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0. Introduction

The results of [1] and those of the references therein give the reader a detailed
overview about the well-posedness of the Cauchy problem for the wave equation in
divergence form. Among other things it was proved in [1] that the Cauchy problem
for the strictly hyperbolic equation (a(t) > c > 0),

utt - a(t)uxx - 0, u(x,0) = uo{x), ut(x,0) = u\(x),

has in Sobolev spaces a solution satisfying

SUp \\u(t)\\Hrn+1-βtm + \\u'(t)\\Hm-βt(R)
[O.T ]

< Co

(Γ* is independent of m) if a(t) is only "Log-Lipschitz". This means we have a loss
of regularity.

If we weaken a(t) > c > 0 to a(t) > 0, then we obtain a weakly hyperbolic
Cauchy problem. Here high regularity of a = a(t) is not sufficient for the existence
of the solution in Sobolev spaces. In [2] it was shown that some oscillating behaviour
of the coefficient a(t) leads to a nonexistence result for the solutions in Sobolev
spaces although the coefficient belongs to C°°([0, oo)).

There are different ways to exclude this counterexample, that means, to control
the influence of the oscillations. One way is to prescribe a nonlocal condition for
a = a(t) e C^OjΓ]) of the type

(0.1) / - M ί l L dt < C(T)\ logε| for all ε G (0,1)
Jo a(t) + ε

(see [7]). Some generalization of (0.1) (α = a(t) is not supposed to be from C 1 but

only from C1 without a sequence of points, decreasing or increasing, to some finite

point) was used in [5]. Another way is to suppose a(t) > 0, a(t) is analytic. Then
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the only accumulation point may be at infinity. This condition was used in [3], [4]

to prove some global existence result for semilinear weakly hyperbolic equations of

the type

Uu ~ a(t)Au = f(u).

Let us explain a third way by the aid of the equation

utt-X2{t)b2(t)uxx = 0.

Here λ2(t) is a damping term which satisfies

(Al) X(t) e C2([0,Γ0]), λ(0) = λ'(0) = 0, X(t) > 0, λ'(f) > 0 for all t > 0.

The factor b — b(ϊ) produces oscillations. We suppose

(A2) b G C2((0,T0]), 0 < c < b(t) < C.

Then a condition to describe slow oscillations is the local condition (for t ->• 0)

\f(f\

(0.2) \Dtb(t)i<c-φί, ίe(o,τ0].

The C°°-well-posedness of the Cauchy problem for second-order equations with

slowly oscillating coefficients was proved in [21]. It is clear that (0.2) implies

(0.1) for a(t) = X2(t)b2{t). It will be interesting to construct an example with

a{t) = X2(t)b2(t) under the conditions (A1),(A2), where in opposite to (0.1) the

condition (0.2) is violated.

In [19] it is shown that the Cauchy problem for

(0.3) utt •

is C°°-well-posed if and only if a > 1/2. Here b(t) is a non-constant, 1-periodic

positive function. This example and (0.2) show that not only the frequencies of

oscillations are important, but more precisely the product between the amplitude

and frequency. It is easily checked that for X(t) — exp (-t~α) with a e [1/2; 1) the

condition (0.2) is not satisfied. An interpretation of this example and a definition

of fast oscillations by the condition

^ t€(0,Γo],

were given in [23]. Moreover, there is proved that this condition is sufficient for

C°°-well-posedness (necessity for (0.3) is clear). Classes of linear hyperbolic equa-

tions with countable many singular or degenerate points are studied in [24].
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If one is interested in solutions in Sobolev spaces, then one has to take into

consideration the phenomenon of loss of derivatives which was mentioned at the

beginning for strictly hyperbolic equation which coefficients have low regularity in

the time variable. Examples from [12], [14] show the precise loss of regularity in

the case without oscillations, but with a degeneracy in the main part and with a

lower order term of the form h(t)ux. This term has an important influence on the

loss of regularity.

The main goal of the present paper is to show that one can even connect fast

oscillations in the coefficients with a quasilinear structure of the equation. As a

model case we consider the Cauchy problem

utt - λ2(t)b2(t)uxx + h(t)ux = f(t,x,ux), u(x,0) = UQ(X) , ut(x,0) = u\(x).

The problem becomes weakly hyperbolic if λ(0) = 0 (time degeneracy). The coef-

ficient of uxx consists of the two parts. On the one hand we have a damping term

X2(t). We suppose for the function λ = λ(t) the assumptions (Al) and

(A3) there exist positive constants do > 1/2 and d\ such that

!f0'a11 ί e ( 0 τ°1

A(t) := / λ(
Jo

where A(t) := / λ(τ) dr.
J

On the other hand we have a term b2(t) which oscillates. We suppose for the

coefficient b(t) the assumption (A2) and

(A4) \D*b(t)\<c(^-\\n\(t)\\ for all i € ( 0 , Γ o ] , fc = l , 2 .

The coefficient h(t) of the lower order term has to satisfy

(A5) Λ G C Ή β T o ] ) , | β ? Λ W I < C V ( t ) ^ | l n λ ( ί ) | ) , fc = 0,l,

for all t e (0, T o ] .

Setting k = 0 this means, that h(t) satisfies a C°°-type Levi condition, which

is very close to a necessary one [21]. Moreover, we allow fast oscillations, too (k = 1

in (A5)).

