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We construct an invariant for closed, oriented three-manifolds from the Kont-

sevich integral of framed links, and show that it includes Lescop's generalization

of the Casson-Walker invariant. Combining this result and a formula for comput-

ing the Kontsevich integral in [17], we can compute the Casson-Walker invariant

combinatorially in terms of q-tangles (non-associative tangles in [3]).

Our invariant is obtained from the Kontsevich integral by imposing the three-

term (3T) relation, orientation independence (01) relation, O-vanishing relation

and 1-vanishing relation to the space of chord diagrams subjected to the four-term

relation. The 3T relation is given by

(3T relation) ) ( + /'•'. + _ = 0.

Here, dotted lines present chords and the three chord diagrams are identical except

within the region where they are as above. The 01 relation is given as follows. Let

D b e a chord diagram and let D' be a chord diagram obtained by changing the

orientation of a string s of D. Then

(01 relation) D'= (~ϊ)<a) D.

Here e(s) denotes the number of end points of chords on s. The O-vαnishing relation

means that a chord diagram having a string with no end points of chords is equal

to 0, and the 1-vanishing relation means that a chord diagram having a string with

only one end point of chords is equal to 0.

The Kontsevich integral Zf of a framed link has values in the space of chord

diagrams subject to the four-term relation [13, 2, 17]. Let v — Zf(Q) for the trivial

knot O J which is equal to the factor introduced in [2, 17] to normalize the effect of

maximal and minimal points. For an ^-component oriented framed link L, let

This means that we connect-sum v to each string of Zf(L). Let Λ'(L) be

the image of Zf(L) by the quotient of the space of chord diagrams by 3T, OI,
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0-vanishing and 1-vanishing relations, and then normalize Λ'(L) by using the sig-

nature of the linking matrix of L, we get an invariant of 3-manifolds Λ(Mχ,) where

ML is the 3-manifold given by the surgery on the framed link L.

We first define Λ(L) and prove that it is an invariant of 3-manifolds by showing

the invariance of Λ(L) under the Kirby moves in Figure 1 [12]. Any oriented 3-

manifold is obtained by the surgery on a non-oriented framed link in S3 [23], and

the two oriented 3-manifolds obtained from two links are homeomorphic if and only

if one of the links are obtained from the other one by a sequence of Kirby moves.

In Figure 1, framings of the links are given by the blackboard framings and the

part of L[ in V parallel to L2 is actually parallel on the blackboard.

(KI)

u
split

union

L L u
split

union

(KΠ)

FIGURE 1. Kirby Moves

In the latter half of this paper, we study Λ(L) concretely, and show that it

consists of the order of the first homology group and Lescop's generalization of the

Casson-Walker invariant.

After finishing this work, the theory of the universal perturbative invariant of

three-manifolds is developed in [20] with this paper as a starting point.

The main results (contents of Section 1) are announced in [14].
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1. Construction of a 3-manifold invariant

We use notations in [17, 19]. Let C be a chord diagram with a distinguished

string s, and let k be the number of end points of chords on s. Let Δ(C) denote

the sum of 2k diagrams obtained by adding a string parallel to s and changing each

point on s as in Figure 2.

FIGURE 2. Parallel of a chord diagram

Proposition 1. Let L and V be two framed oriented links as in Figure 3,

and let

(1.1) Zf(L) =
X : chord diagram

Then Zf(L') is obtained from Zf(L) by

(1.2) Zf(L')= £ 6XX',

X : chord diagram

where cx is the same as in (1,1) and X' is obtained from X as in Figure 4-

FIGURE 3. KΠ move for oriented framed links

This is proved in Section 2.
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7
X X'

FIGURE 4. Difference of Zf by the second Kirby move

θ θo

FIGURE 5. Θ and Θ2

Let Λ^ denote the C-linear space spanned by the chord diagrams on a disjoint

union of ί copies of S1 subject to the four-term relation. Let

Λ[ = A^ /(3T, 01, 0-vanishing and 1-vanishing relations).

Let Λ'(L) be the image of Zf(L) in Λι for an ^-component framed oriented link

L.

Proposition 2. Λ'(L) is invariant under the KΠ moves and the orientation

change of each component.

This is proved in Section 3.

The structure of Aλ ' is given as follows.

Proposition 3. Aλ is a two-dimensional C-vector space spanned by the

two elements Θ U Θ U U Θ and ©2 U Θ U U Θ, where ©2 denotes the chord
i £-1

diagram on a circle with two chords as in Figure 5.

This is proved in Section 4.

We normalize Λ'(L) for the KI moves. For £uί2 > 1, Λ^ and A[£^ are

isomorphic by identifying the corresponding basis. Let Λι be a two dimensional

space spanned by e0 and eλ, and we identify Λι with A\ by identifying Θ U Θ U

• U Θ with e0 and Θ2 U Θ U U Θ with eλ. The image of Λ'(L) in Λι is also

denoted by Λ'(L). We give an algebra structure to A\ by

e o e o — e 0 el ~ el e0 — ei ei —
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Then, for a split union L\ U L2 of two framed links L1 and L2, we have

(1.3) A;(Li U L2) = Λ'(Li) Λ'(L2) € A

For trivial knots oo±i with ±1 framings, we know (from (6.3) in Section 6) that

1 3 1 3
(1.4) Λ'(oo+1) = - e0 + - e1 ; A'too^) = - - e0 + - eλ.

