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1. Introduction

It is well-known that the generator A of a time-homogenous Markov process in
n is typically given by a Levy-type operator

Aφ) =

(1.1) + / φ(x + υ)-φ(x) - " , 7 μ{x,dy),
iκ-\{o} V ! + \y\

This follows immediately from the fact that the generator of a transition semigroup

satisfies the positive maximum principle, i.e. for any φ in the domain of the generator

and xo e Rn such that φ(xo) = sup x G Rn φ(x) > 0 we have Aφ(xo) < 0 and by

a result of Ph. Courrege [4] which characterizes the operators satisfying the positive

maximum principle as operators of type (1.1). But Courrege gave also another equiva-

lent representation of this class of operators as pseudo differential operators

(1.2) Aψ(x) = -p(x, D)ψ{x) = ~f e^'Vpix, ξ) φ(ξ) dξ, φ € C0°°(E"),

defined by a symbol p : Rn x E n -> C having the crucial property that for fixed
x e M.n the function p(x, •) is a continuous negative definite function (see section 2
for the definition). Such symbols we briefly call negative definite symbols. Here φ =

fRn e~i(χ^φ(x)dx denotes the Fourier transform and dξ — (2π)~ n dξ. Conversely, if

the symbol is a continuous negative definite function for every fixed a G f then the

operator -p(x,D) satisfies the positive maximum principle on Co°(lRn).

The relation between (1.1) and (1.2) is given by the Levy-Khinchin formula, see

[2], which represents the continuous negative definite functions p(x, •) (for fixed x) in

terms of the coefficients aij(x), bi(x), c(x) and the Levy-measures μ(x,dy) of (1.1).

In this paper we focus on the representation (1.2) as a pseudo differential operator and

look for conditions purely in terms of the symbol p{x,ξ) implying that the operator

-p(x,D) actually generates a Markov process. We are interested in particular in the
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case that the second order diffusion part might vanish completely and the non-local

integro-differential part in (1.1) becomes dominating. As a final result we will deter-

mine a class of operators generating Feller semigroups (see Theorem 5.7).

In the particular case of a symbol p(x, ξ) = p(ξ) which is independent of x the

operator —p(D) generates a convolution semigroup and the corresponding process is

a Levy process. Moreover the negative definite symbol function p(ξ) is nothing but

the characteristic exponent of the Levy process and in this way a complete ono-to-one

correspondence between negative definite functions and Levy processes is given (see

[14] for a probabilistic interpretation of the symbol in the general case). Even in this

simple x -independent case the most standard example of symmetric a -stable processes

show that the corresponding symbol p(ξ) = \ξ\a, 0 < a < 2, is not differentiate un-

less a — 2, i.e. in the case of Brownian motion. From this we see that it is an intrinsic

property of the regarded symbol class that they are in general not differentiable with

respect to ξ. Hence these symbols do not fit into any known symbol class of pseudo

differential operators and we cannot apply pseudo differential calculus without further

considerations.

For that reason many approaches to Levy-type operators besides those which study

the case of a dominating diffusion term either concentrate on the representation (1.1)

with certain integrability conditions on the Levy-kernel μ(x,dy) (see [24], [27], [21])

or they make some homogenity assumptions on the symbol with respect to ξ and often

consider perturbations of α-stable and so-called stable-like processes (see [17], [18],

[1], [23], [16], [19], [15]). For symmetric stable processes perturbed by singular drifts

see also [26] and [25].

In [11], [12], [13] N. Jacob took a general continuous negative definite function

α2(ξ) as the starting point and considered symbols p(x,ξ) defined in terms of this

function. Thus these symbols are typically not differentiable with respect to ξ. In this

situation the Levy process associated to a2 deals as a kind of model process for the

jump process generated by the operator -p(x,D) with "variable coefficients". Besides

the existence of a corresponding transition semigroup Jacob's approach also yields L2-

estimates for the generator which also have some probabilistic consequences for the

process. However the perturbation argument used there allows only small perturbations,

in particular the oscillations of the symbol must vanish asymptotically as |x| —> oo.

For the same type of generators in [7], [8], [9] the process and the semigroup are

constructed via the martingale problem. By this method the strict oscillation bounds

of [12] and [13] can be avoided and the result is applicable to a much larger class of

symbols, but the useful L2 -estimates can not be obtained in this way.

The starting point in this paper is different since we want to construct a calculus

of pseudo differntial operators similar to the classical case of Hormander classes S™δ,

i.e. symbols satisfying the estimate

(1.3) \8ξdgp(x,ξ)\ < caβ(l
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where 0 < δ < ρ < 1 and m G M gives the order of the symbol. Hormander type

symbols are no good choice in general for the operators we have in mind, but anyhow

such calculus typically yields estimates in L2-context and on the other hand needs no

oscillation bounds for the symbols. In this way it combines in a sense the advantages

of both upper approaches.

Again we look at a general Levy-process as a model case leading to symbols

which are not differentiable. But differentiability of the symbol in particular with re-

spect to ξ is indispensable for a symbolic calculus. Therefore we first decompose the

symbol into a differentiable part and a remainder part which is considered as a per-

turbation. For that purpose the Levy-measures of the kernel μ(x,dy) in (1.1) are split

into a part supported in a bounded neighbourhood of the origin and a part supported

on the complement. Due to the fact that most of the mass of a Levy-measure typically

is concentrated around the origin, it turns out that the latter part defines a low order

perturbation of the operator. In particular under quite natural assumptions this pertur-

bation is a bounded operator on the space of continuous functions as well as on L 2 .

For example the property that an operator generates a Feller semigroup is stable under

such perturbations and also L2 -estimates are preserved. These aspects are discussed in

more detail in the paper [10].

