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0. Introduction

We will classify the homogeneous spaces M = G/K satisfying that (i) M are
fibered over irreducible symmetric spaces G/H, and (ii) certain G-invariant metrics on
G/K are g.o. with respect to G. Among them are many examples of weakly symmetric
spaces, which were described in [4], [25] and [5]. In fact we will obtain new examples
of weakly symmetric spaces. We will find very useful the theory of orbits of s-repre-
sentations ([10] and [21]), and the classification of real irreducible polar representations
([6]).

A connected Riemannian manifold is called g.o. (geodesic orbit) if every geodesic
is an orbit of a one-parameter subgroup of the isometry group. Every symmetric space
is g.o. A connected Riemannian manifold is called weakly symmetric if, for any two
points, there exists an isometry which interchanges them. Weakly symmetric spaces are
also g.o. ([2]).

To study these spaces (more generally, Riemannian homogeneous spaces), the
isotropy representations will play important roles. For example, W. Ziller character-
ized weakly symmetric spaces in terms of the isotropy representations, and provided
many examples ([25]).

The isotropy representations of semi-simple symmetric spaces are called s-repre-
sentations. One of their most interesting properties is the conjugacy of maximal abelian
subspaces (see Lemma 1.5). A representation of a compact Lie group, which has the
above property, is called polar (see below for exact definition). J. Dadok has investi-
gated them, and classified irreducible ones ([6]). It is natural to expect that there are
some relations between symmetric-like Riemannian manifolds and generalizations of
^-representations.

In [7] and [20], g.o. metrics on a compact fiber bundle

F := H/K —>M:= G/K —> B := G/H

have been investigated. A necessary and sufficient condition for certain metrics to be
g.o., can be expressed in terms of the Lie algebras. Actually, the assumption that G is
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compact is not necessary : if G is semi-simple and (G, H) is a symmetric pair, then

we can argue about this case in the same way. The aim of this paper is to classify the

Riemannian g.o. spaces fibered over irreducible symmetric spaces.

The classification will be accomplished in the following steps. Let (G*,i ί) be the

non-compact dual of a compact symmetric pair (G,/f). A triple (G,H,K) satisfies

our condition if and only if (G*,H,K) also satisfies it (Theorem 3.2). Thus we can

assume G is compact. If a triple (G, H, K) satisfies our condition, then the restriction

of the isotropy representation of B — G/H to K, is irreducible and polar (Theorem

2.3). From the classification by J. Dadok, we can list all candidates for satisfying the

condition. The classification will be done case by case. To check each of them, we

have found very useful the restricted root systems and the orbit types of s-representa-

tions, which has been investigated in [10] and [21].

1. Preliminaries

Let (M :— G/K,g) be a connected Riemannian homogeneous space, where G is

the full isometry group. Let T0M be the tangent space of M at the origin o. The

natural action of K on T0M is called the isotropy representation of M.

Proposition 1.1. (M = G/K, g] is symmetric if and only if there exists x in K

such that x acts on T0M as —id.

There are interesting generalizations of symmetric spaces, which have been inves-

tigated by many authors (see [14] and [3] for surveys). We mention, here, two classes

of them.

One of them is a weakly symmetric space, which has been introduced by A. Sel-

berg [18]. His original definition is not the same as above, but equivalent to it ([4]).

Weakly symmetric spaces can be characterized in terms of the isotropy representations.

Proposition 1.2 ([25]). (M = G/K, g) is weakly symmetric if and only if, for

any vector v in T0M, there exists x in K such that x - v = — v.

By Propositions 1.1 and 1.2, it is trivial that every symmetric space is weakly

symmetric.

Another generalization of a symmetric space is the class of g.o. spaces. A charac-

terization of g.o. spaces in terms of the isotropy representations is not known. But they

can be characterized in terms of the Lie algebras. Let Q and /C be the Lie algebras of

G and K respectively, and M be a 7f-invariant complement of /C in Q.

