FINITE GROUPS WHOSE ABELIAN SUBGROUPS HAVE CONSECUTIVE ORDERS

NAOKI CHIGIRA

(Received January 20, 1997)

1. Introduction

Let G be a finite group and n be a positive integer. A group G is called an $O C_{n}$ group if every element of G has order less than or equal to n and for each positive integer $m \leq n$ there exists an element of G of order m. B. H. Neumann [8] determined all $O C_{3}$ groups and R. Brandl and W. Shi [1] classified all $O C_{n}$ groups. In recent years a number of papers have dealt with the question of characterizing groups G by the set of all orders of elements in G. See [1], [2] or [10].

Now we will consider the order of abelian subgroups of G instead of the order of elements of G. A group G is called an $O A_{n}$ group if the order of any abelian subgroup of G is less than or equal to n and for any positive integer $m \leq n$ there exists an abelian subgroup of G of order m. For example, any abelian subgroup of the alternating group A_{5} on 5 letters is isomorphic to one of the groups $\left\{1, Z_{2}, Z_{3}, Z_{2} \times Z_{2}, Z_{5}\right\}$ where Z_{m} is a cyclic group of order m. Thus the alternating group A_{5} is an $O A_{5}$ group. In this paper we will classify all $O A_{n}$ groups applying the results of [6] and [14] which are proved by using the classification of finite simple groups.

Theorem. Let G be an $O A_{n}$ group. Then $n \leq 6$ and G is isomorphic to one of the symmetric groups $1, S_{2}, S_{3}, S_{4}, S_{5}$ or the alternating groups A_{4}, A_{5}.

There are only seven isomorphism classes of $O A_{n}$ groups although there are infinitely many isomorphism classes of $O C_{n}$ groups.

2. Preliminaries

The prime graph $\Gamma(G)$ of G is a graph whose vertex set is the set of primes dividing $|G|$ and distinct two primes p and q are joined by an edge if there exists an element of G of order $p q$. Let $\nu(\Gamma(G))$ be the number of connected components of $\Gamma(G)$ and in the case where $|G|$ is even, let π_{1} be the connected component containing 2 . For any integer m, put $\pi(m)$ the set of all primes dividing m.

A finite group G is called a 2-Frobenius group if it has a chain $1 \subset H \subset K \subset G$
of normal subgroups, where K is a Frobenius group with Frobenius kernel H and G / H is a Frobenius group with Frobenius kernel K / H. A 2-Frobenius group is always solvable.

Theorem (Gruenberg-Kegel [7], [14]). If $\nu(\Gamma(G)) \geq 2$, then one of the following holds.
(1) G is a Frobenius group or a 2-Frobenius group.
(2) G has normal subgroups N and G_{0} with $N \subset G_{0}$ such that N is a nilpotent π_{1}-group, G_{0} / N is a simple group and G / G_{0} is a solvable π_{1}-group.
Especially if G is solvable, then $\nu(\Gamma(G)) \leq 2$.
The following theorem is well known.
Theorem (Bertrand's postulate [5, p.82]). For any real number $t \geq 1$, there exists a prime p such that $t<p \leq 2 t$.

Let G be an $O A_{n}$ group. Note that if $n \geq 2$, then $|G|$ is even and thus π_{1} is not empty. The following lemma is fundamental.

Lemma 1. Let G be an $O A_{n}$ group and p be a prime.
(1) p divides $|G|$ if and only if $p \leq n$.
p^{2} divides $|G|$ if and only if $p^{2} \leq n$.
If $\sqrt{n}<p \leq n$, then a Sylow p-subgroup of G is cyclic of order p.
(4) Suppose that p is an odd prime. Then $p \leq n / 2$ if and only if $p \in \pi_{1}$.

If $n / 2<p \leq n$, then $\{p\}$ forms a connected component of $\Gamma(G)$ and a Sylow p-subgroup is cyclic of order p.
(6) Suppose that p is the largest prime dividing $|G|$. Then $n / 2<p \leq n$. $\nu(\Gamma(G)) \geq 2$ if $n \geq 3$.

Proof. (1) If $|G|$ is divisible by p, then there exists a cyclic subgroup of order p. Then we have $p \leq n$. Conversely, if $p \leq n$ then there exists an abelian subgroup of order p in G by the definition of $O A_{n}$ groups. This yields that p divides $|G|$.
(2) Since a group of order p^{2} is abelian, we have the result by using similar arguments in the proof of (1).
(3) If $\sqrt{n}<p \leq n, G$ does not have an abelian subgroup of order p^{2} since $n<p^{2}$. This yields that a Sylow p-subgroup of G is cyclic of order p.
(4) If $p \leq n / 2$, there exists an abelian subgroup of order $2 p$ by the definition of $O A_{n}$ groups. Hence $p \in \pi_{1}$. Conversely, if $p \in \pi_{1}$, there exists a prime $q \in \pi_{1}$ such that G has an element of order $p q$, that is, G has an abelian subgroup of order $p q$. Since G is an $O A_{n}$ group, $p q \leq n$. Since $2 p \leq p q$, we have $p \leq n / 2$.
(5) If there exists a prime q such that G has an abelian subgroup of order $p q$, then
$p q \leq n$ because G is an $O A_{n}$ group. We have $2 p \leq p q \leq n$, a contradiction. Hence $\{p\}$ is a connected component of $\Gamma(G)$ and a Sylow p-subgroup is cyclic of order p.
(6) By Bertrand's postulate, there exists a prime r such that $n / 2<r \leq n$. We see that r divides $|G|$ by (1). Since p is the largest prime dividing $|G|$, we have $r \leq p$. This yields that $n / 2<p \leq n$.
(7) Because there is a prime r such that $n / 2<r \leq n$ by Bertrand's postulate, $\nu(\Gamma(G)) \geq 2$ if $n \geq 3$.