We therefore focus on symbols with Levy-measures supported in a bounded neigh-

bourhood of the origin. Recall that in probability theory this assumption is often made

from the very beginning and corresponds to the fact that the jumps of the associ-

ated process are bounded. It turns out that these symbols are differentiable with re-

spect to ξ, see Prop. 2.1. But in order to get a symbolic calculus with good asymp-

totic expansions, it is important that moreover the derivatives satisfy certain growth

estimates at infinity. In the case (1.3) of Hormander type symbols in S™0, Q > 0»

dξd%p(x,ξ) is estimated by powers of (1 + l ^ 2 ) 1 / 2 and the power decreases when

\a\ is growing. This lead to asymptotic expansion series of symbols of decreasing

order. In the situation of symbols considered here it now turns out, and this is the

crucial point, that the derivatives satisfy estimates similar to (1.3): When we define the

class of symbols in terms of the fixed continuous negative definite function a2 and let

\(ξ) = (1 + a2(0)l/2 then we have

(1.4) \d%p{x,ξ,)\ < C α λ 2 - ρ ( H ) , a € N£,

where the weight function (1 + l ί l 2 ) 1 / 2 is replaced by X(ξ) and ρ(k) = k Λ 2. This

behaviour follows only by the fact that p(x,ξ) is a negative definite symbol. Therefore

it is natural to define for every continuous negative definite function a2 symbol classes

S™'\ ra G M, given by

(1.5) \ ? \

which in the case m = 2 typically contain negative definite symbols.
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Symbol classes defined by general so-called basic weight functions λ(ξ) had been

considered before by H. Kumano-go (see [20]), but his assumptions on λ are not satis-

fied by continuous negative definite functions in general. Therefore the major part of

the work that has to be done is to show that arguments similar to those in [20] can be

applied in the situation here. For that purpose we have to exploit certain estimates for

continuous negative definite functions that replace estimates for the basic weight func-

tions used in [20]. This will be done in section 3 where a symbolic calculus for S™'λ

is established and expansion formulas are proven. Since the estimate in (1.5) do not

improve for \a\ > 2 these expansion will not be asymptotic, i.e. the series contains

only a finite number of terms of decreasing order, whereas the subsequent terms do

not improve the expansion. See also the paper [22] of M. Nagase where he also con-

siders basic weight functions and the case of a general behaviour of the derivatives of

the symbol in terms of a general function ρ. In his paper Nagase also lines out how

the technique of Friedrichs symmetrization applies to his class of symbols. In section

4 we adapt this procedure to our situation proving also in our case a Friedrichs sym-

metrization and a sharp Garding inequality.

In the final section we prove as an application that elliptic elements in the class

Sρ'λ give examples of generators of Feller semigroups. For that purpose as in the pa-

pers [12], [13] of Jacob we use the Hille-Yosida theorem and prove in particular the

existence of the resolvent of the operator. This means we look for solutions of the

equation (p(x, D) + τ)u — f for some r > 0 in appropriate function spaces. The

calculus developed so far is then applied to this problem and gives the solution via an

approach by modified Hubert space methods.

Financial support by the Deutsche Forschungsgemeinschaft is gratefully acknow-

ledged.

2. Some properties of negative definite functions

A function ψ : Rn -» C is called a negative definite function if for all m E N and all

m-tuples (f1,... , £ m ) , ξj e Mn, 1 < j < m, the matrix

is positive Hermitian, i.e. for all c\,..., c m G C

In the following we will restrict to real-valued negative definite functions for simplicity

and the term negative definite function always implies real values. For more details

and examples concerning negative definite functions and the following results we refer

to the monograph [2].
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The set of negative definite functions forms a convex cone and we have

Φ(ξ) > V>(0) > 0.

If ψ is moreover continuous, then there is a constant cψ such that

(2.1) 2

The following inequality is a very useful substitute for the triangle inequality. Let

be a negative definite function, then

(2.2)

As a consequence we have the following analogue of Peetre's inequality (see [6])

(2-3)

Finally recall the important Levy-Khinchin formula: Every (real-valued) continuous

negative definite function ψ has a representation

(2.4) ψ(ξ) = c + q(ξ) + ί (1 - cosfo, ξ))μ(dy),

where c > 0 is a constant, # > 0 is a quadratic form and μ is a symmetric Borel

measure on E n \ {0} called the Levy-measure having the property that

/ oo.

This correspondence is one-to-one.

In general a continuous negative definite function is not differentiable. In order to

define reasonable symbol classes we therefore have to restrict to a subclass of conti-

nuous negative definite functions. We have the following result.

Proposition 2.1. Let ψ : Rn —> R be a continuous negative definite function with

Levy-Khinchin representation (2.4). Suppose that for I > 2 all absolute moments

Mt= [ \y\lμ(dy)

of the Levy-measure exist. In particular this holds when suppμ is bounded. Then ψ is

infinitely often differentiable and we have the estimate
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(2.5) < c,β|

1

if H = 1

N > 2
α

where c 0 = 1, ci = (2M2)
1/2 + 2Λ1/2, c2 = M 2 + 2Λ αnrf Q = MI for I > 2 and A

is the maximal eigenvalue of the quadratic form of ψ in (2.4).

Proof. For a = 0 there is nothing to prove. Let |α | > 1. We may consider all

terms in the representation (2.4) of ψ separately. The constant term is trivial and the

estimate (2.5) is well-known for the quadratic form with constants c\ — 2Λ1/2, c2 =

2Λ and Q = 0 for / > 2. So we may restrict to the integral part in (2.4) and assume

that

Since the moments Mi, I > 2 are bounded, we may exchange differentiation and inte-

gration and find

which gives for \a\ = 1 by Cauchy-Schwarz inequality

\diM0\<(f \Vi\2μ(dυ)) if

([ )

sin2 (y,ξ)μ(dy)

2 / (l-cos(y,ξ))μ(dy)

and for |α| > 2

l2/ μ(dy)

μ(dy) = M | α | . D

REMARK 2.2. By [8], Lemma 2.2, there is a bounded measure vn on E n \ {0}

h that the continuous

Khinchin representation

such that the continuous negative definite function y *-ϊ \y\2 /(I + \y\2) has the Levy-
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i ι2

1 + \y\ JR»\{0}

and

Consider in the situation of Proposition 2.1 a family of continuous negative definite

functions (ψi)iei with Levy-measures μ; supported in a fixed ball J3#(0). Then for

M, =

f
7R

- cos(y,ξ))μi(dy) un(dξ) < CRJ [
/Rn\{0}

Moreover for the largest eigenvalue Λ; of the quadratic form qι of ψi we have

Λi = sup qi(ξ) < sup ψi(ξ).
\ί\<i Kl

Therefore, if all ψi, i £ /, are uniformly bounded by a fixed continuous negative defi-

nite function ψ, i.e.

Ψi(ξ) < Ψ(0 for all ξ e Mn,

the same constant C|α| may be chosen in (2.5) for all ψi.