Proposition 1.3 ([15]). (M = G/K,g) is g.o. if and only if, for any vector v in

T0M, there exists X in 1C such that

g([X + v,Y]M,υ) = Qfor every Y G Λί,
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where the subscript Λi denotes the λd-component.

We can easily prove that every symmetric space is g.o. In fact, we have only to let

M be the (-l)-eigenspace of the involution, and put X :— 0. It is known that every

weakly symmetric space is g.o. ([2]).

We obtain the following relations :

{symmetric spaces} C {weakly symmetric spaces} C {g.o. spaces}.

It is known that each inclusion is strict.

We need the polar representations, which have been investigated by J. Dadok ([6]).

Let G be a compact Lie group with the Lie algebra Q, and

φ : G —* 0(V)

be a real representation preserving an inner product ( , ) on V. For υ G V,

Λv:={ueV (u,g v)=Q}

is called a cross-section at υ. Each cross-section meets every G-orbit ([6]). When Q - υ

is of maximal possible dimension, Λυ is said to be minimal.

DEFINITION 1.4. A representation φ is called polar if a minimal cross-section

Ay intersects every G-orbit orthogonally (i.e., (Q u,Av) = 0 for every u G Av).

A representation φ is polar if and only if every minimal cross-section is conjugate

([6]).

Lemma 1.5. Every s-representation is polar.

Proof. A minimal cross-section of an s-representation is the maximal abelian sub-

space. Since every maximal abelian subspace is conjugate, we conclude the lemma. Π

Theorem 1.6 ([6]). Every real irreducible polar representation, which is not triv-

ial, is equivalent to one of the following.

(i) A representation by which the group acts on the unit sphere transitively.

(ii) The isotropy representation of a compact irreducible symmetric space of rank > 2,

or the restriction to the semi-simple part of this isotropy subgroup,

(iiϊ) The actions of G2 x SO(2) on R 7 <g> R2, Spin(Ί} x SO(2) on R 8 ® R2, and

Spin(7) x 5O(3) on R 8 (S>R3, where G 2 acts on R 7 irreduciblly, and Spin(7) acts on

R8 by the spin representation.
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2. G.o. metrics on fiber bundles (compact case)

In this section we recall the results in [7] and [20], and mention the relation be-
tween g.o. spaces and polar representations.

We call (G, H, K) a triple, for short, if G is a connected semi-simple Lie group,
H and K are compact subgroups, G D H D K, and with dimG > d i m # > dim.fr.
A triple is associated with the fiber bundle

F := H/K —> M := G/K — > B := G/H.

Using the Killing form, we define a two-parameter family of Riemannian metrics on
M, which depends on H. Let Q, H and /C be the Lie algebras of G, H and K
respectively. We denote by K the Killing form of Q, which is non-degenerate. Taking
the orthogonal complements with respect to K, we obtain

g = U®MB = IC®MF®MB.

The tangent space of M = G/K at the origin can be identified with M := MF^MB

In this section we consider the case G is compact (i.e. K is negatve definite). For
any α, b > 0,

9a,b := —CL K, \MFxMF ~b ' κ \

is a K-invariant inner product on M, and thus it defines the G-invariant Riemannian
metric on M (we denote the metric by the same symbol). We say that the metric g
is G-g.o. or g.o. with respect to G, if every geodesic is the orbit of a one-parameter
subgroup of G.

Proposition 2.1 ([7]). The metric ga^ is G-g.o. for every a, b > 0 if and only if,

for every VF G MF and VB £ MB> there exists X G 1C such that

[X, vF] = 0 and [X + VF, VB] = 0.

We remark that the metric ga,a is always g.o. and that if ga^ is G-g.o. for some
a ^ b, then it holds true for every α, b > 0.

Proposition 2.2 ([20]). If the metric ga^ is G-g.o. for every α, b > 0, then
(i) each H-irreducible component in MB is JC-irreducible, and
(ii) for every υ in Λ4β, the connected component of K -orbit K(v] coincides with that
of an H -orbit H(v).

