^ (t, s, x, £) and r^' (t, s, x, ξ) are defined in (3.33) and (3.34). As other terms
are analogously estimated, we only prove the first term in (3.33) satisfies the claim:
Thus putting

bi(t,s,x,ξ) = -tfc^ I dydήe

we may claim

This follows from the definition of oscillatory integrals appearing in Proposition 1.2,
see, for example, [13] and [12]. In fact, taking 21, 21' > m, we have

/ dydή e-ίh~lϋ'ήμξjξk (t, s,x,ξ + ή)Ai(kj)(s, x, ξ, y, ή)

-ί™(ήΓ»(DtΓ^^^

= I dydή [(ή) ~2l(y)~2e/ {bounded functions} + etc.}. Π
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Corollary 4.5. In case Aι(t,x) = a>ij(t)xj, we have

(4.12) \\GR(t,s)u\\ < Ch2\t - s\\\u\\.

Proof. In this case, as A^a) — 0, |α | > 2, we have rRl = 0. Π

Proposition 4.6. There exists a positive constant C such that for u G <S(Rm),

(4.13) \\(E(t, *ι)E(*ι, *) - E(t, s))u\\ < Ch(\t - Sl | 2 + \Sl - * | 2 ) |H| | ι ,

(4.14) \\(E(SljtΓE(8l,8) - E(t,s))u\\ < CH(\t - Sl\
2 + \8l - s\2)\\u\\.

Proof. Let u G <S(Rm). Then, we have by Propositions 4.3 and 4.4,

}GL(°, 8)u\\
(4 15)

After integrating with respect to σ from s to si, we get (4.13). On the other hand,

remarking

d r=t

(E(sl,s)u,E(8l,t)w) - (E(t,s)u,w) = - — (E(τ,s)u,E(τ,t)w)
ar

we get (4. 14). Π

As a corollary of (4.14), we get

Corollary 4.7.

(4.16) \\E(t,s)\\ <

4.3. Regularity

Fix T > 0 arbitrary, and assume t, s, si G [-T, T] such that t, si G [5 - <5ι/2, s +

ίι/2], where 5ι is defined in Proposition 2.3.

Lemma 4.8. (Proposition 6.1 of [11]) Let \t-s\< δι and u G 5 ( R m ) . Then, we

have the following:

(1) For any multi-indices α, β and j (1 < j < ra),

,ΛΛ~ j\\xad%[dx.,E(t,8)]u\\<Caβ\t-8\
(4.17) <

1 \\xa[Xj,E(t,s)}u\\<Ca\t-S\\\\u\\\[a\+1
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where constants Caβ and Ca are independent of t, s and u.
(2) Moreover, we have, for any a, β,

(4.18) \\xad?E(t,s}u\\ < e ^ - I U α ^ u l l +Caβ\t - s\ \\\u\\\]al+]0l

for some constants C and Caβ independent of t, s and u.
(3) For k G Z_|_, we have

(4.19)

with some constant C > 0. This implies that E(t, s)u G S(Wn) for u G C£°(Rm).

Proof. (4.19) follows from (4.17). Using (4.19) and the Sobolev imbedding theo-
rem, we get the last assertion. In fact, we get for any I, a, there exist constants C, C'
and k such that

(4.20) \(xγ8ζE(t,8)u(x)\ < C\\\E(t,s}u\\\k < C'\\\u\\\k. D

5. Composition of FIOs

In order to apply diectly the theorem of Fujiwara or Kitada, the estimate (4.13) is
insufficient. We calculate the quantity \\E(t, s)E(s, r)u — E(t, r)u\\ directly.