Finally we have to assume for the right-hand side:

(A6) for every given s G N the function f = f(t,x,p) is entire in p,

with values in C([0, To]; T^ί(K)), that is
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:)pk for all pGC,

with coefficients ak(x, t) G C([0, To]; W(\

Moreover, for every positive constant D it holds

k=0

Theorem 0.1. Under the assumptions (Al) to (A6) there exists a (in general

sufficiently large) constant r such that the Cauchy problem for quasilinear weakly

hyperbolic equations with fast oscillating coefficients

(0.4)

utt ~ X2(t)b2(t)uxx + h{t)ux = f(t,x,ux), u(x,0) = UQ(X) , ut(x,0) = uλ(x),

and with data uo, u\ belonging to Wf (R), W^~1(R), respectively, has a locally
defined solution

We give now a brief outline of our approach to attack the above weakly hy-
perbolic Cauchy problem with fast oscillating coefficients. In Section 1 we will
motivate the construction of a Banach space BM,Q,T with the following strictly
hyperbolic type property.

The Cauchy problem

utt ~ X2{t)b2{t)uxx + h(t)ux = λ'(ί)/(x,ί), u(^0) = 0, ut(x,0) = 0,

has a uniquely determined classical solution u with

u/\(t), ut/X(t), ux G BM,Q,T if / G BM,Q,T

In the strictly hyperbolic case X(t) > c > 0 this property holds if we replace
BM,Q,T by the space C([0, Γ]; HM(R)). Even in the case with slow oscillations one
can prove this property by using the weighted spaces λQ(ί)C([0,Γ]; HM(R)) (see,
for instance, [11], [15], [8], [6]), where Q is sufficiently large. The situation is more
complicated in the case with fast oscillations because it seems to be impossible to
use the standard energy approach. The idea of the construction of BM,Q,T is to
describe the elements u by the behaviour of its partial Fourier transform ύ in the
cotangent space. The approach based on a certain division of the cotangent space
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and special micro-local considerations was developed by the second author [22]

in connection with the construction of the fundamental solution for the Cauchy

problem for hyperbolic operators with characteristics of variable multiplicity. It

could be used in quite different situations [23], [16], [17].

The Lemmas 1.1 and 1.2 lead to a strictly hyperbolic type property in the cotan-

gent space which is essential to get an idea for the construction of the nonstandard

space BM,Q,T Some auxiliary relations which are helpful for studying properties

of BM,Q,T are given at the end of Section 1. It is proved in Section 2 that BM,Q,T

is even an algebra. This allows us to include nonlinearities in (0.4). In Section

3 we prove local existence and uniqueness of the solution for (0.4). Therefore we

suggest the Levi condition of (A6) which is a bit restrictive compared with (A5).

1. A strictly hyperbolic type property

In this section we shall study the Cauchy problem for the linear hyperbolic

equation with fast oscillations

(1.1) utt - X2(t)b2(t)uxx - h(t)ux = -λ'(t)f(x,t), u(x,0) = ut(x,0) = 0.

Partial Fourier transform leads to the Cauchy problem for the ordinary differential

equation

(1.2) D2u- X2(t)b2(t)ζ2u + iξh(t)u = λ'(t)f(ξ,t), ύ(ξ,0) = Dtu(ξ,0) = 0,

where / G C([0,Γ];L°°(R)) and Dt := -idt. By ί ξ(= £ ( ξ )), ξ £ M, we denote the

solution (see [23]) of the following equation

(1.3) Λ (t€)<ξ> = tfln<0, where (ξ) := (c+ \ξ\ψ2,

where the sufficiently large positive numbers N and c will be chosen later.

Firstly, we study (1.2) in the so-called pseudodifferential zone [23]:

Zpd(c,N) := {(t,ξ) 6 E x [0,Γ] : A(t)(ξ) < Nln{ξ)}.

According to the arguments below the Cauchy problem feels neither oscillations nor

hyperbolicity in this zone. Indeed, after substitutions u?2 := Dtύ, W\ := p(ί,ξ)ώ,
X2(t)

where p(t,ξ) is the positive root of p2 — 1 —ττ~\(ζ) m(£) — 0> (1-2) reads as

P(t,ξ)
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If X(t,s,ξ) is a fundamental solution, that is,

DtX - A(t, ξ)X = 0, X(s, s,ξ) = I (identity matrix), 0 < s < t < tξ ,

then W(t, ξ) — Jo X(t, s, ξ)F(si 0 ds solves the above Cauchy problem. Using the

matrizant we obtain the estimate

,Oil d r ) , t>s.

From the definition of p(t,ξ), Zpd(c,N), conditions (A3), (A4), and (A5) it follows

Here and in the following we use C as a universal positive constant. The conditions

(A3) and d0 > 1/2 yield dtp(t,ξ) > 0. Thus

P(r,OII < Cpdg(τ,ξ), where g{τ,ξ) := p(r ,0 + ^ ^ .

For w\ and W2 we obtain

p(t,ξ)u(t,ξ) =[ X12(t,8,ξ)λ'(8)f(a,ξ)d8,Dtύ(t,ξ) =[ X22(t,s,ξ)\'(s)f(s,ξ)ds.
Jo Jo

Together with the above estimates this gives

\ξ\Wt,ξ)\ <
Jo

(1.4) j

(1.5) M*,£)l < C J λ'(s)exp(cpdj g(τ,ξ)dτ)\f(s,ξ)\ds.

These inequalities lead to the next lemma.