A part of our aim (the compact case) is to classify triples (G, H, K) satisfying the
following condition.
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CONDITION I. (G,H) is a compact effective irreducible symmetric pair and the
metric ga,b on M is G-g.o. for any α, b > 0.

We have only to consider the triples of the Lie algebras, since Proposition 2.1
implies that Condition I depends only on the locally isomorphism classes. The next
theorem is very useful for the classification.

Theorem 2.3. If a triple (G, H, K) satisfies Condition /, then the representation

of K on MB is irreducible and polar.

Proof. The isotropy representation of B — G/H is irreducible and polar by
Lemma 1.5. We want to investigate its restriction to K. The irreducibility follows
from Proposition 2.2. Let

be the minimal cross-section at a regular υ G MB with respect to the action of H. By
the definition of polar representations,

(H - u, AV) = 0 for every u G A% .

We obtain /C υ — T-L - v by Proposition 2.2, and thus

AΪ = AΪ~{uεMB\(u,lC.v) = 0}.

Now we conclude that

(1C u, A%) = 0 for every u e A*,

and the representation of K on MB is polar. Π

3. G.o. metrics on fiber bundles (non-compact case)

Let us consider triples (G,H,K) in the sense of Section 2.. In this section we
assume that G is of non-compact type (i.e. each simple factor is non-compact), and
H is maximal compact. Under these assumptions, the Killing form K of Q is positive
definite on MB and negative definite on MF- Thus, for any α, b > 0,

ga,b ••= —a

is a ̂ -invariant inner product on M, and it also denotes the G-invariant Riemannian
metric.
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Proposition 3.1. The metric ga^ is G-g.o. for every α, b > 0 if and only if, for

every VF in MF and VB in MB, there exists X in 1C such that

[X, vF] = 0 and [X + V F , υB] = 0.

Proof. The proof is almost the same as that of Proposition 2.1 (see [7]). A vector

X+VF+VB is a geodesic vector (i.e., the orbit of the one-parameter subgroup generated

by X + v F + VB is a geodesic) with respect to ga^ if and only if

[X,υF] = 0 and [X,υB] = ^-Γ—[VF,VB].
b

D

We remark that, if ga^ is G-g.o. for some α, b > 0, then it holds true for every

CONDITION II. (G, H) is a non-compact effective irreducible symmetric pair and

the metric ga^ on M is G-g.o. for any α, b > 0.

For the classification of triples which satisfy Condition II, it is sufficient to consider

triples satisfying Condition I. Let (G, H) be a compact irreducible symmetric pair, and

(G*, H) be its non-compact dual.

Theorem 3.2. A triple (G, H, K) satisfies Condition I if and only if (G*, # , K)

satisfies Condition II.

Proof. It is obvious from Propositions 2.1 and 3.1. Π

Furthermore, weakly symmetricity holds by the above duality. Since weakly sym-

metric spaces can be characterized in terms of the isotropy representations (Proposition

1.2), and the isotropy representations of G/K and G*/K are equivalent.

4. The classification

In this section, we will classify the triples (G, H, K) which satisfy Condition I
and II. By the duality (Theorem 3.2), it is sufficient to investigate I. Furthermore, it is
enough to list triples of Lie algebras, since I and II are characterized in terms of the
Lie algebras. We state the classification theorem.

Theorem 4.1. A triple (G,H,K) satisfies Condition I if and only if the triple of

Lie algebras is one of the Table 1.
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II β
(1.1)

(1.2)

(1.3)

(1.4)

(1.5)

(1.6)

(1.7)

(1.8)

(1.9)

(2.1)

(2.2)

(2.3)

(3.1)

(3.2)

(3.3)

so(2n + 1)

so(4n + 1)

Sθ(8)

so(9)

su(n + 1)

su(2n + 1)

su(2n + 1)

sp(n + 1)

sp(n + 1)

su(2r -f n)

so(4r + 2)

ee

so(9)

so(10)

so(ll)

7ί

so(2π)

so(4n)

so(7)

so(8)

w(n)

u(2n)

u(2n)

sp(l) 0 sp(n)
sp(l) Θ sp(n)

su(r) 0 sw(r + n) 0 R
u(2r + 1)