Lemma 5.1. Let \t — s\ + \s — r\ be sufficiently small. For any x, ξ, there exists a
unique solution (X, Ξ), X = X(t, s, r, x, £), Ξ = Ξ(ί, 5, r, x, ξ) of

(5.1)

Moreover, we have

\

^d(Ξj - ξ})\ < Ca,β(\ + \x

Proof. See, Kumano-go, Taniguchi & Tozaki [15], Propositions 2.2 and 2.4 of

[12]. Π

Putting

Φ(t, s, r, x, 0 = S(ί, 5, x, Ξ) - XΞ + 5(5, r, X, ξ),

we have,
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Lemma 5.2.

(5.3)

A. INOUE

—Φ(ί,s,r,z,£) = 0,
as
r\

—Φ(t, s, r, x,ξ) = -H(t,x, 9xΦ(t, s,r,x,ξ)),
r\

Proof. The first equality is obtained by using the Hamilton- Jacobi equation and

(5.1) as follows:

- 0,S(ί, s, x, Ξ) + 3eS(ί, s, x, Ξ) - -Ξ - X

3X
+ dsS(s,r,X,ξ) + —dxS(s,r,X,ξ)

OS

= H(s, d(S(t, s, x, Ξ), Ξ) - H(s, X, ΘxS(s, r, X, ξ)) = 0.

Analogously, we have other equalities. Π

Corollary 5.3. Let \t — s\ + \s — r\ be sufficiently small For any s satisfying this,

we have

Proof. In fact, by making s —» r,

we get

By the first equality in (5.3), we have

/"s d

0 = / ds—Φ(t, 5, r, x, ξ) = Φ(ί, 5, r, x, ξ) - Φ(ί, r, r, x, £). D

REMARK. Φ(ί, s,r, x,ξ) is called a ^-product of 5(t, 5,x,ξ) and 5(s,r,x,ξ),

and which is denoted by 5(ί, s, x, )#S(s, r, , ξ) in [15]. Now, we have, as an oscilla-
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tory integral,

(5.5)

E(t,s)E(s,r)u(x) =

f dηdy dξ μ(ί, *, x, η)μ(s, r, y, ί ) e

ί Λ - 1 ( 5 ( ί β a ! ^
./R3m

Using the change of variables

y = X + y, η = Ξ + ή,

and (5.4), we have

(5.6) S(t, s, x, ή)-yη + S(s, r, y, 0 - S(t, r, x, ξ) = -yή + β(ί, s, r, x, ξ, y, 77)

with

R(t, 5, r, x, ξ, y, 77)

= ήkj

Therefore,

Jo

, ί
J]R2

Putting

(5.7) E(t, s)E(s, r)u(x) - E(t, r)u(x) = cm ί dξ 6(t, 5, r, x, Oe<n" l5(*' r'x'«fi(0
JR^

with

6(ί,s,r,x,ξ) =

c^ / dηdyμ(ί,5,x,Ξ + η ) μ ( 5 , ^
7R2m

we want to have
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Proposition 5.4. Under the assumptions (A) and (V), if \t — s\ + \s — r\ is suffi-
ciently small, we have

(5.8) I9?0δ(*, s, r, x, 0 1 < Ca,β(\t - s\2 + \s- r | 2 ) .

This estimate is conjectured in [8] and then proved by K. Taniguchi [17].
From (5.8), we have proved

Corollary 5.5. There exists a constant C such that if \t — s\ + \s — r\ < δ and
u e <S(Rm),

(5.9) \\E(t, s)E(s, r)u - E(t, r)u\\ < C(\t - s\2 + \s - r 2)\\u\\.

6. Proof of Main Theorem

We apply the abstract theorem in Appendix A: Put

XQ = χl = L 2 (R m ), with norm || - | |0 - || ||ι - || - ||,

D = S(R m ), W = y2, F(ί, s) = E(t, 5), α = 7 = 2,

A0(t) = ih~lHw(t,x,Dh), A(i) = the closed extension of irΓlHw (t,x,Dh] with

domain Y^.