Lemma 1.1. If f(t,ξ) E C([0,T];L°°(R)) satisfies in Zpd(c,N) the inequality

Q J*g(τ,ξ)dτ\ , Q

with Cpd of (1.4), (1-5), then the solution ύ(t,ξ) of (1.2) satisfies in Zpd(c,N) the

estimates

\ξΰ(t,ξ)\ < C p ^ - e x p f Q ftg(τ,ξ)dτ),

|ut(t,O| < CA(ξ)λ(t)exp(QJ g(τ,ξ)dτ).
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Proof. From (1.4) we have

<C j* p(s, ξ) exp [cpd J' g(τ, ξ) dr^J A(ξ) exp (Q J' g(τ, ξ) dτ\ ds

< CA(ξ)exp[Cpd f g(τ,ξ)dτ) ί g(s,ξ)exp I (Q - Cpd) [ g(τ,ξ)dτ) ds
V JU ) Jo V JU J

exp ί (Q - Cpd) j g{τ,ξ)dτ) ds

expfρ ftg(τ,ξ)dτ).
\ Jt( J

< Cp^exp
Q -Cpd

The desired estimate for ύt(t,ξ) can be shown by (1.5) as follows:

\ΰt(t,ξ)\ < CA(ξ) J\'(s)exv(cpd J* g(τ,ξ)dτ^exp(Q J' g(τ,ξ)dr) ds

= CA(ξ) exp IQ J* g(r, ξ) dτ\ J* λ'(β) exp [{Cpd - Q) J* g(τ, ξ) d

< CA(ξ)\(t)exp IQ J*g(τ,ξ)dτ\ .

Now let us devote to (1.2) in the so-called hyperbolic zone [23]:

Zhyp(c,N) := {(t,ξ) e [0,Γ] x K : A(t)(ξ) >

J* ^J ds

D

In opposite to Zpd(c, N) the Cauchy problem feels in Zhyp(c, N) as well as hyper-

bolicity and fast oscillations. Let us denote by

the characteristic roots. The transformation

reduces (1.2) to the first-order system
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(1.6)
/ . , Dtb(t) _ DtX(t) _ ih(t)ζ Dtb(t) _ DtX(t) _

\υ r2y ^ v — ^ - -xjtf- + —pf- -6(1) X(ίΓ4 '^2~

26(ί) V 1

with diagonal main part. In connection with the construction of the fundamental

solution in the strictly hyperbolic case [9] and even in the weakly hyperbolic case

with slow oscillations [22] one understands how to apply the perfect diagonalizer.

Contrary to these cases we are not able to follow this way for equations with fast

oscillations. Nevertheless in [23] it is used exactly one step of perfect diagonaliza-

tion to derive C°°-well-posedness for linear weakly hyperbolic equations with fast

oscillations. We use this idea to derive a corresponding result to Lemma 1.1 in

Zhyp(c,N).

Setting

Ht,ξ) := ψ^I, MM :=I + λί{1)(t,ξ), where

) (
- 4τl\-Dtr2 +ih(t)ξ 0

then the transformation W = M~ιV reduces (1.6) to

(1.7)

Due to the assumptions (AS),(A4) and (1.3) we know that | |^ ( 1 )(*,OII < V 2 i f

the constant N in the definition of Zhyp(c,N) is large enough. Moreover, one can

show ([23]) that

In the following we will use the notation K(t,ξ) := jpr + Λ l Γ J | ί y i Γ J Γ of

for the right-hand side of the last estimate.

If X(ί, 5,ξ) is a fundamental matrix of (1.7), that is,

(1.8)

DtX-(Tl °)X + TX + BX = O, X(s,s,ξ)= /(identity matrix),
V 0 τ2 /
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then the vector-valued function

(1.9) W(t,ξ) = ί X(t,8,ξ)F(8,ξ)d8 + X(t,tξ,ξ)W(tξ,ξ)

solves (1.7) (F denotes the right-hand side of (1.7)).

The ansatz X(t,s,ξ) = E{t,s,ξ)Q(t,s,ξ), where

E(t,s,ξ) =

'exp ( / \ in (r, ξ) - -dr In b(r) \ dr) 0

\Js I 2 J /

0 expίf ίiτ2{r,ξ)-^dr\nb(r)\dr)

reduces (1.8) to

DtQ + E(s, t, ξ)B(t, ξ)E(t, s, ξ)Q = 0, Q(s, s,ξ) = I.

Using \\E(8,t,ξ)B(t,ξ)E(t,8,ξ)\\ < \\B(t,ξ)\\ < CK{t,ξ) gives uniformly

(1.10) | | Q ( ί , β , O I I < e χ P yOhyp f κ(τ,ξ)dΛ , tξ<s<t,

(1.11) \\X(t,8,ξ)\\ < Cexp(chypJ K(τ,0dτ), tξ<s<t,

respectively. Consequently, by (1.9)

\\W(t,ξ)\\ < .

(1.12) + exp [Chyp [tK(τ,ξ)dΛ \\W(te,ξ)\\.

Due to Lemma 1.1 we obtain | |W(ίξ,ξ)| | < Cλ(tζ)A(ξ). Let us choose

A(ξ) = (ξ)~M exp (Q £ K(τ, ξ) dή .