3. The symbol classes S™'λ and S ^ ' λ

We consider the case of negative definite symbols which are real-valued. The idea

to get good estimates for operators of type (1.2) is as in [8] and [13] to require that

the symbol satisfies upper and lower estimates in terms of a fixed continuous negative

definite function. For that purpose fix for the following a continuous negative definite

function

a2 : Rn -> R

with Levy-measure supported in some bounded set. This support condition for the

Levy-measure is no restriction since we will consider only symbols with this property

and the same cut-off procedure that we will apply to symbols can be applied to a2.

Our symbol class will be defined in terms of the function a2 or equivalently, but

in a more convenient way, by the square root

(3.1)



796 W. HOH

Furthermore to simplify the notation we introduce

(3.2)

Consider a symbol p(x,ξ) as in the introduction, i.e. p : Rn x Rn -» IR is continuous

and ξ ^ p(x,ξ) is negative definite for all x e E n . Then the Levy-Khinchin formula

yields

p(x, ξ) = c(x) + q(x, 0

where c, q, and /i satisfy for each x £ E n the same conditions as the corresponding

terms in (2.4). Let 0 e Co°(lRn), 0 < 0 < 1, be a some even cut-off function such

that 0(x) = 1 in a neighbourhood of the origin. Having in mind Proposition 2.1 we

decompose

by splitting its Levy-measures into a leading term

p(x, 0 = φ ) + <?(*, 0 + / (1 - coβ(y, 0 ) θ(y) μ(x, dy)
jRn\{0}n\{0}

and a remainder term

Then p and p r : E
n x Mn —> R are continuous functions and for fixed a: G E n nega-

tive definite with respect to ξ (see (3.5) and (3.6) in the proof of Lemma 3.6 in [8]

for the continuity of p and p r , the particular choice of θ does not affect that proof)-

Furthermore Proposition 2.1 applies to the symbol p(x,ξ).

Suppose that p(x,ζ) is comparable with a2(ξ) in the sense that

(3.3) P(x,ξ)<c(l +

Then with the notation of Remark 2.2 we have

/ (1 - θ(y)) μ(x, dy)<c f -^-^ μ(x, dy) < c ί p(x, ξ) vn(dξ)

JR"\{O} JR"\{O} 1 + \y\ Jw\{o}

<cf (l+a2(ξ))un(dξ).
JRn\{0}

Therefore the Levy-measures (1 — θ(y))μ(x,dy) of pr(x,ζ) have uniformly bounded
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mass and the representation (1.1)

pr(x, D)φ{x) = - / (φ(x + y) - φ(x))(l - θ(y)) μ(x, dy)

shows that pr{x,D) is bounded as an operator on the spaces of bounded Borel mea-

surable functions and bounded continuous functions. Moreover, under a mild additional

conditions CΌo(Mn), the set of continuous functions vanishing at infinity, is invariant

and typically the operator is bounded on L 2 ( E n ) , see also [10]. Therefore as men-

tioned in the introduction we regard pr(x,D) as a perturbation of p(x,D), which

doesn't change the major results we have in mind and we will look in following to

the part p(x,ξ) which contains the typically dominating part of the Levy-measure con-

centrated around the origin.

By Proposition 2.1 we see

(3.4)

with a constant ca not depending on x by Remark 2.2. The estimate (3.4) reflects the

typical behaviour of negative definite symbols and in order to define a proper symbol

class it is quite natural to assume the same estimate for the derivates 9f p(x, ξ) of the

symbol. Therefore for m G E we define S™'λ to be the class of symbols of order m

consisting of all C°°-functions p(x,ξ) : E n x E n -> C such that

(3.5) \d£dξp(x,ξ)\ < c α ,0λ(O m - f i ( H ) , x e Mn, ξ e Rn, a,β G N£.

For example the condition with m = 2 is fulfilled if the Levy-kernel of p(x, ξ) has

densities with respect to a certain Levy-measure μ, i.e. μ(x,dy) = f(x,y)μ(dy), such

that /(•, j/), y eRn\ {0}, is uniformly bounded in C^°(IRn) and also the coefficients

of q(x,ξ) and c(x) are in C6°°(Mn).

Let us also define the larger symbol class S^1' , which is an analogue of the

Hormander class SQ^Q, consisting of symbols such that

(3.6) l ^ l

First we remark that λ m (£) gives a generic example of symbols in

Lemma 3.1. For m G E and a G NQ we have

(3.7)

In particular λ m G
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Proof. By Proposition 2.1 we know

|9f (1 + a2(ξ))\ < ca(l + α

and therefore

(3.8) < ca(l + a2

holds. Next note that by induction on \a\ using Leibniz rule we have

t = l

where α l 5 . . . , a \ a \ G NQ, and therefore

by subadditivity of ρ.

Clearly for two symbols pi e S^ i ) λ , i = 1,2, by Leibniz rule we have

(3.9) 'βf pi(x,ί)
a'+a"=a
β'+β"=β

< cλ m i + m 2 (0,

D

i.e. p\'P2 E s ^ 1 + m 2 ' λ and ( S ^ ' λ ) m e K forms an algebra of symbols in the usual sense.

For symbols in S^'Λ and S^1' we denote the corresponding classes of operators de-

fined by

p(x,D)φ(x) = f e«*'Up(x,ξ) • φ(ξ)dξ

by Φ ^ ' λ and Φ ^ ' λ . As usual we write D = (Dxι ,...,DXn) = (-idXl,..., -idXn).

By (2.1) the operators are well defined on S(Rn) and moreover for u G <S(Rn), a,β E
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and N > \β\ + m + n

dζ (x°

I Σ c
< c (ξ)\β\ λm(ξ)

jRn

< c ί (ξ)W+m-Nat • sup (oN Σ

Here we use the usual notation

Since the Fourier transform is continuous on <S(Rn) this gives

Proposition 3.2. An operator p(x, D) E Φj 1 ' maps S{Wι) continuously into it-

self.