These elements are invertible in A\ and their inverses are

Λ'too+iΓ1 =2eo--eu Λ'(oθ-i)"1 = ~2e0 - - ex.

So we can modify Λ'(L) for the KI moves as in the case of the Jones-Witten

invariant. Let σ+(L) (resp. σ_(L)) denote the number of positive (resp. negative)

eigenvalues of the linking matrix BL of L, and let

(1.5) Λ(L) = tf-°+M-°ΛL) Λ /(oo+ 1)-σ+ ( L ) Λ '(oc-iΓ σ - ( L ) Λ'(L).

For a framed link L and the corresponding three-manifold ML, we have the

following.

Theorem 1. Λ(L) is a topological invariant of the three-manifold ML-

Let |£Γi(Λfχ,)| denote the order of the first homology group of ML and 6 1 ( M L )

the first Betti number of ML. Let X(ML) be Lescop's generalization [22] of the
Casson-Walker invariant λ(M^). If b1(ML) = 0, it satisfies

λ(ML) = \H1(ML)\\(ML).

Let AQ(L) and Λi(L) be the coefficients of e0 and β]̂  in Λ(L), i.e.

(1.6) A(L) = A0(L)e0 + A1(L)e1.

Then Λ0(L) and Λχ(L) satisfy the following.
Theorem 2.

(1) Ao(L) =
[θ ifb1(ML)>0.

(2) Ai(L) = -

Theorem 1 is a direct consequence of our construction of Λi. To prove Theorem

2, we use the fourth author's diagonalizing lemma given in [26, Corollary 2.5] and

[25, Lemma 2.2]. According to the diagonalizing lemma, we can reduce the proof

to the case of algebraically split links, for which we can prove (1). See Section 5

for detail. To prove (2), adding to the diagonalizing lemma, we use Dehn surgery

formula obtained in [10] and [22] which expresses the Casson-Walker invariant in

terms of linking numbers and coefficients of the Conway polynomial [22]. For
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algebraically split links, this formula is rather simple and we can prove similar

formula for our invariant. Comparing these formulas, we get (2). For detail, see

Sections 6 and 7.

2. Proof of Proposition 1

We prepare several lemmas. Suppose X is a one-dimensional oriented manifold

whose components are numbered. A chord diagram with support X is a set con-

sisting of a finite number of unordered pairs of distinct non-boundary points on X,

regarded up to orientation and component preserving homeomorphisms. We view

each pair of points as a chord on X and represent it as a dashed line connecting

them. Let Λ(X) be the vector space over C spanned by all chord diagrams with

support X, subject to the well-known 4-term relation (see, for example, [2, 17]).

The vector space Λ(X) is graded by the number of chords, and, abusing notation,

we use the same Λ(X) for the completion of this vector space with respect to the

grading. When X is n numbered lines, Λ(X) is denoted by Vn. All the Vn are

algebras: the product of two chord diagrams Ό\ and D2 is obtained by placing D\

on top of D2. The algebra Pi is commutative [2, 13].

We recall the associator Φ e V3 in [16, 17], which is equal to Zf( | \ J ), where

| \ J presents the trivial q-tangle on three strings with brackets ((**)*) at the

top and (*(**)) at the bottom. Let Φ32i = Zf( \/\ ), where | / | presents the

trivial q-tangle on three strings with brackets (*(**)) at the top and ((**)*) at the

bottom. These associators correspond to the associators of quasi-Hopf algebras in

[5, 6] and are also studied in [3]. For p = (p1? , pg), g(p) = g is the length of

p, and |p| = Pi + p2 + ^ Pg For p and r with the same length g, p > r means

Pi > ri > P > r means pi > r{, p > 0 means p{ > 0, and p > 0 means pi > 0 for

1 < 2 < g. Let ζ be Zagier's multiple zeta function defined by

(2-1) C ( * i , • • , * * ) =

and let

(2.2)
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Then

(2.3)
k=2

Σ
p>0, q>0,

|=k,

where A (resp. B) denotes the chord connecting the first and second (resp. the sec-

ond and third) strings. Another associator Φ321 is obtained from Φ by substituting

B to A and A to B.

Let

' "Δ

where ε{ = 1 (resp. -1) if the i-th string is oriented downward (resp. upward).

L e m m a 1. For any A £ V2, we have

J 1 1 L

(2.4)

Ί Γ

Proof. This is a special case of Lemma 2.1 in [19]. D

Let Δ3 be a mapping from V3 to T± applying Δ to the third (right most)

string of V3. Let

α' = i { H ,

β = e r a , /?"= ••••ΓΔΊ.

Lemma 2. £ Δ 3 ( Φ ) = B , Δ 3 (Φ 3 2 i )F = F.

Proof. Note that

Ea = Ea', = Eβ', aF = a'F, = β"F.