Rθso(lO)

so(l) 0 so(2)

so(8) Θ so(2)

so(8) Θ so(3)

£
w(n)

5^(2n)

^2

50(7)

stz(n)
u(l) θ sp(n)

sp(n)
u(l) θ sp(n)

sp(n)

su(r) 0 5^(r 4- n)

sn(2r + 1)

so(10)

g<2 0 so(2)

spin(7) 0 so(2)

spin(l) 0 5θ(3)

n > 2

n > 1

n > 2

n > 2

n> 2

n > 1

n > 1

r > 2 , n > 1

r > 2

Table 1: The triples satisfying Condition I

We can assume that G, H and K are connected. If (G, # , K) satisfies Condition
I, then the action of K on MB is irreducible and polar, and every K-orbit in MB
coincides with an H-orbit. All irreducible polar representations have been classified
by J. Dadok (see Theorem 1.6). The proof of Theorem 4.1 is organized as follows.
For each irreducible polar representation K —> O(Mβ), we will find every group
H satisfying that H contains K, H acts on MB as an ^-representation, and every
H-orbit in MB coincides with a K-orbit. By the above way, we can classify the
triples satisfying the necessary conditions which are described in Proposition 2.2. By
checking whether or not these candidates satisfy Condition I case by case, we conclude
the theorem.

At first we consider the case when the polar representation is of type (iii) of The-
orem 1.6. In [20], it is proved that the triples (3.1), (3.2) and (3.3) satisfy Condition
I. The principal orbits of the isotropy representations of the Grassmann manifolds are
locally isomorphic to the Stiefel manifolds of certain dimensions. We know the classi-
fications of transitive actions on the Stiefel manifolds ([17]), and of the principal orbit
types of ^-representation (e.g. [21]). Then we can check that (3.1) — (3.3) are the only
triples satisfying Condition I and of type (iii).

Secondly we investigate the case (ii). Polar representations of this case are the
^-representations of rank > 1, or the restrictions to their semi-simple parts.
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Lemma 4.2. Let H — > O(Mβ) be an s-representation, K be a subgroup of H,

and the action of K on MB be also an s-representation. If every H -orbit coincides

with a K-orbit, then H and K are locally isomorphic.

Proof. Let M and M' be the symmetric spaces whose isotropy representations are

the actions of H and K on MB respectively. By the assumption on orbits, we can take

the same maximal abelian subspace A. Then rank (M) coincides with rank (M'). Let

Δ and Δ7 be the restricted root systems of M and Mf with respect to A respectively.

(We refer to [8], [16] for the restricted root systems.) Since the restricted root systems

determine the compact symmetric spaces locally, we have only to show Δ = Δ7 to

prove the lemma. We denote the root space decompositions as follows:

U = H(0) Θ U(°^ a n d K =

For a £ Δ, we take a generic vector v E A which is orthogonal to a (i.e., for β £

Δ U Δ7, β(υ) = 0 if and only if β £ Rα - {0}). By [10], the isotropy subalgebras of

Ή, and /C at υ are

H(β) and /C, = /C(0)Θ ] Γ K(β).

Since the dimension of the #-orbit through υ coincides with that of the Tf-orbit, we

have

dim Ή — dim Ήv = dim 1C — dim ICV .

Furthermore, the dimension of the principal orbit with resprct to H also coincides with

that with respect to K, hence

dimΉ - dimH(O) - dim/C - dim/C(0).

Thus we obtain

dim ^ « ( / ? ) = dim ] Γ JC(β).

This implies that, for every a £ Δ, there exists a root of Δ7 which is parallel to α (i.e.

the Weyl groups coincide), and that the sum of the mutiplicities of the roots in Δ Π Rα

coincides with that of the roots in Δ7 Π Rα. From the list of the restricted root systems

of symmetric spaces (see [8] or [21]), we obtain Δ = Δ7. Π

Next we investigate the latter part of (ii). Let (G,Ή) be an irreducible Hermitian

symmetric pair, R be the center of Ή, and /C be the semi-simple part of H. Then
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U = R Θ 1C. We consider the triple ((?, Ή, /C). Let Δ be the restricted root system of

(β,W) with respect to A, and

Θ

be the root space decomposition. We fix a non-zero vector υp in R.