Let us recall the definition of oscillatory integrals (see [20, Chapt.1.6]). A

C°° -function g on E n x Rn is called of class Λ if the estimates

(3.10) \ a,β € K

hold for suitable m E 1 , 0 < ί < 1 and r > 0. In this case the oscillatory integral is

defined by

(3.11)05-/ / e-i<y>r»g(η,y)dyάη=lim ί ί e-i^^χ(εη,εy)g(η,y) dydη.

where x G S(M.n x E n ) having the property χ(0) — 1. The oscillatory integral is well-

defined for any g of class Λ and independent of the particular choice of the function

X
If we choose /,/' G No sufficiently large (depending on m, δ and r ) the oscillatory

integral coincides with the ordinary integral

(3.12) Os- [ [ e-i^g(η,y)dydη

= / / e-^iyrV'iDr,)21' {(η)-2l(Dyf'g(η,y)} dydη.
JRn JRn
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Moreover the following partial integration rule holds

(3.13) Os-f [ e-i(y^ηag(η,y)dydη
jRn JRn

= OS- ί ί e-i^D°g(η,
JRn JRn

We introduce the class of double symbols s™1'™2'*, m\,rri2 G M, in terms of the

weight function λ consisting of all p G C°°(E n x l n x E n x l n ) satisfying

(3.14)

For p € S™'m we define the corresponding operator

(3.15) p(x,Dx,x',Dx,)u(x)

i f f - i ι ι
~~ I n I n / P \ 5 S ? ? s ; v s ^s °s

J JR. «/ M « lev

for all u G <S(Rn). As in the classical situation it turns out that double symbols de-

termine the same classes of operators ψ™'λ as simple symbols, but they are a very

useful tool for their investigation. More precisely we have

Theorem 3.3. Let p G Sj1'™''* and u G S(Rn). Then the iterated integral in

(3.15) exists and defines a pseudo differential operator in the class ψ ^ + m » . More-

over

r r
//J 1 /C\ n^ ( C\ / ^ I I /r> — ̂ yy^Ή/tΛίrr* C _1_ /n rn I

JRn JRn

is a symbol in 5 ^ + m ' and defines the same operator, i.e.

#/l ,// . MS rp - f̂y - ί.S ft I tX - Iβ T I ,£/ / V I {X

/or α« M G 5 ( E n ) .

Note that by (2.3) and (2.1)

Therefore the integrand in (3.16) is of class Λ and the integral is well defined.

PL(X,0 is called the simplified symbol of p(x,ξ,x',ξf).

REMARK 3.4. The oscillatory integral in (3.16) actually defines a symbol pi in

S™+m ' λ . To see this we use the representation (3.12) for the oscillatory integral. For
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IJ' sufficiently large we get by exchanging differentiation and integration, (3.14) and

(2.3)

(3.17) \8?dSpL(x,ξ)\ <caβ [ ί (η)-2l(y)-2lt

<cαβλ
m+m'(ξ).

Moreover note that the constants cαβ are expressed in terms of the constants cαβα'β
for the double symbol in (3.14). In particular, if a family of double symbols satisfies

(3.14) uniformly for each α,β,α',β', then also the simplified symbols satisfy an esti-

mate (3.17) with uniform constants cαβ.

Proof of Theorem 3.3. We adapt the consideration in [20], Chapter 2, to our

situation. Choose χ e S(Rn x R n ) such that χ(0) = 1 and note that (see [20, Lemma

1.6.3])

(3.18) d$dζ\χ{εη,εy)] < cαβ(η)-W uniformly for 0 < ε < 1.

For 0 < ε < 1 letpe(x,ξ,x',ξ') = χ(ε(ξ-ξ'),ε{x'-x))p(x,ξ,x',ξ'). Then by Leibniz

rule and (3.18) have

(3.19)

with constants ^β independent of ε. Define

«,e(z, £,*',£') = Pe(x,ξ,x',ξ')ΰ(ξ')

= ί
JR"

= ί
and fix / ,n 0 G N such that 21 > n + ra+ and 2n 0 > n. Note that e^x'^') =

(α; / )" 2 n o (JDξ') 2 n o e i ( a ! / ^ / ) . Thus for all \β'\ < 21 by partial integration and Leibniz rule

(3.20)

I
Rn

where the estimate is again uniform in ε. Therefore r u £ is well defined and as above

K,ε (*,<£) I < (ξ)-21 ί e-il'''V(Dx,)
2lq^(x,ξ,x')dx'

JR"

(3.21)
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uniformly in ε, where the last inequality follows from (2.1). Thus the integral

pe(x,Dx,x',Dx,)u(x) = ί e*x>VruΛ*>0%
JRn

exists. In particular for ε = 0 we see that the iterated integral in (3.15) is well defined.

Moreover, since the estimates (3.20) and (3.21) are uniform w.r.t. 0 < ε < 1, we find

by a successive application of Lebesgue's theorem

p(x,Dx,x',Dx,)u(x)= [ ί [ e ^ - ' Ί θ ^ ' ^ O ί
7R» JR» 7R»

= lim / / f e^-t'M+^'^PueixtξtX^Oaξ'
e->° JR» ./R» JR»

(3.22) = lim pe(x,Dx,x',Dxι)u(x).
ε-»0

For ε > 0 define

(3.23) PLA^)= ί ί e-^^xiεηtεyVpfaξ
JRn JRn

Then by definition of the oscillatory integral

(3.24) l imp L j e (a ; ,0 =pL(x,0

and moreover by partial integration for i 1 ? JJ_ G N o such that 2lχ > \m\ -f n, 2l[ > n

\PLΛ*,0\ = \[ ί e-i{v>η){η)-2h{DyΫ
h

x {(y)-2ί'> (Dη)
2'Ίχ(εη, εy)p(x, ξ + η,x + y,

<cf f (η)-^(yr^Xm(ξ

uniformly in 0 < ε < 1. Therefore by (3.24)

(3.25) ]ϊmpLte(x,D)u(x) =pL(x,D)u(x), u € S{Rn).

On the other hand substituting x' = x + y and ξ = ξ1 + η shows

pe{x,Dx,x\Dx,)φ)= ( ί [ e^-^^^^'^p^x^x'.
JR" JR» JR"
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= f f
JRn JR

f [
Rn JRn

(3.26) = pL,e(x,D)u(x).

Thus combining (3.22), (3.25) and (3.26) gives

p(x,Dx,x',Dx')u(x) = pL(x,D)u(x). Π

Theorem 3.3 has a series of useful corollaries. First we consider the composition

of two operators.

Corollary 3.5. Let p{ G S™{'\ m* G E, i = 1,2. Then pi(x,D) op2(x,D) G

Proof. Put p(x,ξ,x',ξ') = pi(x,ξ) 'P2(x',ξ')> τ h e n P £ S™1>m2'A. Therefore
pL(x,D) G ψ™ 1 + m 2 ' λ and for u G S(Rn)

p1(x,D)op2(χ,D)u(x)

ί ί I f • I I

= p(x,Dx,x',Dx,)u(x) = pL(x,D)u(x). D

Let ( , )o t>e the inner product in L 2 (R n ) . Then we have for the formally adjoint

operator

Corollary 3.6. Let p G S™'\ Then there is a p* G S^' λ JMCA rλαf

(p(x,D)iz,i;)o = (ix,p*(x,J3)ί;)o

/orfl//w,i;G<S(]Rn).