Let X be an element of P3. By applying Lemma 1 with A — a' or A = β' to

each end point on the third string of X, we get

(2.5a) E β A3(X) = E A3(X) β1.
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Similarly, we get

(2.5b) Δ3 (X)aF = a' Δ3 (X) F, Δ3 (X)βF = β' Δ3 (X) F.

Since

we have

(2.6) a1 β' = β'a' = a' β" = β" a'.

We use the above expression for Φ and Φ32i In Δ 3(Φ) and Δ 3 ( Φ 3 2 i ) , Δ 3(A) =

a and Δ 3 (B) = -β. By (2.4), (2.5) and (2.6), we have

Eβ\*\ api-r* βqi~sι . ..ap9~r* βq9-s9 aM = £ α ' | p | β'H,

α | s | βP1~r1

Hence

(2.7a)
fc=2 - I J

Σ , ) χ

L p>0, q>0,
|p|+|q|=k,

9{p)=g(<i)=9

Σ
g(τ)=g(s)=g,

0<r<p, 0<s<q

(2.7b) k Δ^ 2^
>1 p>0, q>0,

|P |+|q|=k,

( - I ) I P I (-l)W

g(r)=g(s)=g,
0<r<p, 0<s<q

However, we know that

9i

sτ=0

Therefore, all the terms except the first one of the right hand sides of (2.7a) and

(2.7b) vanish. Hence we get £ Δ 3 ( Φ ) = E and Δ 3 ( Φ 3 2 i ) F = F. D

Let v be an element in V<i such that v~γ — Zf( (~\_) )• By the remark at the

end of Section 5 in [19], we have



THREE-MANIFOLD INVARIANT VIA KONTSEVICH INTEGRAL 373

for some a and b in V2 such that

(2.8) αδ = Δ(i/)(i/-

With these a and f>, we have the following.

Lemma 3.

Proof. By (2.7a) and (2.7b), we have

(2.9)

Δ3(|\|)
T T ϊ V

As q-tangles,

Zf(

+ +

Δ(U)

Δ 3 ( | \ | )
T t 4 I

i + i i

Δ(U)

where the brackets aregiven as (*(*(**))). On the other hand, Zf is obtained from

Zf by adding v1!2 at each maximal and minimal point. So, by multiplying v~λl2

at the outer strings of (2.9), we get Lemma 3. D

Proof of Proposition 1. Let

(2.10) Zf{L)= Σ 6*X

X : chord diagram

Then, from Lemma 3, Zf{L') is given by

(2.11) Zf(L')= Σ δxX'>
X : chord diagram

where cx is given in (2.10) and X' is obtained from X as in Figure 6. Hence, Zf(L)

X

FIGURE 6. Difference of Zf by the second Kirby move
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is given by

(2.12) Zf(L) =

X : chord diagram

and Zf(L') is given

(2.13) Zf(L')= Σ dxX'φ(u, ,v).
X : chord diagram

The difference of X#(V, , v) and X'φ{v, , v) are given as in Figure 7. Ap-

V — ' N V

FIGURE 7. Difference of Z/ by the second Kirby move

plying Lemma 1 and (2.8) to X'#(ι/, , v) in Figure 7, we have

\v\

Comparing the above last term and X#(v, , ι/) in Figure 7, we get Proposition 1.

D

3. Proof of Proposition 2

In this and the next sections, we extend the notion of chord diagrams by

introducing trivalent vertices of dashed lines (chords) satisfying the following STU

relation as in [2].

(STU relation)
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From this definition, the order of the edges around a trivalent vertex has

meaning and we have

(anti-symmetry relation) ( )
= — v

According to the four-term relations, an element with a trivalent vertex of chords is

well-defined in the space spanned by the chord diagrams subjected to the four-term

relations. From the STU relation, we have the following relation, which is called

the IHX relation in [2].

(IHX relation) _ ] ] _ \ / = Q

4 i : ..«•.'...'*...

Moreover, from STU and 3T relations, we get following two relations.

(two legs reduction)

(three legs reduction)

l ••••. .•••• l

2 Y " 2

Proof of Proposition 2. According to the 01 relation and the construction of

the Kontsevich integral, Λ'(L) does not depend on the orientation of components

of the link L. Hence Λ' is an invariant of non-oriented framed links.

Next, we show that Λ' is invariant by the KΠ move of non-oriented framed

links. Since Λ' does not depend on the orientation, we may give orientations to the

links L and V in Figure 1 as in Figure 3. So, we prove that

k chords
k chords jj i

For k = 0, 1, this formula is satisfied by the 0 and 1 vanishing formulas. For k — 2,

the right hand side of the formula is a sum of four diagrams. However, three of

these four diagrams vanish by the 0 and 1 vanishing formulas, and the remaining

diagram is the same as the diagram of the left hand side of the formua. Therefore,

the formula is true for k — 2 case. The k > 2 cases are reduced to the above cases

by using the two and three legs reductions. So the above formula is true for all

k. D



376 T. LE., H.MURAKAMI, J.MURAKAMI AND T.OHTSUKI

4. Proof of Proposition 3

Let Λ^ be the C-vector space spanned by trivalent graphs subjected to the

IHX relation and the anti-symmetry relation. Then we first show the following

lemma.