Now we have all tools to prove

Lemma 1.2. // / 6 C([0,T];L°°(l)) satisfies in Zhyv(c,N) the inequality

with Q > Chyp, Chyp from (1.10), (1.11), then
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Proof. Using

\\W(t,ξ)\\ < J λ

x exp [Q / K(τ,ξ)dτ) ds
\ Jτo )

+ C\(tz)(ξ)-M exp (Q ζ* K[τ, ξ) dr^j exp ( CΛyp jf * K(τ, ξ) drj
and λ(ίξ) < λ(s) < λ(ί), then the same reasoning as in the proof of Lemma 1.1

leads to

\\W(t,ξ)\\ < CX(t)(ξ)-M exp j
The equivalence of ||W(t,^)|| with ||(λ(ί)|^|ώ,ΰί)|| gives immediately the state-
ment of the lemma. D

Further, we introduce the following weight function:

, te[tξ,T0],
_

(1.13)

Corollary 1.1. There exists a positive constant Q such that
if f e C([0,T];L°°(M)) satisfies the estimate (P), that is,

(P) MQMt,O\fM\<C, for all (t,ξ) G [0,Γ0] x

M > 0, T <T0, then the Cauchy problem (1.2) has a uniquely determined
solution ύ(t,ξ), where ξύ(t,ξ) and ύt(t,ξ)/λ(t) are satisfying the estimate (P),
too.

This corollary hints at suitable function spaces in which one can handle equations
with fast oscillating coefficients.

DEFINITION 1.1. For a given positive number M we denote by BM the
normed linear space

BM = \u e S'(R) : ύ e L^c is a function satisfying \\u\\M := sup(ξ)M|ώ(OI < °° \
{ ζeR J

For given positive numbers M, M > 1, Q and T, T < Γo, we denote by BM,Q,T

the linear space

BM,Q,τ = {ue C([0,T];BM-λ) : ύ(t,ξ) satisfies

-*/b,M(f,O|fi(*,f)l < C for all (t,ξ) G [0,Γ] x K]
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It is easily checked that BM is a Banach space.

L e m m a 1.3. The space BM,Q,T is a Banach space with the norm

\\U\\M,Q,T := max sup Λ/Q,M(^, 01^(^61
[0,T] ξGR

The topology of BM,Q,T is stronger than that one induced by C([0, T];BM~1).

Theorem 1.1. Let us consider under the assumptions (Al) to (A 5) the Cauchy

problem for the linear weakly hyperbolic equation with fast oscillating coefficients

utt - X2(t)b2(t)uxx + h(t)ux = \'(t)f(x,t), u(x,0) = ut(x,0) = 0.

Then there is a positive constant Q such that for every f belonging to BM,Q,T,

there exists an uniquely determined solution u with the property, that u/\(t),

ut/\{t) and ux are belonging to BM,Q,T, too. Moreover, there is a constant

Capr, independent of T £ (O,Xb] and f, such that

(1.14) \\u/λ(t)\\M,Q,τ + \\UX\\M,Q,T + |k/λ(ί)| |M,Q,r < Capr\\f\\M,Q,τ •

Proof. Prom Lemma 1.1 and 1.2 we have

I W I M . Q . Γ + ||Wt/λ(ί)||M,Q,T < C\\f\\M,Q,T •

Using

,ξ), λ ( τ ) < λ ( ί ) , T<t,

it follows

|Q,T < C\\ut/λ(t)\\MtQtT

and consequently (1.14).

Further, due to Corollary 1.1 and Definition 1.1 we only have to show that

u/λ(t), ux and ut/λ(t) belong to C([0,Γ]; BM~ι). This is true if for the last two

functions and for all to G [0, T]

lim sMξ^lξ&M-ξύitotW = 0, lim sup ̂ —-\DtU(t,ξ)-Dtu(to,ξ)\ = 0.
^t t-+t0 ξ € R λ(t)

In the pseudodiίferential zone Zpd(c,N) we have

ξu(t,ξ)= [tχ12(t,s,ξ)^;f(s,ξ)ds, DMt,ξ)= [tχ22(t,s,ξ)λ'(s)f(s,ξ)ds,
Jo P(t> ?) Jo
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while in the hyperbolic zone Zhyp(c,N) we have

= W(t,ξ) satisfies

lim sup @£l\W(t,ξ) - W(to,ξ)\ = 0,

then after transformation we obtain the desired continuity for ξύ(t, ξ)
and Dtύ(t,ξ)/X(t) in t.

Let us begin with to > 0. For ξ from a compact set we obtain obviously the
continuity in t. Thus, we restrict ourselves to large \ξ\. Then tξ < to, consequently,
it is enough to study W = W(t, ξ) . We have for t > to

The first integral tends to 0 as t —> to uniformly for large ξ. Thus we only have to
take into consideration in the second integral and in the third term the behaviour
of X(t, 5, ξ) — X(to, 5, ξ). By using the matrizant we obtain the inequality

\(

Indeed, the following estimate is evident

\X(t,s,ξ)-X(to,s,ξ)\ < \Q(t,a,ξ)\\E(t,8,ξ)-E(to,a,ξ)\

+ \E(to,s,ξ)\\Q(t,s,ξ) - Q(to,s,ξ)\

while for tξ < s, t, from the integral representation of the matrizant we obtain

Q(t,s,ξ)-Q(to,s,ξ) = [ π{tus,ξ)dt1+ f Γ n{tus,ς)^{h,s,ζ)dhd
Jto Jt0 Js

π(t1,s,ξ)π(t2,s,ξ)Έ.(t3,s,ξ)dt1dt2dt3 + ...
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where notation 1Z(t,s,ξ) := E(s,t,ξ)B(t,ξ)E(t,s,ξ) is used. For the matrix
TZ(t,s,ξ) we have proved the estimate |7£(£,s,£)| — K{tΛ) for all tξ £ s, 1
all large ξ. This implies

rt,ξ)-1K(r,ξ)dr/
to

<C\t-to\explChyp

exp (chyp ί K(τ, ξ) di
\ Js

ή \
/ K(τ,ξ)dτ )ds, t ξ < s , t .