Proof. Define p(x,£,x',ξ') = p(x',ξ). Then p G S^'°'λ and as in the proof of

Corollary 2.2.5 in [20]

(p(x,D)u,v)o= ί [ eW'Vpix^OύWdζ'φij
JRn JRn

= ί ί e-^x^u(x){ ί ei(χ'<Vp(x',ξ)v(xΊ)dx'



804 W. Hoi i

= / u(x) ί I e-i{χ-*'*)p(x'Jξ)υ(x')dx'dξdx
JRn JRn JRn

= ί u(x) [ ί ί ei(χ-χl^+^'^)p(χ^ξ)v(ξ')dξ'dxt

jRn JR» JRn jRn

which proves the corollary with p*(x,D) =PL(X,D). Here we applied Fubini's theo-

rem several times. This is possible in particular since

[
Rn

is integrable w.r.t. ξ for n 0 G N sufficiently large. •

Summarizing we find that UmeR Φ ^ ' λ is an algebra of pseudo differential opera-

tors with multiplication o and involution * that respects the graded structure given by

(S™' λ)m €M, i.e.

φm,λ + φm,λ c φm,λ

φm,λ o φm',λ c yrn+m'A

Next we extend the domain of the operators. Corollary 3.6 immediately implies by

duality that p{x,D) G Φ ^ ' λ has a continuous extension p(x,D) : S'(Rn) -> S'(Rn)

defined by

(p(x,D)u,v) = {u,p*{x,D)υ), u G S'{Rn),v G S{Rn).

The order m of an operator p(x, D) G Φ ^ ' λ has a natural interpretation in terms of

mapping properties between Sobolev spaces.

For that purpose we introduce a scale of anisotropic Sobolev spaces which are de-

fined in terms of the function λ:

H8>\Rn) = {ue S'(Rn) : | |u | | β | λ < oo}, s G E,

where

Note that Hs>x(Rn) coincides with the space Hs/2^2(Rn) defined in [11], in particu-

lar i7°'λ(Mn) = L 2 (R n ) and S(Rn) is dense in H*>x{Rn) for all s G R.
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Theorem 3.7. A pseudo differential operator with symbol p G S™'χ is a continu-

ous operator

p(x,D) : Hs+m>x(Rn) -> Hs>λ(Rn)

for all s G M and we have

(3.27) | | P ( * , 0 M L , Λ < c | | t i |L+ m t λ )br α// ti G λ

Proof. It is sufficient to prove (3.27) for u G <S(En). First suppose s = m = 0.

Then p G SQ' has bounded derivatives and by the well-known L2-continuity result of

Calderόn and Vaillancourt [3] we find

\\p(x,D)u\\0<c\\u\\0

with a constant c depending only on the constants caβ in (3.6) for |α | , \β\ < 3. Next

suppose 5 = 0 and m arbitrary. Then

p(x,D)u(x) = f ei^p(x,ξ)χ-

and p(x,ξ)\~m(ξ) is a symbol in SQ'A. Therefore

Mx, D)u\\0 < c | |λ m (D)u| | 0 = c | H
0 < c | | λ ( D ) u | | 0 = c | H | m j λ .

Finally for the general case observe that Xs(D) op(x,D) G φ * + m ' λ by Corollary 3.5

and thus

\\p(x, D)u\\ttX = \\y(D)p(x, D)u\\0 < c | M | s + m , λ D

REMARK 3.8. Observe that from the above proof, Corollary 3.5 and Remark 3.4

it is clear that the same constant c in (3.27) may be chosen for a family of pseudo

differential operators which satisfy (3.6) uniformly.

The symbol classes S^' λ lead to a reasonable algebra of pseudo differential opera-

tors, but are bad symbol classes in the sense that all derivatives of the symbols are

estimated by the same power m of X(ξ) as in the case of Hormander class 5^0 and

not by a smaller power. Therefore we cannot expect asymptotic expansion formulas

for this type of symbols. On the other hand the symbols of class S^' λ have a some-

what better behaviour of their derivatives with respect to ξ. This will yield expansion

formulas including terms up to order 2. We consider the expansion of the simplified

symbol.
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Theorem 3.9. Given a double symbol p G S™'m''λ such that

(3.28) dξp(x,ξ,x ,ξ)eS0

 e v i u >

/iί?/J5 /or α// a E NJ. ΓAen /or all N G N ί/ιe simplified symbol pi satisfies

(3.29) P L ( x , 0 -

where

(3.30) P β ( x , 0 - D$dξp{x^x'£)\χ.=x E s^+-'-^l«D λ .

Proof. We modify the argument given in [22]. By Taylor formula we have

\a\<N a '

\Ί\=N
 Ί'

with

\a\<N

pΊ{x,z,ξ,η)= [
Jo

and therefore by (3.16)

PL(*,ξ)=

+ Σ ^ ° s - ί f e-^^^pΊ{x,z,i

= Σ ^-(*.o+ Σ 5 M*,o-

We have to show that

(3.31) 7 β = p β 6 S S 1 + m ' " β ( N ) A, \<*\<N

and

(3.32) JΊ ε s ^ + m '
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Let |α | < N and choose χ i , χ 2 £ Co°(Rn) such that χ\ and χ2 equal 1 in a neigh-

bourhood of the origin. Then by definition of Ia and (3.13)

= O

= lim / X2(εz)ε-nχi ( -) Da

x,d% p(x,ξ,x',ξ')\χ,=x+z dz
ε*ϋ J X £ '

JRn

- f ί e ' ^ D y ? p(x,ξ,x + z,ξ%,=e dzάη

= lim/ f e-i^χ1(εη)χ2(εz)D^p(x,ξ,x',ξ')\χ
ε ~ > υ JRn JRn

= D$dξ p(x,ξ,xf,ξ')\x'=x =Pa(x,O,

because X2(εz)ε~nχi(z/ε) converges to the unit mass at 0 as ε -> 0, and pa

sn+m>-ρ(\«\)A b y ( 3 2 g )

Moreover for \j\ = N we have by (3.28), (2.3) and (2.1)

(dj p(x,ξ + tη,x

f
Jo

Hence again by (3.12) for l,n0 € N, 21 > N + \m - g{N)\ + n, 2n0 > n,

which gives (3.32). D

REMARK 3.10. The proof also shows that pa and the remainder term p^ —

/βOPα a r e i n t h e c l a s s S ^ + m ' ~ e ( | α | ) ' λ and s^ + T O ' - ρ ( J V ) λ , respectively, and
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satisfy estimates (3.6) with constants caβ that depend only on the constants ca^i(x<,p>

in (3.14) of the double symbol p(x,ξ,x',ξ') itself.