Lemma 5. The space Λλ is spanned by

{D U (UΘ) \ D : connected chord diagram in Λ^ with less than three vertices}.

Proof. By using the 3T relation, the two and three legs reductions, 0-vanishing

and 1-vanishing fomulas, and the anti-symmetry relation, we can reduce any chord

diagram to a linear combination of diagrams of the form D LJ (Uθ) with D £ Λ^.

Then, by using the 3T relation again, we reduce D to a linear combination of

connected diagrams.

Assume that D has 2d vertices with d > 1 and we will show that D vanishes

in Λ[ '. From the IHX and 3T relations, we have

(4.1)
l ••••. .•••• l

2 y - 2
. * ••* •••

Focus on a cyclic path of D with n edges (n > 3). Replace an edge of the path by

(4.1), D is equal to a linear combination of a diagram having a cyclic path with

n — 1 edges and a diagram which is a connected sum of ••;"* and a diagram with

2d-2 vertices. Applying this process repeatedly, D is shown to be equal to a linear

combination of diagrams having a part .i..±i..i.* Using (4.1) again, we have

(4.2) SϊίX = i/2 -•".V.2.'.".;.. -1/2..;;;.;';...

Since •"' '"• '• = .;...i.;..^..by the IHX relation, (4.2) implies

. V\
( 4 . o J ..»••••••••••==

On the other hand, the IXH relation implies

(4.4) .i.iiX.= 2..ΐLi;ϊ

Hence, (4.3) and (4.4) implies that 5.«'...i.;..v. = 0, and so .^...i.;..^.. = 0. Hence

D = 0. D

Proof of Proposition 3. For a chord diagram D £ Λ^\ let deg(D) be

deg(D) = (number of vertices and end points of D)/2 — ί,
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and we call it the degree of D. All defining relations of Λ[ are homogeneous with

respect to this degree. Lemma 2 shows that the degree 0 and 1 parts of Λ[ are

both at most 1-dimensional and other parts are all O-dimensional. Therefore, it is

enough to show that the elements UΘ and Θ2 U ί UΘ j do not vanish. To do this,

we list up all the non-zero chord diagrams of degree 0 and 1 in A± and show that

they are reduced uniquely to scalar multiples of UΘ and Θ2 U ( U Θ ) by the IHX,

3T, orientation independence relations and 0 vanishing formula. We write down

exactly all such non-zero diagrams as scalar multiples of UΘ and Θ2 LJ f U θ ,

and check that all the relations are compatible with these elements.

Let D be a non-zero diagram in Λ[ of degree 0 without vertices of chords.

Then, because of the 0 and 1 vanishing formulas, each string (real line) of D has

just two end points of chords. Hence D is a disjoint union of chord diagrams

with several components connected by chords as a chain as in Figure 8. For these

diagrams, we have

(4.2) D{k) = l/(-2) f e" 1 Uθ

V
Hence,

D = {-2)-(£-j

where j is the number of connected components of D.

Let D be a non-zero diagram in Λ{ of degree 1 without vertices of chords.

Then the total number of end points of chords is equal to ί + 2 and the number of

end points of chords on each string is equal to 2, 3 or 4. Hence, D is connected,

or a disjoint union of one degree 1 component and other degree 0 components.

Non-zero connected diagrams of degree 1 are DL1' 2', D*1' 2' and D±{" 2 ' 3 in

Figure 8. For these diagrams, we have

2) = i/(_2)fci+fc2 0 2 u

(4.3) £><*i'**> = l/(_2)*i+*2-i 0 2

M = ± 3 ( _ 2 ) - ( f c l + f c a + f c 8 + 2 ) 0 2 u A 1 + ^ 3 + i \

Therfore, combining (4.2) and (4.3), we get expressions for all the non-vanishing

diagrams.

Now we can check all the relation for the above non-vanishing elements. Com-

putation is rather elementally and we omit the detail. D
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P

ΛV1

ϊ Γ

x O O O O O O

Γ O O O O Ό O

FIGURE 8. Non-vanishing diagrams

5. Order of the first homology group

In this section, we prove the first part of Theorem 2. We first recall the fourth

author's diagonalizing Lemma, by which we can reduce our work to simple cases.

For a framed link L, let BL denote the linking matrix of L. A framed link L is

called an algebraically split link if BL is a diagonal matrix.

Lemma 6 (diagonalizing Lemma, [26, Corollary 2.5] and [25, Lemma 2.2]).

Let L be a framed link. There is an algebraically split link V with a non-degenerate

linking matrix such that L U L' is equivalent to an algebraically split link by the

Kirby moves.