Then, we have that U(t,s) = limδ(Δ^0E(Δ\t, s) in the operator norm in L 2 (R m ) .
More precisely, (Al) is given by (4.16), (A2) is proved in (5.9), and Proposition 4.2
gives (A3). Therefore, there exists a family of bounded operators {U(t,s)} satisfying
(1) and (2) of Main Theorem. Assumption (iii) of Proposition A4 is proved by re-
marking (4.19) (see the proof of Theorem 4 of [6]). (A6) is proved in Proposition 4.3.
These imply (3) of Main Theorem. The isometry of the operators [/(£, s) and E7(s, t)
are derived from the formal self-adjointness of H(ί, x, D%) and the equations (3) in
Main Theorem. Therefore, the operator [7(t, s) is unitary. Π

REMARK. In case when we have only the estimate (4.13) instead of (5.9), we
show the strong convergence of the Cauchy net {E(Δ\t, s)u}. In fact, we may apply
the abstract theorem by putting

X0 = L2(Mm), Xί = Yl with norms || | |0 = || - ||, || ||ι = ||| |||ι,

D = <S(Rm), W = Y2, F(t, s) = E(t, s), a = Ί = 2,

A0(t) = ih~lHw(t, x, Dh), A(t) = the closed extension of ίtΓlHw(t, x, Dh) with

domain Y"2

Then, for U € D, we have U(t, s)u = s — lim^(A)^o E(A\t, s)u, that is,

\\U(t, s)u -
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A Abstract Product formula

For the self-containedness of this paper, we modify and extend slightly Fujiwara's

argument (see also Theorems 2.1, 2.4 of [11], Theorems A, B of [10]).

Theorem Al. Let Xj (j = 0, 1) be two Banach spaces "with norms || ||o, || ||ι,

respectively. X\ is assumed to be continuously and densely imbedded in XQ. Let

D be a dense subspace of each Xj (j = 0, 1). Let a family of linear operators

(F(t,s) I (t,s) e [-Γ,Γ] 2 , \t - s\ < 1} for T > 0 acting on Xj, be given with

the following properties:

(1) For each j , F(t,s) is a bounded operator on Xj such that there exist a con-

stant C\ > 0 and 7^ > 1 satisfying

(Al) \\F(t, s}u\\j < ec^-s\Ίj \\u\\j for j = 0, 1.

(2) There exist a > 1 and C<2 such that for any u G X\,

(A2) \\(F(t, * i)F(*!, s) - F(t, s))u||o < C2(\t - Sl\
a -f \8l - β|α)||tx||ι.

(3) For u E D, F(ί, s)u is a X^-valued strongly continuous function in (ί, s) G

and it satisfies

F(s, s)u — u for any s E E,

For a subdivision Δ o/ (5, t) such that

Δ : to = s < ti < < t£_ι <tf> = t and ί(Δ) = jnax |ij - ^ _ι|,

, /or αnj u e D, there exists a limit

(A4) U(t,s)u= s-lim F(Δ|ί,s)w in
5 ( Δ ) — > 0

such that

(A5)
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Here, C3 = C2[(l - 2l~a)-1 + 2^~1)(e(α - I)log2)~1]. We have also,

(A6) \\V(t,8)u\\j <ec^~s\ \\u\\j for j = 0,l-

Moreover, if we put U(s, s) = I for \s < T, then

1. the mapping: [— T, T] 2 3 (t, s) — > C/(ί, s)ιι G XQ w continuous for any u G XQ>

2. (evolutional property)

ι,t3)u for any fe < T.

For the proof, we prepare the following lemmas:

Lemma A2. Let ΔL = {tj} with tj = s + jL~l(t - s) for j = 0, 1, , L and

δ(ΔL) =L~l\t-s\. We have

(A7) | |(F(ί, β) - F(Δ|ί, *)M|o < C 3 | t - β Γ e * - * |H | ι ,

where F(ΔL\t,s)u = F(tL,tL,ι)

Proof of this lemma is obtained from Lemma 5.7 of [6].