We apply Theorem 3.9 to the double symbols of the composition of two pseudo

differential operators and of the formally adjoint operator, see Corollaries 3.5, 3.6 and

their proofs, and obtain

Corollary 3.11. Let pλ G S^1>λ, P2 G S™2'λ and p G S™'\ Then the symbols

pc and p* of the composition pc(x,D) — p\(x,D) op2(x,D) and the formally adjoint

p*(x,D) =p(x,D)* satisfy

Pc(x,ξ) =Pi(x,ξ) P2(*,0 + ^ ^ . p i ( a : , 0 DXjp2{x,ξ) + p n ( z ,

and

J = l

where pri G 5^i+m2-2,λ ^ ^ e 5 ^ " 2 ' λ .

In particular the highest order terms are given by the product and the conjugate

of the symbols.

REMARK 3.12. Since ρ(k) < 2, (3.29) gives no better results for TV > 2. In this

sense we obtain expansion formulas with terms up to order two. Obviously this result

is due to the choice of the function ρ(k) = fcΛ2, which is determined by the behaviour

of negative definite symbols. Of course the statement itself does not depend on the

specific choice of ρ and choosing another increasing subadditive function ρ : No -» M+

will not affect the proof.

4. Friedrichs symmetrization

It is well-known that a pseudo differential operator with real symbol is in general no

symmetric operator if the symbol depends on x, but there is a modification that is

symmetric and differs from the original operator only by a lower order perturbation.

This modification can be constructed explictly by the so-called Friedrichs symmetriza-

tion. The purpose of this section is to show by the results obtained in the previous

section that also for symbols in S^' λ a Friedrichs symmetrization is available. For that

end fix a function q G Co°(Rn) such that q is even, non-negative, supported in the

unit ball Bι(0) and JRn q2(σ)dσ = 1 and define

(4.1) F ( ί , 0 = λ ( ξ ) " " / 4 • q((ζ - ξ) • λ
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For a symbol p £ S™' let us define its Friedrichs symmetrization to be the double

symbol pp not depending on x given by

PF(ξ,x',ξ') = I F(ξ,ζ)p(x',ζ)F(ξ',ζ)dζ.

Then we have

Theorem 4.1. Let p £ S™'x. Then

(4.2)

In particular pp £ S™' ' and the simplified symbol PFL £ S™' . Moreover, if p £

(4.3)

First we prove

Lemma 4.2. For α// β £ N£ we

(4.4) d^F(ξX) = λ ( 0 " n / 4 5 Z ^,7,7i ( 0

7i < 7

/ j . 7 , 7 1 £ So

Proof. Obviously (4.4) holds true for β = 0 with </?o,o,o = l Note that

Proceeding by induction we differentiate (4.4)

7i <7
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- 0 ~ C)

- 0 ~ ζ)

with

= -^,7,7.(0 -(Ί + ψ) λ - U O ^

which is of the form claimed in (4.4) and we have to check that

s-(i/2)(ί(|/»|+i)),A> ι = 1 ; 5 N o t e that λ-V2 e S - 1 / 2 λ and A " 1 ^ .

see Lemma 3.1. Since <̂ o,o,o = 1 we see for β = 0 that

Ί Ίχ

which also implies φβπ,Ίl G So

 1 / 2 ' λ for \β\ = 1. Next note that dik\~λ^ G S 0

3 / 2 ' Λ

and d^k{\-ιd^\) G S~ 2 '\ which yields %<£/?,7,7l G So~3/2'Λ for |/J| = 1. Thus by

the algebra property (3.9) of the symbols we find for \β\ = 1 that ψβ' G SQ ' .

But S^"1}A is stable under taking derivatives and therefore again (3.9) yields Ψβ\Ίl £

$o 1 | λ for all \β\ > 2 by induction.

Proof of Theorem 4.1. By Lemma 4.2 and the support properties of q we have

D

\(ξ)-n/4\(ξ'Γn/4 Σ, Σ
h\<\β\ W\<\β'\

7 1 ^ 7ί<7'

- 0

Wq)((ξ - ζ) • X-1/2(ξ))(d^'q)((ξ' - ζ) • d$p(x',ζ)dζ
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(4.5) < c α ^ λ ( 0 " n / 4 λ ( O - n / 4 λ ^

where

r
dζ.

811

Observe that by (2.2) and (2.1) for |σ| < 1

(4.6)

Hence using the substitution ζ

m < ( / { _ c ι < A i / i ( ξ ) ,
/ r

$p(x',ξ +
\σ\<l

<

which together with (4.5) gives (4.2).

In order to prove (4.3) we need the following

L e m m a 4 .3 . Let p e S ^ ' \ teR and σ e Rn. Then

(4.7)

< cλ(O

σ we find by Cauchy-Schwarz inequality

1/2 , x 1/2

dσ

D

σ) 2 dσ

= Σ
l l |
71 <7

where

Proof. Since also d£p(x, ξ) € S^' λ for all α 6 No

n as well, we may replace p

by d%p and assume a = 0. With ^o,o,o = 1 there is nothing to prove for β = 0. Let

I = ξ + ί λ 1 / 2 ( 0 σ. Then by induction

71 <7
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which proves the lemma, since 9&A1/2 G SQ'A. D

Proof of (4.3). By the expansion formula (3.29) (replace ρ( ) by (l/2)ρ( ),

which does not affect the prooO and (4.2) we know that

PF,L -PF,O ~
|o|=l

Thus it is enough to prove

(4.8) P F , a G S o

m - u for |a|

and

(4.9) P F , o - p e S o

m - u .