Proof of Theorem 2 (1). Since Lo is additive for disjoint union of links,

it will be enough to prove for algebraically split links. Let L be an algebraically

split framed link. To prove (1), we compute the integral for L corresponding

to the configuration of disjoint union of D^k\ We give a coordinate in R 3 by

(2, t) e C x R = R 3, and call the t-coordinate level. Let L be an ̂ -component Morse

link in C x R such that L is in the plane R x R except a small neighborhood of the

crossing points of L. Then L has a framing given by the normal vectors orthogonal

to the plane R x R, and we regard L as a framed link with this framing. Note that

every framed link can be given by this way.
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A set of k chords (dashed line segments) with end points on L, parallel to

C x {0} on different levels each other is called a horizontal configuration with k

chords. Two horizontal configurations Pi and P 2 are considered as the same one if

we can get P 2 from Pi by sliding the chords of Pi keeping them parallel to the plane

C x {0} and keeping their order with respect to the level. Then the Kontsevich

integral Zf(L) in [17] of L is written as follows.

00

(5.1) £/W = Σ Σ
fc=0 P :

horizontal configuration
with k chords

where Dp denote the chord diagram describing the configuration of the end points

of chords of P, and the coefficient cP is given by the modified iterated integral

corresponding to P as in [17]. Let

(5.2) A'(L) = Λi(L)eo + Ai(L)e1.

Then ΛQ(L) is defined from Zf(L), which is given by adding several i/'s to Zf(L).

Since A'0(L) corresponds to the degree 0 part of Zf(L), and, by the argument for

the degree 0 part in the previous section, only chord diagrams with just two end

points of chords on each component contribute to A'0(L). Since, the non-trivial

terms of v have more than three end points, v does not contribute to A'0(L). More

precisely, ΛQ(L) is the image of

Σ_ cP(L) Dp,
P : horizontal configuration with

two end points on each component of L

which is equal to

Σ Σ CP(L))D.
D: \P : Dp = D /

chord diagram with two end points
on each component

We first assume that L is a knot. In this case, we need the coefficient of

(= 0), which is equal to Σp . Dp = D(i) cP(L). From the description of Zf

by using a tangle decomposition in [17, 18], we know that the coefficient of Θ in

Zf(L) is a half of the writhe w(L) of L. Hence, we have

(5-3) K(L) = ψ .

Next, we assume that L is a two component algebraically split link with com-

ponents Li and L2. In this case, we need the coefficients of D^ and D^ U
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which are given by the following integrals: The coefficient of D^ is

(2πV= <t2

Σ εl £'l ε2 4

where ε i ? (resp. εrj) is 1 if the link L is oriented upward at the point (ί i? zf) (resp.

(ί i? ^)), and is equal to -1 if L is oriented downward at this point. This integral is

equal to

\
i Λ Γ

z'1eL2n{t=t1}

z'2eL2n{t=t2}

As in [13], we know that

(5 4) * /
\ / i I

and so the coefficient is equal to

since L is an algebraically split link. As in the case of knot, the coefficient of

u Z^1) is equal to

w(Lι)w(L2)

Hence we have

A'0(L) =
w(Li)w(L2)

Now consider the case for ^-component algebraically split link L with compo-

nents Li, Z/2, * , Li for ί > 3. We first compute the coefficient of D^ whose

components corresponding to Li, , Li are connected by chords in that order. It

is given by the following integral:

i

l\ d\og{zk - z'k).
t=tΎ} k=l

z2,eL2n{t=t2},z2eL3n{t=t2}

(2πv^
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Let Li+i denote L\, then the above integral is equal to

Σ

tk zeLkn{t=tk}
z'eLk+1n{t=tk}

Hence, the coefficient is equal to

i

k=l

since L is an algebraically split link. Next we compute the coefficient of a disjoint

union of several D^'s. In this case, the result is a product of coefficients corre-

sponding to every D^ given above, and so only the coefficient of U£D^ does not

vanish. Hence we get

Therefore, from (1.1) and (1.2), we have

Λo(L) = *

since σ+ (L) and σ_ (L) are equal to the number of components of L with positive

writhes and negative writhes respectively. This implies Theorem 2 (1) because

I det BL\ is equal to the order of the first homology group of ML if b^M^) = 0,

and is equal to 0 if 61(Mχ,) > 0. D

6. Coincidence with the Casson-Walker invariant

To show the equivalence of Λi and λ, it will be enough to show for knots and

algebraically split links since we can apply Lemma 6 (diagonalization Lemma) in

Section 4. For knots and algebraically split links, we derive skein relations of Λi,

and compare them with the Lescop's formula for the Casson-Walker invariant.

Let L\ and L2 be two framed links. Assume that the linking matrix of L2 is

non-degenerate. Let Lγ U L2 denote the split union of these two links. Then we

have

(6.1) Ai(Li U L2) = Λ0(L2) Ai(Li) + Λ0(Li) Ai(L2).
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On the other hand, [22] shows that, for a connected sum ML^ML^, λ satisfies

(6.2)

ί | J ϊ i (M L 2 ) | λ (M L l )+ 1 ^ ( ^ 1 / ^ ) 1 ^ ^ ) i f δ 1 ( M L l ) = 0 ,

X(MLI#ML2) = <

[ | ί ί i (M L 2 ) |λ(M L l ) i f 6 1 ( M L l ) > 0 .