Lemma 4.3. TTze above triple (G,T-L,tC) satisfies Condition I if and only if there

exists X in 1C such that X + υF G 7/(0).

Proof. For every v# £ Λ Ϊ B , there exists g £ H such that aά(g)vβ £ A Assume

that there exists X £ /C such that

Since VF is central, we obtain

Thus we can assume !># G ̂ 4 and agree that Condition I holds if and only if, for every

VB G A, there exists X G /C such that [X + I>F, ^s] = 0. Since Ή(0) is the centralizer

of certain VB £ A, we conclude the lemma. Π

Proposition 4.4. A triple (C/,R Θ /C,/C) satisfies Condition I if and only if the

restricted root system of (Q, R Θ /C) w o/ BC-type.

Proof. By the results of [21],

where subscript H(0) denotes the Ή(0) -component.

If Δ is not of EC-type, then 2α is not a root, and

α€Δ

Since 1C is the semi-simple part of H,

/C = [Rθ/C,RΘ/C]
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This means that there exists no X G /C such that X + VF € Ή(0), and that the triple

does not satisfy Condition I.

If Δ is of £?Cr-type, the roots, whose multiplicities are 1, are 2ει, . . . , 2ε r (for the

notations see [1]). Thus Σ ^ = 1 Ή ( 2 ε : / ) is an r-dimensional abelian subalgebra of Ή. It

is easy to see that Ή(0) Θ A contains a maximal abelian subalgebra of Q. Then we

have

rank Q = rank Ή(0) + dim .4 = rank Ή(Q) + r.

Since Hermitian symmetric spaces are inner, we have rank Q = rank M ([16]). Thus

Ή(ϋ) 0 Σ j = ι Ή(2εj) contains a maximal abelian subspace of H. Then we have VF £

Next we claim that

) i f Ί ^ Ic
) 11 J 7-- /v,

H(εj) if j = k.

If j ^ k, 2εj ± 6k are not roots and the bracket products equal to 0. If j = fc, the

subset Δ7 := {±εj,±2εj} is a closed subsystem of J5Cι-type. By [21], there exist

Ή!(ϋ) C U(ϋ) and A! C A such that the pair

«'(0)θ

is symmetric and its restricted root system is Δ ; . Then it is enough to show the case

of .BCΊ-type satisfies the claim. It can be easily checked.

The claim shows that no non-zero vector in Σ J = 1 Ή(2εj) centralizes H. Thus VF

has the non-zero H(Q) -component Y. Since (vp,Y) Φ 0, there exists a φ 0 such that

(VF, aY - vF) = 0. This means X := aY - VF e /C and X + VF G Tί(0). By Lemma

4.3, we conclude that the triple of BCr-type satisfies Condition I. Π

The compact irreducible Hermitian symmeteric pairs of BCr -types, r > 2, are

(su(2r + n), su(r) 0 su(r + n) 0 R), r > 2, n > 1,

(so(4r + 2), w(2r + l)), r > 1, and

(e6, Rθso( lO)) .

Therefore we have proved the case (ii) of Theorem 4.1.

Here we remark on their isometry groups. For an irreducible Hermitian symmet-

ric space G/SO(2)K9 the fiber bundle M := G/K is a (^-symmetric space. A φ-

symmetric space is a certain circle or line bundle over a Hermitian symmetric space.
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These spaces have been introduced by T. Takahashi ([19]), and classified by J. A.
Jimenez and O. Kowalski ([11]). We refer to them for the exact definition of φ-
symmetric spaces. It is known that the group SO(2)G acts on M as an isometry group,
and M is weakly symmetric ([5]). Thus its metric is g.o. with respect to SO(2)G. It
is non-trivial, however, whether or not it is g.o. with respect to G.