J s /

Further, it is also easily seen that

\Q(t,s,ξ)\\E(t,s,ξ) - E^s^M)-1 <C\t-to\exj>(chyp\J K(τ,ξ)di

for all tζ < s, t, such that t > (ί0 + h)/2. Together with

above mentioned second integral can be estimated by

C\t - ,ξ) exp (chyp \J K(τ,ξ) dr exp K(τ,ξ) dτ\ ds.

Similar to the proof of Lemma 1.1 we choose Q > Chyp to get the continuity in
t. The same holds for the third term if we take into consideration estimate for

ξ,ξ). Thus, the continuity in t is proved for ί0 > 0, ux and ut/X(t) belong to

In order to show continuity at the point t — 0 we have to find for every given
ε > 0 a positive number δ — δ(ε) such that

<OM~Ί£δ(*,£)l < ε> <OM~ΊAfi(t,OI < ε for all (t,ξ) € [0,<J] x K.

For (t,ξ) G [0,Γ] x R we have due to Lemmas 1.1, 1.2

It follows

ί€[ί ξ,Γ],

t e [ 0 , ί € ] .
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At first we choose to a given positive number ε a number δι (ε) such that

c(

and then the positive number A(ε) with tA^ = δ\{ε). For (ξ) > A(ε) consider

t < δi(ε). It is clear that tξ < tA(εy If t <tξ, then

For ίi (ε) > ί > ίξ we have

< Cexp I JJ '

Finally, for the solution of the Cauchy problem for the ordinary differential equation
(1.2) with homogeneous initial data and with a parameter taken from the compact
set { ( e l : (ξ) < A(ε)}, one can find a positive number <S2(ε) such that the
estimate

{ξ)M\ξ\Wt,ξ)\<ε

holds for all t < 52(ε) and all ξ of that compact. Analogously we prove the state-
ment for (OM-1 |Aώ(ί,OI/A(ί). But u/λ(t) G C([0,T];5M" 1) follows immedi-
ately from ut/\(t) G C([0,T]; BM~ι). This completes the proof. D

At the end of this section we cite some properties of the auxiliary functions
t = tξ, g = g(t,ξ) and K — K(t,ξ) which we need in the next section.

Lemma 1.4 ([23]).
a) The first derivative of tξ is equal to

dtξ

d(ξ)

, c > e 2 .
b) For every large N there is a constant c(N) such that tξ < To for all ζ G R
and all c > c(N).
c) If c is sufficiently large, then there exist constants C\ and C<χ such that
d \n(ξ) < I In λ(^) | < C2 ln(f> for all ξeR.
d) There exists a constant CN such that j Q

ζ g(τ,ξ)dτ < CN In(ξ).

e) There exists a constant CN such that J^° K(τ,ξ)dτ <
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Proof,
to c): Indeed, after integration of condition (A3) we obtain

Λ(Γo) λ(T0) Λ(T0)

A(Γo)(Q λ(Γo) A(Γo)(O

respectively. But this gives the inequalities of c).

to d): It holds

+ Inp{tξ,ξ)-Inp(0,ξ)

< C+ C (Am)(ξ)ln(ξ))1/2 + In p(tξ,ξ)

Together with Lemma 1.4 c) we obtain the desired estimate,

to e): It holds

(r) (ξ)Λ2(r) 7 Jtζp
ξ

Using definition of the function t — t^ and Lemma 1.4 c) completes the proof. D

2. Properties of BM,Q,T

Lemma 2.1. IfM-l > 3/2,1 >0andQ>0, thenBM,Q,τ C C ([0,T];Hι(R)).

Proof. For u G BM,Q,T we have

\\u(to,x)-u(tux)\\2

Hl{R) = ί\Λ(to,ξ)-U{tuς)\2(O2ldξ

JR
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Lemma 2.2. To given positive M and Q there exists a positive constant ro

such that for all r > r0 the imbedding C([O,Γ]; W[(R)) C BM,Q,T holds. In

particular,

(2.1) \\u\\M,Q,τ<Cirnbmψ\\Φ,t)\\wi(R) for all M G C ( [ O , Γ ] ; ^ [

Proof. Due to (1.13) and Lemma 1.4 d),e) we have

NQM^Q < C(ξ)Cl for all (ί,ξ) e [0,Γo] x R.

Using for r > 0

/•
i f f ,ry» 1 W^γi *̂̂ * # ^ I I /ϊ i I */" i l l y,^ ^

we obtain for r > r 0 := C\

| | ( , ) | | ( K )
[0,T]

The lemma is proved. D

We need the next lemma for proving Theorem 2.1, the main result of this
section.

Lemma 2.3. a) Let f = f(x) be a continuously differentiate function defined
on [0, oo). Suppose that f'(x) is decreasing and that xf'(x) < f(x) on [0, oo). Then

b) Let f = f(x) be a continuously differentiate function defined on [0, oo). //

\xf'{χ)\ < C on [0, oo), C independent of x, then

\f(x)-f(y)\<C for all y£[x/2,x].

Proof.

a) The statement is equivalent to f(x + y) < f(x) + f{y) for all x, y G [0, oo). We

have with z E (x, x + y), y < x,

f(x + y) = f{x) + Πz)y < fix) + f'(y)y < fix) + f(y).

b) We have with z G (y,x), y G [x/2,x],

fix) = fiy) + f'(z)(x -y) = f{y) + zf'(z)(x - y)/z.