We already know that Λ0(L) = \Hι(ML)\ if bλ{ML) = 0, and Λ0(L) = 0 if

61(Mχ/) > 0. Therefore, if Theorem 2 (2) is true for certain link L2 with non-

degenerate linking matrix, and for the split union L\ U L2, then it is also true for

L\. Hence, it is good enough to prove Theorem 2 (2) only for algebraically split

links.

Next, we introduce skein relations for Λi.

L e m m a 7. Let L+ and L_ be two framed knots which are identical except

in a small ball B where L+ Π B is a positive crossing and L_ Π B is a negative

crossing. Let L_ be the knot obtained from L- by adding a positive full twist as in

Figure 9. Let K^ and K^ be the components of the two component link obtained

from L+ by the smoothing at the crossing in the ball B. Then Λi(L+) and Λi(L_)

satisfy the following.

(skeinl) Ai(L+)-Λi(L_) = -βsign(w(L+)

I I
I I

FIGURE 9. Adding full twist to L_.

Lemma 8. Let L+_ = L{+]_ U L(+]_ U l/ 3) U Z,W be an ί-component

algebraically split link with a positive crossing (resp. a negative crossing) consisting

of the strings L^]_ and L^_ in a small ball Bλ (resp. B2). Let L_+ = L^+ UL(_2+ U

U L^ be a link obtained from L^ by crossing changes in B\ and B2 Let

L\ be the link obtained from L^ by smoothing at the crossing in the ball B\, and



THREE-MANIFOLD INVARIANT VIA KONTSEVICH INTEGRAL 383

let Z/2 be the link obtained from L |_ by smoothing at the crossing in the ball B^

Then Λi(L_| ) and Λi(L |_) satisfy the following.

(skein II)

Proofs of Lemmas 7 and 8 are given in the next section.

For an ^-component algebraically split link L = L\ U L 2 U • •• U L^, a Dehn

surgery formula for the Casson invariant is obtained in [10, 21, 22], which is given

by

(Dehn surgery formula)

2 [JJsignίti ίLO)) I Π MLOI j

Here |/| denotes the number of elements in /, and ak(L) is the coefficient of tk in

the Conway polynomial V L ( £ ) , which is defined by the following skein relation:

where L + , L_, L o are links identical except within a ball at which they are a

positive crossing, negative crossing and their smoothing as usual. Note that there

is a minus at the right hand side of the relation. Recall that, if ML is a rational

homology sphere,

t

λ(ML) = |i/i(ML)| \{ML) = Π \w{Li)\ \{ML).

Before proving Theorem 2 (2), we show some properties of λ for three simple

cases.

L e m m a 9. Lescop 's generalization of the Casson- Walker invariant λ satisfies

the following.

(i) For any trivial framed knot L, —3λ(Mχ,) = Λi(L).

(ii) For any knots L+, L-, K^ and K^ as in Lemma 7,



384 T. LE., H.MURAKAMI, J.MURAKAMI AND T.OHTSUKI

(iii) For any links L+_ = L^L U L{^_ U L^ U L& , L_+ - L{1\ U L{1\ U L^ U

• IJ(1\ L\ and L2 as in Lemma 8,

λi(ML +_) - λ!(M z_+) =

This lemma is proved after proving Theorem 2 (2).

Proof of Theorem 2 (2). For an ^-component algebraically split link L with

non-degenerate linking matrix, we will prove that -3X(ML) = Λi(L). The com-

putation of Λi is reduced to those for split links by the relation (skein II). By using

(6.1) and (6.2), the proof for a split link is reduced to the proof for each component.

Moreover, by using (skein I), Λi of a knot is reduced to Λi of trivial knots with

framings. Therefore, Lemmas 7, 8 and 9 show that Λi and —3λ satisfy the same

recursive relations and the same initial conditions. Hence they are identical. D

Proof of Lemma 9. We first show (i). For a trivial framed knot L given by

vertical twist as in Figure 10,

Zf(L) = O + —7Γ~ Θ + W Θ2 + (terms with more than two chords),

and

v — O H—7 (Θ2 — H") ) + (terms with more than two chords).
24

Hence we have

w 2 24

+ (terms with more than two chords).

In Ai, we have

O=0, © =-2θ2,
by the 0-vanishing formula and the 3T relation. Therfore, in Aι, we have

(6.3) Λ'(L) = ^—- e0 + - — e l 5

Δ o

and so
-i o \ —1

-ΊΓ- eo + o e i sign(w(XJ j - e0 + - e}
Δ o / \ Δ o

e0 + sign(iϋ(L)) -
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FIGURE 10. trivial framed knot L with vertical twist

Hence

On the other hand, by the Dehn surgery formula of λ described before, we have

Hence (i) is true.

Now we show (ii). Since w(L+) — w(L-),

X(ML+) - λ(ML_) = 2 sign(ti;(L+)) (a2(L

From (4.7) in [7] and Theorem 2 in [8], we have

- a2{L.) = a2(L+) - a2(L.) = -aλ(K^ U

These two formulas imply (ii).