Lemma A3. Let two subdivisions of [5, t] be given by

Δ I : s = t0 < tι < - - - < tL-ι <tL=t

Δ 2 : s = SQ < si < - - < SM-I < SM =t

Assuming that ί(Δι) < δι and 5(Δ2) < δ\, we get

(A8)

t, 8) - F(Δ 2 | t , s))u\\0 < C3\t -

This lemma corresponds to Lemma 5.8 of [6], therefore the proof is omitted.

Proof of Theorem. Al By the above lemma, we get (A4). Moreover, as is proved

in Theorem 4 of [6], we have the estimates (A6).

Concerning the evolutional property for s < r < t, we take the subdivision Δ

containing r, i.e.

Δ = Δ/ U Δ r with Δ/ : s = tQ < tι < < tL = r < tL+ι, Δ r : tL

= r < tL+ι < ••• <tM = t.
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Then, remarking F ( Δ r ί,r)F(Δj|r,s) = F(Δ|ί,s), we get

\\U(t, r)U(r, s)u - U(t, s)u\ 0 < \\((U(t, r) - F(ΔP |ί, r))U(r, s)u\\0

+ \\F(Δr\t, r)(I7(r, a) - F(Δ, |r, s))«||0
+ | |(F(ΔP |*,r)F(Δ, r,β) - U(t,s))u\\0 -> 0 when 5(Δ) -> 0.

In fact, for u G -D, we have

, r) - F ( Δ r t, r))J7(r, s)tx||0 < C\t - r ̂ ( Δ , ) - 1 1| t/(r, β)u|| i

- r |<S(Δ r )
α - 1 e C l | r - s | ||w||ι -> 0 when <S(Δ) -> 0.

897

Proposition A4. Under the same assumption as above, we assume that:
(i) There exist a closed operator A(t) with domain D(A(i)) in XQ.
(ii) For u e D, F(t, s)u G D(A(t)) and F(t, s)u is X0-valued differentiate in t €
and

Γ\ -t

—F(t,s)u +A(t)u = Q, that is, ]\m\\τ(F(t + h,t) - I)u + A(t)u\\Ό = Q.
Ot s—t h^ O Γi

(iii) ||l/(ί, s)u\\j < C \\u\\j for u € D.
Then, we have

(A9)

Proof. The first one is easily seen from

I - (U(t + h,8)- U(t, s))u + A(t)U(t, s)u\\0

< || ̂  (U(t + Λ, t) - F(t + h, t))U(t, S)U\\Q

as 0.

Because, the first term is majorized by ha l\\u\\i and the second term tends to 0 when

h -> 0 by (ii) and U(t, s)u 6 YI for u G D by (iii).
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The second one is given by

\\l(U(t, 8 + h)- U(t, s))u - U(t, s)A(s)u\\Q

ίl

< C\\\ (U(s + M ) - I)u + A(8)u\\o + C\\(I - U(s + Λ,s))A(s)u\\Q.
ίl

Here, we used the evolutional property and \\U(t,s + h)\\ < C and A(s)u G XQ for

ue D. Π

B The comparison with two formalisms

Bl. Lagrangian formulation revisited.

When we treat the problem in the Lagrangian formalism, we have the following

theorem:

Theorem Bl. A parametrix of the initial value problem (1.1) is given by

E(t,s}u(x] =£m ίdyμ(t,s,x,y)eίh~1^t^x^u(y) with c m - ( 2 π ^ ) ~ m / 2

(Bl)

Here, S(t,s) = 5(ί,s,x,y) satisfies the following Hamilton- Jacobi equation;

(B2) .
lim(t-s)S(t,s) = -\x-y\\
t — >s £

and μ(t, s) = μ(t, s, x, y) satisfies the following continuity equation;

(B3)