Finally we prove the case (i) of theorem 4.1. All the groups, which act on spheres
transitively, are well known. We list, in Table 2, the groups G acting on the unit
spheres in V transitively, and the symmetric spaces whose isotropy representations are
equivalent to the G-actions on V if there exist.

G

S0(n)
SU(n)
U(n)
Sp(n)

ί/(l) x Sp(n)
Sp(l) x Sp(n)

G 2

Spin(7)
Spin(9)

V
Rn

C"

c n

H"
H"
H"

Rv

R8

R i 6

n> 2

n>2

n> 1

n> 1
n> 1

n> 1

the symmetric spaces

SO(n+l)/SO(n)
none

SU(n + l)/U(n)
none

none if n > 2

Sp(n + l)/Sp(l) x Sp(n)
none

none

F4/5ί»n(9)

Table 2: Groups acting on the unit spheres transitively

We remark that there are some overlaps in Table 2.
Let M = G/H be a compact irreducible rank 1 symmetric space. For a compact

subgroup K of H, every K-orbit in T0M coincides with an H-orbit if and only if K
acts on the unit sphere of T0M transitively. From Table 2, one can find all subgroups
K of H satisfying this condition. Thus, we can make up Table 3, the candidates of the
triples of type (i) for satisfying Condition I.

It is known that the associated spaces with (rl), (r6), (r7) and (hi) are weakly
symmetric ([4] and [25]). Thus these satisfy Condition I. (Of course we can prove
these facts by Proposition 2.1.) The triple (cl) is the case of (^-symmetric spaces. The
restricted root system of (G,H) of (cl) is of fίCΊ-type. Hence it satisfies Condition I,
by Proposition 4.4. To check the remaining cases, we mention two lemmas.

Lemma 4.5. Let AF C MF and ΛB C MB be linear subspaces. We assume
that AF Θv4# meets every K-orbit in MF θ Λ i β . Then Condition I holds if and only
if, for every VF € AF and VB G AB, there exists X G /C such that

[X,vp] = 0 and [X,vB] = [VF,VB].
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U

rl

r2

r3

r4

r5

r6

r7

r8

cl

c2

c3

hi

h2

5θ(2n + 1)

so(2n + 1)

so(4n + 1)

so(4n + 1)

so(4n + 1)

βo(8)

so(9)

so(17)

su(n + 1)

su(2n + 1)

su(2n + 1)

sp(n + 1)

sp(n + 1)

so(2n)

so(2n)

so(4n)

5θ(4n)

so(4n)

βo(7)

so(8)

so(16)

u(n)

u(2ri)

u(2n)

sp(l) Θ sp(n)

sp(l) θ sp(n)

ii(n)

5u(n)

sp(ϊ) θ sp(n)

w(l) 0 sp(n)

sp(n)

92

spin(7)

spin(ϋ)

su(n)

u(l) 0 sp(n)

sp(n)

u(l) 0 sp(n)

sp(n)

n > 2

n > 2

n > 2

n > 1

n > 1

n > 2

n > 2

n > 1

n > 1

n > 1

Table 3: The candidates of the triples of type (i) for satisfying Condition I

Proof. We have only to prove the "if part". Let υp € MF and VB £ MB- By
the assumption there exists g G K such that gvp G *ΛF a n d #t>β G AB> Then there

exists X G /C such that

= 0 and

The element that we want is aά(g~l)X.

= [gvF,gvB].

D

Lemma 4.6. Lei .if' Z?e α subgroup in K. If (G, H, K1} satisfies Condition /, then

so does (G, if, K).

Proof. Let us denote the decompositions of (G, H , AT) and (G, if, K') by

, and 0 - /C7

Π

respectively. By the assumption, we have 1C' C /C, ΛΊ^ D MF, and

Thus the lemma follows from Proposition 2.1 immediately.

Proposition 4.7. The triple (so(2ra+l), so(2n), su(n)) in (r2), satisfies Condition
I if and only if n is even.
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Proof. We remark that MF = R θ Λ 2 C n and MB = C n as su(n)-modules. A

non-zero vector in R acts on MB by a pure imaginary scalar, since R is the center of

u(ri). Let {βi,..., en} be an orthonormal basis for C n , and

V := span c{e2 j_ι Λ e2j \ 1 < j < | } .