It remains to prove (iii). We use the notations in (skein II). Then, we have

(6.4) λ(ML+_)-λ(ML_+) = 2 Σ ( ΓJ
JC{3,4, ,ί} \ie{3,4,-

a | J | + 3 ( i ^ U L^_ U

since the other terms of X(ML+_) are identical to the correspoinding terms of

_ + ) . Similarly, we have

(6.5) λ(ML l)-λ(ML 2) = 2 Σ i ΓJ |
JC{3,4,-/} W{3,4, /}\J

U (U j e JL«))) - a]J]+2(L^ U
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where L^ and L^ are components of L\ and L2 such that L\ — L[ ' UL^3) U U

LW and L2 = L^ U L^ U U lλι\ From the definition of V, we have

(6.6)
IΛ)_ U L{1]_ U ( U LW)) - α, r^JL^l U L^_ U ( I

(6.7)

U L L 2 1 U ( U L « ) ) } _ α | J | + 3 ( L ^ U L(_2I U ( U

We also know that

(6.8)

)

Hence, normalizing by the signatures of the writhes of U{\ L[\ L+l, £_+, Ly_

and L ^ , we get (iii) from (6.4) - (6.8). D

7. Skein relation of Λi

We prove the skein relations Lemmas 7 and 8. These two lemmas are obtained

from the following skein relations for A[ by using the relation between Λ and Λ;.

Lemma 10. Let L+, L-, K^ and K^ be as in Lemma 7. Then

(skein Γ) Λi(L+) - Ai(L_) = -

Lemma 11. Let L_| , L |_; L\ and L2 be as in Lemma 8. Then

(skein IF) Ai(L+_) - Λ'1(i-+) = -\ (Λί(Li) - Ai(L2)).

Proof of Lemma 10. We separate Λi(L+) and Λi(L_) into the q-tangles corre-

sponding to the crossing points in B and the added full twist, and the contribution

from the other parts. Let P± be the invariant Zf from the crossing, T be that from

the full twist, and Q be that from the other part. Then, P + , P_ are given in [17]

and

•Mm,...
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The contribution of T is given by the connected sum of LJ + Θ + Θ2 + to

the integral of L_. For a sum X of chord diagrams, let X^ denote the part of X

consisting of the terms with diagrams having k chords. Since Zf(K) = Zf(K)#ι/

for a knot K, we have

V + P | 2 )

P | 2 )

W g(o))

Pl0 )

p | x ) g ( 0 ) τ ( 1 ) + P ! 0 ) g ( 0 ) τ ( 2 )

p(y g(J» + P ! 2 ) Q(°>

( P ! 0 ) g ( 1 ))#© + ( P ! X ) g ( 0 ) ) # e + ( P ! 0 ) Q ( 0 ) ) # Θ 2 / 2 .

- Λi(L_) = ( P | 0 ) - pί0)) (g#^) ( 2 ) + (pi1] - P ! J ) ) g ( 1 ) - (P10 ) g ( 1 ))#©

Therefore, we have

= ( P |

+ ( P | 2 ) - P ! 2 ) ) g(°) - (P11 } g(°>)#θ - ( P ! 0 ) g ( 0 ) )#β 2 /2.

Since

( P ! J ) g ( 0 ) ) # © = - Θ2/2,

we have

i] l υ - (P! 0 ) g ( 1 ))#©

ugw-ί

We compute Q^ exactly. There are three kinds of chord diagrams in

given in Figure 11. In this figure, ŝ 1) and s^ denote the two components of <

corresponding to K^ and K^ respectively. Let α 1 ? α2, α3 be the coefficient of

the invariant Zf of the configurations to Q^\ Q2\ Q3 Then, from (5.3) and

(5.4), we have

a2 = \k(K^\K^2)), a3 =
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FIGURE 11. Chord diagrams in Q^\ where sM denote the string
corresponding to ifW.

Hence (A[(L+) — A[(L-)) gx is equal to the image in Λι of

a + ( 1 @

Here we use the relation (J3 = —202- So we get Lemma 10. D

Proof of Lemma 11.

•LUL2,B1 and £ 2 are as in Lemma 8 and let L__ = LL 1 ! UL?i UL ( 3 ) U

be a link obtained from L_| by a crossing change in B\. Note that L |_ is an

algebraically split link since so is L+_.

We first compute Λi(L+_) - Λi(L__). We express Λi(L+_) - Λi(L__) in

terms of Λ^Li). Let P+, P_, Pi denote Zf of the q-tangles corresponding to the

parts of L_|_, L_, Li in Bi, and Q be Z/ form the other part. Note that Q is the

same one for L+, L_, Li because L+, L_ and Li are identical in the complement

of J5i. We know that

*.M:ίz
Let X^fc^ denote the part consisting of terms with diagrams having k chords as

before. Since, for any framed link L, Zf(L) is obtained from Zf(L) by adding v to

each component by the connect sum, we have

Λ'1(i1)= I I U ( Q # ( i v , i / ) ) w .