&tβ(t, s) + dxjμ(t, s)Hξj (t, x, dxS(t, s)) + iμ(ί, s)-^Hίj (t, x, dxS(t, s)) = 0,

lim(ί-s)m/2μ(ί,s) = l.
t — > S

To have this formula (Bl), we introduce a classical path 7(7-, s) = 7(7-, s,x,y)

which satisfies

(B4)

— 7 j ( τ , s) = Bjk(τ, 7(r, s)) ̂ 7fc(r, s) - dtAj(τ, 7(r, s)) - dXj V(τ, 7(r, s)),
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The unique existence of this path is guaranteed by the assumptions (A) and (V). Then,

defining

(B5)
/•*

S(t, 5, x,y) = / L(r, 7 ( r , 5), -γ(τ,
J s

we have not only (B2) but also the estimates of \dχd&S(t, s,x,y)\ as in [18]. More-

over, it satisfies

(B6) daS(t, s) - H(s, y, -dyS(t, s)) = 0.

Defining

we have a solution of (B3) with estimates \dχd@(μ(t, s, x, y) — 1)|, and which satisfies

also

(B7)

daμ(t, s) - dykμ(t, s)Hξk (s, y, -dyS(t, s)) - -μ(t, s)—Hξk (s, y, -dyS(t, s)) = 0.

Proposition B2.

(B8)
r\

—E(t,s)u + ̂ (t,x,D*)E(t,s)u = GL(t,s)u, with \\GL(t,s)u\\ < Ch2\t - s\\\u\\.
ot

Proof. In fact, using the differentiation under the oscillatory integral sign and

applying (B2) and (B3), we have readily

GL(t, s)u(x) = ti2 dy Δxμ(ί, β , x, y)eίh~s^u(y).

As |Δ x μ(t, 5, x, y)\ < C\t — s|, etc., we have the desired result. Π

Proposition B3.

(B9)
r\

—E(t,s)u-E(t,s)W(s,y,D*)u = GR(t,s)u with \\GR(t,s)u\\ < Ch2\t - s\\\u\\.
OS y
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Proof. By the integration by parts under the oscillatory integral sign, we have

dy μ(ί, s, x, y)e ift~ 1 S < t a5 »>H(S> y, £ > > ( y )

= fdy [^(-^- + Aj(s,y))2 - V(s,y)} (μ^s^y)^'^'''^) u(y).
j Δ i oyj

On the other hand, we have

hd_

i ds

As is shown before,

, s ,

applying (B6) and (B7), we get readily that

GR(t,s)u(x) =
D

From these propositions, we have

Proposition B4.

(BIO) \\E(t, s)E(s, r) - E(t, r)\\ < CH(\t - s\2 + \s- r | 2 ) ,

(Bll) \\E(s,t)*E(8,r)-E(t,r)\\ <CH(\t-s\2+ s-rf).

B2. The difference.

(1) In calculating (4.13) and (4.14), we derive an operator Hw(t,x,D^) from

H(t,x£) using the Fourier transformation. While proving (BIO) and (Bll), we use

H(ί, x, D%) as a given operator without considering from where it stemms.

(2) In the Lagrangian formulation, the time reversing and taking the adjoint are

rather nicely related. To show this, we have

Proposition B5. Under Assumptions (A) and (V), we have

(B12) 5(ί,s,z,2/) = -5(M,3/,z) .
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Proof. Putting x = x, y = x, we use the results in §2. Let q(τ) be a solution of
(B4) with q(s) — x, q(t) = x where r moves from s to t. Then,

/•*
(B13) S(t,s,x,x) = / dτL(τ,q(τ),v(τ)) with υ(τ) = q(τ).