Let \a\ = 1. Then

(ξM(ri - 0λ~1/2(0))

~ 0λ"1 / 2(0)

- 0λ" 1 / 2 (0) (Vk - ξk) \-1/2(ξ)λ1/2(ξ)d?\-1/2(ξ)
k=l

and consequently with σ = (η -

pF,a = Dϊd?pF(ξ,x',ξ')\x^x = f d?F{ξ,η) D2p(x,η)F(ξ,η)dη

* = i

σkdkq{σ) • q(σ)Da

xP{x,ξ + \ι'2{ξ)σ)dσ

-λ~1/2(0 /"
JR"
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We consider each term separately. Observe that JRn q2(σ)D%p(x,ξ +X1/2(ξ)σ)dσ is a

symbol in S™'λ, since using Lemma 4.3 and (4.6)

did* f q2(σ)Dx'P(x,ξ +
JRn

<\ί q2(σ)dS

xd
β

ξD:P(x,
\JRn

IΦβ^A ίJ^
h\<\β\
71 <7

q2(σ)X(ξ

and λ - ^ ^ λ G S ' ^ gives h e S™~h

Analogously

<cj q2(σ)dσ-Xm(ξ) = cXm(ξ)

and thus by λ 1 / 2 ^ " 1 / 2 E S ^ ' λ we have I2 G S™~hX.

Moreover concerning / 3 we have by Taylor formula

f daq{σ)q{σ)Da

xP{x,ξ + X1/2(ξ)σ)dσ
JRn

= ί &*q{σ)q{σ)dσ-Da

xP{x,(;)

f daq(σ)J f
k=1

X1/2(ξ)tσ)dtdσ.

By the symmetry of q the first term vanishes and we find for the derivatives of the

second integral using again Lemma 4.3

dl f daq(σ)q(σ)σk • f {dikD«p) (x,ξ + X1/2(ξ)tσ)dtdσ
JR" JO

< f \daq(σ)q(σ)σk\ • f ^ {Da

xdikP) (x,ξ + A1/2(ξ)tσ)
JRn JO '

dtdσ

<c f \daq(σ)q(σ)σk\ • [ X^^ξ + X1'2(ξ)tσ)dtdσ < c • Xm-ι(ξ).
7R" JO

Hence / R n daq(σ)q(σ)D^p(x,ξ + X1/2(ξ)σ)dσ is in S™~1/2'\ which means I3 e
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S™~1)λ and we have (4.8). Let us turn to (4.9). By Taylor formula we find

= I
fc=l

By the symmetry of q the integral over the first order term again vanishes and there-

fore

= Σ "l
|7|=2 7 *

Using again Lemma 4.3 and (4.6) we see as above that the integral defines a symbol

in S^~ 2 ' \ which gives (4.9) D

The next theorem summarizes the important properties of the Friedrichs sym-

metrization.

Theorem 4.4. Assume p G 5^ ' Λ is real-valued. Then pp{Dx,x',DX>) is a sym-

metric operator on <S(Rn). If moreover p(x,ξ) is non-negative, then pF{Dx,x',DX')

is non-negative.

Proof. This is clear, because for u, v e 5 ( E n )

{pF{Dx,x',Dx>)u,v)o

= ί Fϊ\Λ( ί e-<(β^«+i(β^^)
JRn \JRn JRn

= f ί f e-W+*'''V f F(ξ,η)p(x',η)F(ξ',η)dηU(ξ')άξ'dx'W)3ξ
JRn JRn JRn JRn

= ί ί P(x',η) I jV^Ftf^WW- ί e«*''VF(ξ,η)ϋ(ξ)dξdηdx'.O
JRn JRn JRn JRn

5. Generators of Feller semigroups

In this section we want to apply the results of the previous sections to pseudo diffe-

rential operators with negative definite symbols. In particular we assume the symbols
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to be real-valued. As we have seen it is a natural condition to assume that the symbols

are of class S^'λ for some convenient λ(£). To prove that a pseudo differential opera-

tor fulfills the assumptions of the Hille-Yosida theorem and therefore is the generator

of an operator semigroup to most extent amounts to solve the equation

(5.1) p(x,D)u + τu = f.

We will solve this problem for elliptic elements in S™'λ. In order to apply modified

Hubert space methods we need some estimates for the operator and the corresponding

bilinear form. As an application of the Friedrichs symmetrization we first prove the

sharp Garding inequality which gives a first non-trivial lower bound for the bilinear

form.

Theorem 5.1. Let p e S™>x be nonnegative. There is a K > 0 such that

Re(p(x,D)u,u)0 > -K\\u\\2

{rn_1)/2X .

Proof. By Theorem 4.1 we know that P(X,D)—PF(DX,X' ,DX>) is of order m —

1. Since p(x,ξ) > 0 we have by Theorem 4.4

We are interested in further bounds for the bilinear form, in partcular in the ellip-

tic case.

Theorem 5.2. Let p e S^'λ be real-valued. Then

(5.2) \(p(x,D)u,v)0\ < c | H | m / 2 | λ - | | t ; | | m / 2 f λ , u,veS(Rn)

and the bilinear form extends continuously to i ϊ m / 2 ' λ ( lR n ) . If moreover

(5.3) P(x,ξ)>δλm(ξ), \ξ\>R,

for some δ > 0 and some R > 0, then for m > 1 the Garding inequality

(5.4) Re(p(x, D)u,«)«, > δ \\u\\2

m/2^ - c | | u | | ? m _ 1 ) / 2 > A , « 6 Hm/2'x(Rn),

holds.
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Proof. We know that

\{p(x,D)u,u)o\ =

since λ~~m/2(£>) op(χ,D) is of order ra/2.

Now assume (5.3). Let pτ(x,ζ) =p(x,ζ) + τ. Then for r sufficiently large

holds for all ξ G Mn. We put q{x,ξ) = pr{x,ζ) - δλm{ξ) > 0. Theorem 5.1 implies

c, D)u, u)0 - δ \\u\\2

m/2A + T \\u\\l = Re(q(x, D)u, u)0 > -K | |w | | ( m _ 1 ) / 2 | λ •

Let us turn next to estimates for the operator itself. The operator p(x, D) G Φ ^ ' λ

is a continuous operator between the Sobolev spaces ϋP' λ (M n ) , see Theorem 3.7, i.e.

\\p(x,D)u\\s x < c | | ι x | | β + m λ . If moreover (5.3) holds, we even have a converse in-

equality.

Theorem 5.3. Let p G S^' λ be real-valued and assume the ellipticity condition

(5.3). Then for s G E such that m + s > 1/2

(5.5) δ2 | M | ϊ + m Λ < \\p(x, D)u\\lx + c | | t * | | 2 + m .