We remark that V is a maximal abelian subspace in /\2 C n = T0(SO(2n)/U(ri)). Then

R θ F θ C n meets every 5ί7(n)-orbit.

Case 1: let n = 2m be even. The subgroup of SU(2m) which acts on R 0 V

trivially is SU(2) x - - - x SC/(2), m-copies of 5C7(2) ([21]). We denote by su(2)rn its

Lie algebra. Every vector VF G R θ V preserves spanc{e2j_ι, e^} for j = 1,...,m.

Each SU(2) acts on certain span c{e 2 j-ι,e 2 j} naturally, and on its orthogonal com-

plement trivially. Thus, for every VB G C n , there exists Jf G su(2)m such that

[X,VB] = [VF,VB]

Case 2: let n = 2m + 1 be odd. Let z G R be non-zero and VF G V be principal.

Thus 5w(2)m is the Lie algebra of the isotropy subgroup of SU(n) at z + VF ([21]).

We can easily see that

(z + vF, e 2 m + ι ] / 0 and [su(2)m, e 2 m + ι ] = 0.

Thus the triple does not satisfy Condition I in this case. Q

The triples (su(2n+l),u(2n),u(l)@sp(ri)) in (c2) and (su(2n+l),u(2n),sp(n))

in (c3) satisfy Condition I. We will prove that they are weakly symmetric in the next

section, so we omit the proof.

Proposition 4.8. The triples (sp(n + 1), sp(l) θ sp(n), u(l) θ sp(n}) in (hi) and
(sp(n + 1), sp(l) θ sp(n), sp(n)) in (h2) satisfy Condition I.

Proof. The corresponding decomposition of the case (h2) is sp(n-\-1) = sp(n) 0

R 3 0 H n . Noting that sp(n) acts on MF = R 3 trivially, we can easily prove the

proposition of this case. The case (hi) follows from Lemma 4.6. Π

It is known that Sp(n + 1)/Ϊ7(1) x Sp(ra) is weakly symmetric ([25]), and thus

g.o. This proposition gives another proof of this fact.

The associated space M = Sp(n + l)/Sp(n) with a certain metric g admits an

isometry group = Sp(ί) x Sp(n + 1). It is known that (M,g) is weakly symmetric

([4]), g being g.o. with respect to Sp(l) x Sp(n + 1). Despite of these known facts,

the proposition is not trivial.

The remaining candidates are (r3), (r4), (r5) and (r8). In fact these do not satisfy

Condition I. The following lemma gives a necessary condition for Condition I, and

useful to reject the candidates.
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Lemma 4.9. Condition I implies that dimKVF > 0 for every VF in MF-

Proof. Let VF G MF> Since the action of T-L on MB is effective, there exists
VB G MB such that [VF^VB] ^ 0. By Proposition 2.1, there exists X G /C such that

[ A > F ] = 0 and [X,υB] = [VF,VB]

The former equation means X G /CVF, and the latter implies X ^ 0. Π

Proposition 4.10. The triple (so(17), so(16), spm(9)) m (r8) does «ctf satisfy Con-
dition I.

Proof. The homogeneous space 5O(16)/5pm(9) is isotropy irreducible, and the
isotropy representation is described in [22]. It is equivalent to the action on /\ R9,
where Spίn(9) acts on R9 naturally, and the isotropy subgroup of the principal orbit is
trivial ([9]). The claim follows by Lemma 4.9. Π

Proposition 4.11. The triples (so(4n + l),so(4n),sp(l) θ sp(n)) in (r3),
(so(4n + 1), so(4n), 'u(l) 0 sp(ra)) m (r4), αrcd (so(4n + 1), so(4n), sp(n)) in (r5) ^
woί satisfy Condition I.