The integral corresponding to a middle chord of the part O"O ^s g i y e n

by the linking number of two components of the link corresponding to the com-

ponent containing the end points of the middle chord. We assumed that L+_ is

an algebraically split link, hence the integral corresponding to a chord diagram

containing a part O " " ' O vanishes. By using this, we list up in Figure 12. all
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the chord diagrams of (Q#(&s * * j^)) which do not vanish. In this figure, s^\

5(2)? 5M denote the compoents of (QΦ(y, ••• ,v)y* corresponding to L±_, L±_

and Z,W respectively. Let Qy3\ , (533(^1 ) be the diagrams in Figure 12.

In this figure, Θk = \JkΘ.

Case that the number of end points of chords on s^ and s^ are equal to 4,

Qΐj

r Λ f....:

U Θ^4,

!»(*) b

Γbfl
,(0

^—3

1 Iu

π=a
Uθ w ,

: |
π α

.(0 u l-3

R η

r
t u β " , Q i ,

run
.(*)

Ί Π

n α

π̂
 U<

u< e-3
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Qir
q=Γ

/ • U θ " , g 1 8 : ' • m V ( 2 ) " U θ «

π π Π C
<5l9 : i ' / i \ \ ^ ( 2 ) " U ®£ 2> ^ 2 0 : "

H Π
2 , Q 2 2 : '•

1-2

1-2

H Γ

π m

Π R
"US' " 2 ,

Case that the number of end points of chords on s^ and s^ are equal to 3,

Π=θ
.(0

26

n R

Uθ*"3,

U θ M ,

(1) X.ς(2)" .(0
U'

Π P
,(0

29

Case that the number of end points of chords on s^ and s^ are equal to 2,

Ί q n π
UD\

n π Ί F

where D\ * is a non-vanishing chord diagram of degree 1 with k components.

FIGURE 12. Non-vanishing chord diagrams in Qι for an algebraically split link
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Let E[h3\ , E33(D[£~2)) be diagrams obtained by inserting \/ to Q[hj\

-", Q33(D{£~2)), and let F^iJ\ , F33{ϋ{£ ~2)) be diagrams obtained by inserting

I I to Q[iJ\ , Q33(D[£-2)). By using relations in A?\ E[iJ\ , F33(D[£'2))

are reduced as in Table 1. In the table, Θίj = (u^" 1 ©) U Θ2 and Θk = UfcΘ.

•dJ) - 3 «(O2 - ^ O 2 ,

r(0 _

^25 = 0 , ϋ&> = ί θ ? \ E # = - ϊ θ ? ) 2&> = - θ ^

J- (Ό (^) -l (ί) <J /^v(^)
•C/13 Λ ^ 2 ' -C/14 2 ' 15 Λ 2 ' 16 4 . 2 '

3 ^ ^ ( i ) y-, I y-χ(^) T-I /^v(^)

JtL/21 — ~ ^ ^ 2 5 -^22 — U 5 -^23 ~ υ 5 -^24 — U >
3 -(0 ^(0 _ _ 3 0 ( O β(i) _ _ 3 0 ( O

Θo TTi / Γ̂ v."̂  / \ Ί~^iv ^ I I ί~\
&Ϊ3 & i o u x 5 -ί-/31 \-^l / — — 77 1 ^ )

Ez2^D\ ) = 0, £/33(D1 ) = 0,

1 — ^ W 2 > 2 — ~ 7 J W 2 > 3 — 7 j ~ 2 ' 4 — " 2

5 <\ 2 ' 6 2 ' 7 2 2 ' 8 2

/• • \ 1 / " ί 1 \ r \ J_ ί " / 1 " \ (i\ (P Λ\ (i\ 1 Γ
9 c\ 2 i 10 cy 2 ' 11 2 ' 12 o 2

f\3 — θ 2 5 ^14 = — 2 Θ 2 , F 1 5 = θ 2 , F16 = —2Θ 2

F 1 7 = θ 2 , Fig = θ 2 , Fig = θ 2 , F 2 0 = — 2 θ 2

F,21 ^ 9 ' 22 ^^2 ' J 7 2 3 — — Δ κ y 2 ' 24 — ^^2

P2g = — θ 2 , .F3Q (JD-L ) = — — Dι U θ , ^ 3 1 ( 1 ^ ) = D1 LJ θ ,

^ - 2 ) ) = D[e~2) U θ , F33(Df~2)) = D['-2) U θ .

Table 1
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Let afύ) (resp. 4 ° , ak, a^(D[e~3)), ak{D{{"2))) denote the coefficient of Zf of

the configuration Qk

iJ) (resp. Qf, Qk, QJj,°(I>ί'~3)), Qk{D(^2))), then we have

4 2 4 2 α 2 3 2 α 2 5

,
,(-) V 2

We know that

and so it is equal to 0 because L+_ is an algebraically split link. Similarly, we have

- 0 ,
\ ΔJ

and

/ 1 \ 2

We also know that

Moreover,

α 2 2 - 2 α 2 3 )

and
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where V = L^ U L (4) U U Z,W. Hence, we have

Similarly, we have

Since L+_ and L_ + are of the same knot type for i = 1 and 2, we get Lemma 11
by subtracting the above two formulas. D
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