Hence, \f(x) - f(y)\ <C(x-y)/z <C. D

The next theorem contains a statement which gives the property for BM,Q,T

to be an algebra.
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Theorem 2.1. There exist positive numbers Q and M such that Λ/Q,M(£ 5£)

is a temperate weight, that is,

(2.2)NQM(tΛ)<CNQ,M(t,η)NQ,M(t,ξ-η) for all ξ,η e R, t G [0,Γ0],

where C is independent oft,ξ,η.

Proof. In the following we set σ := ξ — η. The inequality (2.2) is equivalent

to

(2.3) \nλΓQM(t, 0 < ^ + In-A/^M(f, *?) + lnΛ/^Λrfo σ) .

It is enough to distinguish the following cases:

i M
2. M

£ [|£l>2|f|], where 77 and ξ have the same sign.

t o 1. We have to show with suitable constants A and M

(2.4)

where Λ/g(ί,ξ) := Λ/Q,O(^O Taking account of ΛfQ(t,ξ) > 1 this follows from

lnΛ/*Q(t,ξ) < A + C m 1^ - Applying Lemma 1.4 gives that the left-hand side

of this inequality can be estimated by Cln(ξ). It is clear that the right-hand side

of (2.4) can be minorated by C\n(ξ) because of (ξ) < (σ) < (η). Thus after a

special choice of Q we can determine a constant M such that (2.4) and (2.3) are

satisfied.

t o 2. The different subcases are obtained by the aid of tσ > tη > tξ, \σ\ <

\ξ\/2. The relation (2.3) is fulfilled for t e [tη,T0] because the left-hand side of

(2.4) is non-positive. Here one has to use (77) < (ξ). We need a more careful

analysis for the subcases t e [tξ,tη] and t G [0,£$]. For the left-hand side we have

(2.5)

° (K(τ, ξ) - K(τ, η) - K(τ, σ)) dr + f ' (K(τ, ξ) - K(τ, η)) dr
Jtη

ί " K(τ,ξ) dr - ί " g(τ,η)dτ- ί g(τ,σ)dτ, t£ [tξ,tη],

(2.6)

°/ ° (K(τ, ξ) - K(τ, η) - K(τ, σ)) dr + ί ' (K(τ, ξ) - K(r, η)) dr

Γ K(τ,ξ)dτ- Γ g(τ,η)dτ- [''g(τ,σ)άr+ Γ g(τ,ξ)dτ, ίe[0,*ξ].
Jtf Jt Jt Jt
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Let us devote to (2.5). The function K(τ,ξ) is decreasing in \ξ\. Thus the first two

integrals are non-positive. Let us study

JVK(τ,ξ)dτ-JVg(τ,η)dτ

(2.7)

Here we have used pτ(τ,η) > 0 which follows from do > 1/2 of (A3).

A change of To has only an influence on the constant A in (2.4). Thus we can

make the constant To < 1 smaller such that λ(τ) < 1 for r G [0,T0]. Then

(lnA(r))2 (lnAfo))2 (ln(Q)2(Q3/2

Λ 3 / 2 ^ )Λ 3/2( r )

(2.8) < ^ ^ y ^ < (ln(ξ))1/2(O3/2

This shows that the integrand of the first integral is non-positive.

Now let us assume for a moment that

(2.9)

Then

< f' -±£>{σy/*(ln(σ))^dτ < f'g{τ,σ)dτ
Jt \/Λ.(τ) Jt

< CN ln(σ)

by Lemma 1.4. To prove (2.9) we use Lemma 2.3 a). Let us define the function

- (e>1/2(ln<e»1/2. Then we have

Thus the assumptions of Lemma 2.3 a) are satisfied. We obtain
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Consequently, (2.5) can be estimated by Cln(σ). Comparing (2.5) with (2.6) then
the consideration of the last one can be restricted to the additional integral

/ (9(τ, ξ) - g(τ, σ) - g(τ, η)) dr
Jt

< <7 + jf** ^ =

(2.10) + ±J ( dτ (Inp 2 (r,0- Inp\τ,η) -Inp2(r,σ)) dr.

dr

Using (2.9) the first integral is non-positive. For the second one we obtain

l ΐ n P2(hξ)p*(tη)p*(tσ)
2 n

Here we used the monotonicity of p{t,σ) in t and (η) < (ξ) < 2(η).

Thus we have shown that in the second case the left-hand side of (2.4) can be
majorized by C + CΊn(σ) , C depends on Q, too. For the right-hand side we obtain

^ ^ > A - Cln2 + Cln(σ) .

Then to every Q we can find constants A and M such that (2.4) and (2.3) are
satisfied.

to 3. The different subcases are obtained by the aid of tσ >tξ >tη, \σ\ < \ξ\.
Using the same argument as for the second case the left-hand side of (2.4) is non-
positive for t E [£σ, TQ]. For t G [ίζ, tσ] all integrals of the left-hand side of (2.4) are
non-positive except

[
Jt

*'λ{τ)Qnλ(τ))2

This integral is now non-negative in opposite to the second case. Now we use

(lnΛ(r))2 (lnλ(τ))2 (lnλ(^))2 (ln(ξ))2 1
Λ2()(ξ)2 Λ2(ί)<ξ>2A*(τ)(ξ)(η)

Using this inequality the above integral can be estimated in the following way:
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For t G [£77,£ξ] the left-hand side of (2.4) is equal to

° ίf °(K(τ,0 - K(τ,η) - K(τ,σ))dτ + ί '(K(τ,ξ) - K{τ,η))dτ
J tσ Jtξ

+ f ( 9(τ, ξ)dτ - f ' g(τ, σ)dτ - ί * K(τ, η)dτ .
Jt Jt Jt

If we prove that this sum can be majorized by C + C ln(σ) for t = tη, then the
same is true for t G (tη,tξ]. Indeed, using the same ideas as in (2.7) this follows
from

[ (K(τ,η)+g(τ,σ)-g(τ,ξ))dτ
Jtr,

Cln(σ)

<C + Cln(σ) .