Js

Using the change of variable r = s + θ(t — s) with 0 < θ < 1, we have

S(ί,s,ά,z) = (ί-s) / dθL(s + θ(t-s),q(s + θ(t-s)),v(s + θ(t-s))).
Jo

Moreover, for 7j(0) = QJ(S + 0(ί — s)), we have

(B14)

+ θ(t - s), 7(0))

7(0) - x , 7(1) = α

Analogously, let q(r) satisfy (B4) with q(i] = x, q(s) = x_ where r moves from t

to s. Then, by putting f = t + (1 - θ)(s - t) = s + θ(t - s), we have

(B15)

r1

S(s, t, x,x) = -(t-s) I dθ L(s + θ(t - s), q(s + θ(t - s}), v(s + θ(t - s)).
Jo

It is easily checked that 7(0) = q(s + θ(t — s)) satisfies the same equation as (B14).

By the uniqueness of the solution of (B14), we have the desired result. Π

Therefore, combining above with the definition of μ(ί, 5, x, y)9 we have

Corollary B6.

μ(ί, 5, x, y) = μ(ί, 8, y, x) = (-l)m / 2μ(s, t, y, x).

Now, we have

Proposition B7. Under these circumstance, we have

(B16) E(t,s)* =E(s,t).
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Proof. We have readily

E(t,s) v(x) = 5^ ίdyμ(t,s,y,x)e-ίtί~1§^s'y'x)v(y)

(B17) •',
rlii Γι(+ o 11 v^^ifi- S(sJιxιy) 11(11} — Ί?( Q +\ιι( v\

ay μ(ι, s, ?/, x)e v{y) — &\s,i)V\X).

In fact, c m μ(ί, s, ?/, x) = cmμ(s, t, x, y) follows from directly. Π

REMARKS. (1) In this formulation, we have (BIO) from (Bll) and (B16) without

calculating (B9).

(2) If we knew the uniqueness of the solution of (B2), we had (B12) combining (B2)

and (B6).

But in the Hamiltonian formulation, this relation does not seem to hold in general.

We have the representation

(B18) E(t,s)*v(x) = c2

m if dξdyμ(ί,s,y,ξ)eih~l^-s^y^v(y).

Using (4.14) and the proof of Proposition 5.4 of [6], we have

\\E(t, s)*υ - E(t, s)~lv\\ < C\t - s\2\\υ\\,

and by (5.9),

\\E(s, t)v - E(t, s)~lv\\ < C\t - s\2\\v\\.

This yields at least

Proposition B8.

(B19) \\E(t,s)*-E(s,t)\\<C\t-s\2.

B3. Problems.

(i) In [7], Fujiwara gives a kernel representation of the fundamental solution of

(1.1). There appears the Maslov index. From the definition of the Maslov index,

it seems natural to formulate the kernel representation in the phase space, in other

word, the Hamiltonian path-integral will be helpfull to understand the appearance of

the Maslov index.

(ii) In the Lagrangian formulation, we have (BIO) with the explicit dependence of

h. But, we have not such explicit dependence in (5.9) for the time being.
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(iii) The singularity w.r.t t — s or others in 5(ί, s, ) or μ(£, s, ) diminishes in

the Hamiltonian formulation comparing with the Lagrangian one. As an example, we

consider the Hamiltonian H(x,ξ) — | ( ξ — αx) 2 + | 6 2 x 2 , and then we have

v ' ' ' 2(6cosftί-αsin6ί) ' ' ' fccosfa - αsinfa'

More precisely, the singularity at time t = 0 of μ(ί, 0, x, j/) stems from the delta func-

tion character when t —> 0 in the Lagrangian formulation. But in the Hamiltonian one,

there is no singularity for μ(ί, 0, x, ξ) when t = 0.

On the other hand, Yajima [19] claims that there exists no smooth fundamental

solution for the Schrodinger operator with time independent super-quadratic potential
t r\ *-2 pΩ,

in R1, e.g. τr~^~^ + χ 4 From Yajima's inteφretation, this is because for any

spatial points x and y and any time ί, there are trajectories with arbitrarily high energy

that leave y at time zero and reach x at time t.

Therefore, we want to ask even after Yajima's claim whether we have a fundamen-

tal solution for the above operator in the form

with smooth functions 5(ί, 0, x,ξ) and μ(ί,
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