Proof. By Lemma 4.6, it is enough to show that the case (r3) does not satisfy
the Condition I. The homogeneous space SO(4n)/Sp(l)Sp(n) is isotropy irreducible,
and the isotropy subgroup of the principal orbit of the isotropy representation is 0-
dimensional if n > 2 ([22] and [9]).

Thus, by virtue of Lemma 4.9, the case we have to investigate is (so(9),so(8),

sp(l) 0 sp(2)). The decomposition is

so(9) = sp(l) θ sp(2) 0

The action of 1C = so(3) φ5θ(5) on MF is equivalent to the isotropy representation of
the Grassmannian manifold Gs(R8). Let A be a maximal abelian subspace in MF, and
{H1,!!2,!!3} be the dual basis of a simple root system of the restricted root system
with respect to A. The orbit through cιHl +C2# 2 + c 3 # 3 is principal if GI, C2,03 > 0,
and the principal isotropy subalgebra is so(2) ([10] and [21]). Let X G so(2) be non-
zero.

Let us assume that the triple satisfies Condition I. Let cι,C2,c3 > 0 and VB G
MB- From Lemma 2.1 there exists X' G 1C such that

[X1, ClH
l + c 2 # 2 + c 3 # 3 ] - 0 and
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The former equation means X' £ so(2) = RX . Thus we have

This implies that [ A,Vβ] C R[X,VB] for every ι;β G MB- Denote by A' a Cartan
subalgebra of so(8) containing A. Let A" be the orthoganal complement of A in A',
which is of dimension 1. Take a generic vector VB € H2, i.e., d i m ^ ' , ^ ] = 4. Then,

4 = dim[A', VB] < dim[,A", VB] + dim[,A, VB] < 2.

This is a contradiction. Π

Now we have completed the proof of Theorem 4.1.

5. Weakly symmetric spaces

We have classified the triples (G,H,K) satisfying Condition I. The associated

homogeneous spaces M := G/K, with certain metrics, are good candidates for weakly

symmetric spaces. In this section we find new examples of weakly symmetric spaces

among them.

At first, let us consider the symmetric space U(2n}/Sp(n). Let r be the complex

conjugation and

J := ( ~ l n ε U(2n).

Then the automorphism road( J) of u(2n) is involutive, and the (+l)-eigenspace forms

the subalgebra sp(ri). Let MF be the (— l)-eigenspace. It is known that the subspace

A

A
I , ε ι , . . . , ε n <ER

is maximal abelian, and thus A meets every Sp(n)-orbit in M.p.

Theorem 5.1. The homogeneous spaces SU(2n + l)/t7(l) Sp(n) and SU(2n +

l)/Sp(n), associated with (1.6) and (1.7) in Table 1 respectively, are weakly symmetric

with respect to any SU(2n + 1)-invariant Riemannian metrics.

Proof. It is enough to prove the latter case. We will investigate the isotropy rep-

resentation and prove the theorem by Proposition 1.2. The isotropy representation is
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equivalent to the action of Sp(n) on MF Θ C 2 n , where MF is defined above and

Sp(n) acts on C 2 n naturally. Since the complex conjugation τ preserves Sp(n), r acts

on SU(2n + l)/Sp(n) as an isometry and fixes the origin.

Let VF £ MF and VB 6 C 2 n . We can assume VF 6 4̂ without loss of generality.

Then T(Ί>F) = — ̂ F and

5C/(2)n := 5Z7(2) x - x SU(2) C Sp(n)

leaves VF fixed ([21]). It is easy to see that SU(2)n acts on C 2 n naturally (i.e., the

action is the direct sum of the natural actions of SU(2) on C2). Thus there exists

g G SU(2)n such that g(vβ) = —VB Since g fixes VF, we obtain that g o r sends

VF + ^β into —VF — VB ϋ

Let G be the group generated by SU(2n + l) and the complex conjugation τ. This
theorem says that the spaces of (1.6) and (1.7) are weakly symmetric with respect to
G. Thus they are G-g.o. Since SU(2n + 1) is the connected component of G, we have
showed that they are SU(2n + l)-g.o.
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