Proof. Let qβ(x,ξ) = p ( x , 0 2 λ 2 s ( 0 > ί 2 λ 2 ( m + s ) ( ξ ) for \ξ\ large. By Corollary

3.11 we know that the highest order term in the expansion of the symbol of p*(x,ζ)

is given by p(x,ξ) =p(x,ξ). Thus

\\p(x,D)u\\lx = (\*(D)p(x,D)u,y(D)p(x,D)u)0

= (p*{x,D)X2s(D)p(x,D)u>u)o = Re(qs(x,D)u,u)0 + Re(Φ,D)u,u)0,

where q(x,D) E sl{m+s)'1'x. Hence Theorem 5.2 implies

\\P(X, D)u\\lχ > δ2 \\ufm+StX - C | | U | | 2

m + s - ( 1 / 2 ),Λ - C' Ikl|2m+S-(1/2),Λ •

To prove regularity results for solutions of (5.1) we will have to use certain com-

mutators involving Friedrichs mollifiers. We introduce the Friedrichs mollifier Jε :

L2(Rn) -> L 2(Mn), ε > 0, defined by Jεu = j ε * u, where

/ v _n fx\ r, , x f Co-e 1 ^^! 2 " 1 ) for |x| < 1
je(x) =ε nj ί - ) , x G E , and j(x) := <

v ^ y I ° for x > 1
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and Co is chosen such that JRnj(x)dx = 1. Because of (Jeu)Λ(£) = j(εξ) ύ(ξ) and

j G S(Rn), we have Jεu G Hs>x(Rn) for all s > 0 and, if moreover u G # * ' A ( E n ) ,

Jεu -> u in i f* ' λ (R n ) as ε -> 0, since j(0) = 1.

Obviously Jε is a pseudo differential operator with symbol j(εξ) in S^'λ and the con-

stants caβ in the corresponding estimate (3.5) are uniformly bounded for 0 < ε < 1,

cf. [20], Lemma 1.6.3. Let p G S™'\ We consider the commutator

[p(z,£), Je] =p(x,D)Jε - JεP(x,D).

Recall that the commutator is described by the difference of the double symbols

p(x,ξ) j(εξ') and j(εξ) 'p(x',ξ'). Since the highest order terms in the expansion se-

ries (3.29) cancel, \p(x,D),Je] is an operator of order ra-1. Moreover the remaining

terms of the expansion are controlled uniformly with repect to ε, see Remark 3.8 and

Remark 3.10. Therefore we get

Proposition 5.4. Let p e S™'λ and s G i There is a constant c > 0 not depend-

ing on 0 < ε < 1 such that

We summarize the results obtained so far and solve equation (5.1).

Theorem 5.5. Let p e 5^ ' λ , m > 2 be a real-valued symbol s > 0 and assume

that (5.3) holds. If τ > 0 is sufficiently large, then for f G Hs>x(Rn) there is a unique

solution u e J ί P + m ' λ ( M n ) of the equation

p(x,D)u + τu = f.

Proof. By Theorem 5.2 we know that

(w,υ) H-> ((p(a;,£>)+τ)iz,v)o

is a continuous coercive bilinear form on Hrn^2yX(Mn) for r large enough. Thus there

is a unique weak solution u G i ί m / 2 ' λ ( E n ) of

((p(z,L>) + τ)u,v)o = (f,v)0 for all υ G JT m / 2 λ ( R n )

and the proof is complete, if we show that u G ϋ P + m ' λ ( M n ) . Let uε = Jεu. Then

uε G i f ί + m ' λ ( E n ) for all * < s, 0 < ε < 1 and by Therorem 5.3 and Proposition 5.4

we have

x,Z?)Λu|| t f A + c | | Λ t t | | f + m _ ( 1 / 2 ) | λ .
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< c||Je(p(x,D) + r)u\\tx + c\\Jεu\\tχ + c||{p(x,£>), J e ]u | | t f λ + c| |Λti |

+ c | |u | | f > λ + c N | t + m _ 1 | λ + c | | t | |

So i/ e # ί + m - ( 1 / 2 ) ' λ ( M n ) implies that (uε)o<ε<i is bounded in # ί + m ' λ ( R n ) . Since

uε -> ti in ff*+m-(i/2),λ(R~) as ε ^ 0, this implies u € i J ί + m ' λ ( M n ) . A recursive

application of this conclusion starting with t = (1 — ra)/2 proves the theorem. D

Recall the theorem of Hille-Yosida-Ray [5] for generators of Feller semigroup-

s, i.e. strongly continuous, positivity preserving contraction semigroups on the space

Coo(Mn) of continuous functions vanishing at infinity:

Theorem 5.6. Let A : D(A) -> CΌo(Mn) be a linear operator in CΌo(Kn). Then

A is closable and the closure generates a Feller semigroup if and only if

(i) D(A) is dense,

(ii) A satisfies the positive maximum principle on D(A) and

(iii) for some r > 0 the range of τ — A is dense.

We finally state our result about generators of Feller semigroups. For that purpose

we have to assume that there is a constant r > 0, arbitrarily small, but strictly positive

such that

(5.6) λ ( £ ) > c | £ | r

for some c > 0 and \ξ\ large. This is a non-degeneracy condition for operators in

Φ ^ ' λ . Under this condition for s > n/2r the dense and continuous embedding (see

[12])

holds. Now we have

Theorem 5.7. Assume that (5.6) holds. lfp(x,ξ) is a negative definite symbol of

class S2'x and moreover

p(χ,ξ)>δ\2(ξ)

for some δ > 0 and \ξ\ large, then —p(x, D) has an extension that generates a Feller

semigroup.

Proof. Choose s > n/2r. Then the operator A = -p(x,D) : # 5 + 2 ' λ ( R n ) ->

H8'x(Rn) C CΌo(Rn) is a densely defined operator in CΌotlϊΓ) with domain
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ϋ r s + 2 > λ (R n ) und thus A fulfills condition (i) of Theorem 5.6. Moreover by the result

of Courrege A satisfies the positive maximum principle on C^°(Rn) and therefore al-

so on # s + 2 ' λ ( I I Π , see [12], Theorem 9.3. This is (ii) of Theorem 5.6 and finally (iii)

is the claim of Theorem 5.5. D

REMARK 5.8. Note that the estimates for p(x,D) proven in Section 5 imply that

the probabilistic consequences for the associated process as they are stated for instance

in [12], Section 11, do also hold in this case.
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