Here we have used that the integrand of the first integral is non-positive and

For t € [0, tη] the left-hand side of (2.4) is equal to

f ° K(τ,ξ)dτ- [ ° K(τ,η)dτ- f ° K(τ,p)dτ+ Γ g(τ,ξ)dτ
Jtζ Jtr, Jtσ Jt

/

tη ptσ

g(τ,η)dτ- I g{τ,σ)dr.
If we prove that this sum can be majorized by C + Cln(σ) for t — 0, then the
same is true for t G (0, tη], especially for t — tη. This follows similar to (2.10) if we
replace Jt

 ζ by fQ. Consequently, the majorization for t = 0 implies even that one
for t G (0,^]. Setting

F((ξ)) = ί ° K(τ,ξ)dτ and G((ξ)) = [ * g(r,ξ)dτ
Jtζ Jo

it remains to show that

can be estimated by C + Cln(σ).
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Firstly we show it for the function G — G((£)). We have

If X2(tξ)(ξ)2 < N, then the last term can be estimated by - In2. If X2(tζ)(ξ)2 > N,

then

β

If we prove that |lnλ(ί ξ) - lnλ(^) | < C, then G«ξ» - G{(η)) - G«σ)) can be
majorized by A + Cln(σ). Here we have to recall — lnλ(ίσ) < ln(σ). The above
inequality is equivalent to

(2.12) <C .

Let us consider therefore the function /((£)) — lnλ(t$) x. It holds

df((Q) ^ n , /t,df((ξ)) A(tξ)λ'(tξ) (\n(ξ) -
^° and (ξ) =

τ°/A(τ)(lnA(τ))2 A(τ)N (lnλfe))2 (lnA(T0))2

+ ^ Λ(ΓO)(O

by condition (A3). Thus we can apply Lemma 2.3 b). This yields (2.12) and
completes the calculations for the function G.

In a similar way one can handle the function F. We have

/ τ°/A(τ)(lnA(τ)) A(τ)N
U ζ ; ; 4 V Λ2(r)(ξ) + Λ(τ)^

Γ°2(lnA(τ))V(τ)

i λ(r)A(r)(ί>
The second term is uniformly bounded. Using |lήλ(τ)| < | lnλ(^) | , the same
estimates as in the proof of Lemma 1.4c) and assumption (A3) one can show that
the third term is bounded, too. Consequently, we have to take into consideration
only the first and last term. Forming F({ξ)) — F((η)) — F((σ)) gives on the one
hand for the last terms

ln(σ)ln(ι?h

ln<0
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this term can be estimated by A + Cln(σ), and on the other hand

(lnΛ(^))2 (lnλ(tσ))2'

N \ ln(£) ln(ϊ?) m ( σ )

Setting f((ξ)) = (lnλ(ί ί))2/ln(ξ) we obtain for the derivative of /

/rt4f«ί»
d(ξ) ln(O V

_

and consequently
d(ξ)

< C. After application of Lemma 2.3 b) we obtain

nλ(ί^))2 (In,

Info)
This relation implies the desired estimate (2.4) in the third case, too, if we use

A+CIn > A+Cln(σ). All the considerations together lead to the statement

of the theorem. D

Corollary 2.1. There exist positive constants Q and M such that BM,Q,T is
an algebra and

(2.13) | |W||M,Q,T < Caig\\u\\M,Q,τ\\v\\M,Q,τ for all u,v £ BM,Q,T

Proof. Let u,v £ BM,Q,T- Then using Lemma 2.1

Consequently,

"7Γ7 \drl

Λ/b,M-/ftjO
77 Γ77 JλίQ,M-l ft, η)λfQ,M-l ft, ξ-V)

If we choose / > 1 and M - I equal to the constant M from Theorem 2.1, then we
get (2.13). D

3. Proof of Theorem 0.1

a) A successive approximation scheme
Instead of (0.4) we consider the equivalent system of differential equations

(3.1) t40) = /ft,*,0),

^ - λ2(t)b2(t)vx

(3.2)

,0) = uo(x), u[o)(x,0) = tii(x) ,

^ - /ft,a?,t;x + 4°)) - /ft,x,0)

°), υ(x,0) - t;t(a;,O) = 0 .
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It is clear that u = υ + u<°) yields a solution of (0.4) if u^°\v solve (3.1), (3.2),
respectively. Due to the assumptions of Theorem 0.1 and Lemma 2.2 there exists a
constant n such that # , uί°\ ui°J € C([0,T]; W^R)) , BM,Q,T respectively for
TG(0,To].

To proceed further, we define the successive approximation scheme

z, 0) = vt
(g+1) (a:, 0) = 0 , ςf = 0 , 1 , . . . , v(°> = 0 .

Using (A5), (A6), Hadamard's formula, and Corollary 2.1 we obtain for υ^ the
equation

h{t)v^= ί
Jo

[ dvf{t,x,τ
Jo

= λ'(t) f f
Jo fr

λ'(t)BM%QtT

if ri is large enough. Thus we can apply assumption (A5) and Theorem 1.1 to
understand that Vx belongs to BM,Q,T->T e (0,T0]. The differences w^ :=

v(q+i) _ v(q) a r e satisfying

Hadamard's formula gives

where for q = 0 , 1 , . . . we define

(3-3)

gq(t,x) := fΣ(k+ 1)αfc+.;^'X)(4')(t,x) + 4°>(t,x) + τn#>(t,x))kdr.

The assumption (A6) guarantees that go € BM,Q,T, T £ (0,To]. Hence, by Theo-
rem 1.1 we have Wx e BM,Q,T Thus we obtain step by step that w^ € BM,Q,T,
T € (0, To], that is, all iterates w^ are well-defined in BM,Q,T
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b) Estimates for the iterates
Now we want to estimate the iterates {w^ } and to show that there exists a constant
T* such that {i>(ςf)/λ(*)}> { ^ M W } a n d iυχ^} a r e Cauchy sequences in BM,Q,T*

Then the limit υ is obviously a solution belonging to BM,Q,T* By Lemma 2.1
the function v + u^ is a solution of our starting problem (0.4) valued in Sobolev
spaces. The inequality (1.14) implies together with Corollary 2.1

Lemma 3.1. There exists a constant Γ* such that the inequality

CaprCaig\\gq\\ M,Q,T* < 1/2 holds for all q = 1,....

Proof. From step a) we know that Wx belongs to BM,Q,T,T £ (0,Γ O ] .

By Corollary 2.1 we have the estimates

\Mt,x)\\M,Q,τ <
fc=O

λ'(ί) M,Q,T

O.k+1

Now let us set in assumption (A6) D — 2(\\UX\\M,Q,T0 + \\wχ \\M,Q,TO) Then

λ'(ί)

ko ) | |M,Q,x

\ \

<CaprCimb

Ofc+l

λ'(ί)

By (A6) we obtain WW^WM.Q.T < C(T), where C(T) -> 0 for Γ -> 0. Thus

ll^^llM.g.Ti < ||^iO^||M,Q,τo/2 for a sufficiently small Γi Analogously,

k=0

and finally CαprCα/̂ H îllAf̂ .T* < 1/2 for a sufficiently small T* < ϊ i .

Applying (3.4) leads to ||u4 ||M,Q,T* < ||^i° ||M,Q,TO/4. For estimating g2 we
use

Λ Γ + II«42)IIM,Q,T. < i>
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Then the same reasoning gives the statement for q — 2 and so on with the same
T*. This proves the lemma. D

From (3.4) and Lemma 3.1 we conclude

This yields the property of {υ^/X(t)}, {v{

t

q)/λ(t)} and {vx

q)} to be Cauchy se-
quences in BM,Q,T* It completes the proof of the main theorem. D

EXAMPLE 3.1. Now let us apply our main result to the Cauchy problem

utt -exp ί - — ) b2 ( - ) uxx + h(t)ux = f(t,x,μ(t)ux),

u(x,0) = uo(x), ut(x,0) = ui(x),

where h{i) satisfies (A5) with λ(t) = exp(-t"α) (see (0.3)). Firstly, we note that
for a > 1/2 the conditions (Al) to (A4) are satisfied. If a < 1/2, then (A4) is
violated.

If additionally to the assumptions (Al) to (A5) the function / is polynomial in
μ(t)ux, then the above quasilinear weakly hyperbolic Cauchy problem with strong
oscillations has a classical solution belonging to

wGC([0,Γ*);fί3(R))nC1([0,Γ*);iί2(M)) Π C2([O,T*); Hλ(R))

if μ(t) = o^-^-1 exp(-£-α)) as t -> 0 and if the data uo,ui belong to W^iR),
Wp~1(R) respectively, where r\ is sufficiently large. It is clear that μ(t) =
t / 3exp(-t~α), β > - (α 4-1), satisfies the condition.

Up to now we have not discussed the uniqueness of solutions for (0.4).

Corollary 3.1. The Cauchy problem (0.4) has a uniquely determined solution

in C2([0,Γ]; W^+^IR)), where ro is taken from Lemma 2.2.

Proof. From Lemma 2.2 we know that the solution u and its derivative

ux belong to BM,Q,TO> The difference w = u - v of two solutions u and υ of (0.4),

belonging to BM,Q,T0, satisfies

α i \

dpf{t,x,υx +τwx)dτ) wx ,
/

w(x,0) =wt(x,0) =0 .
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As in the proof of Theorem 0.1 one can show that the right-hand side is equal to

λ'(t)g, where g belonging to JBM,Q,T, T G (0,T0], fulfils

IMIM,Q,T < C(T), C(T)->0 as T - > 0 .

Thus a sufficiently small T* gives together with Theorem 1.1 the estimate

IKIIM,Q,T* < C ( T * ) | K | | M , Q , T * < IKIIM,Q,T*/2 .

Consequently, the solution is uniquely determined for t £ [0,Γ*]. For t E [T*,TQ]

the uniqueness follows from the strictly hyperbolic theory. D

REMARK 3.1. The approach of this paper to handle (0.4) can be applied to
more general equations, for example,

u>tt ~ λ2(t)b2\t)uxx + h(t)ux = f(t,x,u,ut,ux) .

This follows from (1.14) and (3.5). It even allows to study Cauchy problems for
the higher-dimensional case

under the assumptions

*,J=1

I A*«.,(ί)l < cxHt) C y ) , k = o, i, 2,

The nonlinearity in right-hand side has to satisfy corresponding conditions to (A6).
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