Proposition 1. If $n \geq 47$, then $\sharp\{p:$ prime $\mid n / 2<p \leq n\} \geq 6$.
Proof. See [1, p.395]
Theorem (Williams [14], Iiyori-Yamaki [6]). For any finite group G, $\nu(\Gamma(G)) \leq 6$.

As a corollary, we have the following:
Corollary 1. If G is an $O A_{n}$ group, then $n \leq 46$.
Proof. Suppose that $n \geq 47$. Then Lemma 1 (5) and Proposition 1 imply that $\nu(\Gamma(G)) \geq 7$. This contradicts the theorem of Williams and Iiyori-Yamaki.

3. The Proof of the Main Theorem

Proposition 2. Let G be a solvable $O A_{n}$ group. Then $G \simeq 1, Z_{2}, S_{3}, A_{4}$ or S_{4}.

Proof. By Gruenberg-Kegel's theorem, if G is solvable then $\nu(\Gamma(G)) \leq 2$. If $n \neq 1,2,3,4,6,10$, then there exist primes p and q such that $n / 2<p<q \leq n$ (See [1, p.396, TABLE I]). Then $\nu(\Gamma(G)) \geq 3$ by Lemma 1 (4). This is a contradiction. If $n=10$, there exists a Hall $\{3,5,7\}$-subgroup H of G because G is solvable. Then $\nu(\Gamma(H))=3$. This is a contradiction. If $n=6$, then $|G|=2^{a} \cdot 3 \cdot 5$ for some integer a. A Hall $\{3,5\}$-subgroup H is cyclic of order 15 , a contradiction. Hence $n \leq 4$. If $\nu(\Gamma(G))=1$, then $G \simeq Z_{2}$. If $\nu(\Gamma(G))=2$, again by Gruenberg-Kegel's theorem, G is a Frobenius group or a 2-Frobenius group. If G is Frobenius, then its Frobenius kernel N must be isomorphic to $Z_{2} \times Z_{2}$ or Z_{3}. Then we have $G \simeq A_{4}$ or S_{3}. If G is 2-Frobenius, there exist normal subgroups K and H such that K is a Frobenius group with Frobenius kernel H and G / H is a Frobenius group with Frobenius kernel K / H. Then $H \simeq Z_{2} \times Z_{2}$ or Z_{3}. Since K / H is a Frobenius kernel of G / H and it is also isomorphic to a Frobenius complement of $K, K / H$ must be a cyclic subgroup of odd order. This yields that $H \simeq Z_{2} \times Z_{2}$ and $K / H \simeq Z_{3}$. This implies that $G \simeq S_{4}$.

Lemma 2. Let G be a nonsolvable $O A_{n}$ group. Then G is not a Frobenius group.

Proof. By Lemma 1 (7), we see $\nu(\Gamma(G)) \geq 2$. Suppose that $G=N H$ is a nonsolvable Frobenius group with Frobenius kernel N and Frobenius complement H. Then H has a subgroup $H_{0} \simeq S L(2,5) \times M$ with $\left(H: H_{0}\right) \leq 2$, where M is a group in which every Sylow subgroup is cyclic and $|M|$ is not divisible by 2,3 and 5 (See [9, p.204]). Let p be the largest prime dividing $|G|$. Since $p \notin \pi_{1}$ by Lemma 1, p does not divide $|H|$. Therefore p divides $|N|$. If $|N|$ is divisible by a prime $q \neq p$, N has an abelian subgroup of order $p q \geq 2 p>n$ because N is nilpotent. This is a contradiction. Hence N is a p-group and $N \simeq Z_{p}$ by Lemma 1. Since $|N|-1 \geq|H|$, we have $p \geq 121$. This contradicts Corollary 1 and completes the proof.

Lemma 3. Let G be a nonsolvable $O A_{n}$ group. Then $F(G)=1$, where $F(G)$ is the Fitting subgroup of G.

Proof. By Lemma 1 (7), we see $\nu(\Gamma(G)) \geq 2$. By Gruenberg-Kegel's theorem, G has normal subgroups N and G_{0} with $N \subset G_{0}$ such that N is a nilpotent π_{1-} group, G_{0} / N is a simple group and G / G_{0} is a solvable π_{1}-group since G is not a Frobenius group by Lemma 2. We see that $N=F(G)$. Suppose that $N \neq 1$. Let N_{0} be a minimal normal subgroup of G_{0}. Then N_{0} is an elementary abelian p-group for some $p \in \pi_{1}$. Let q be the largest prime dividing $|G|$. Then we see that $q \geq 5$, $n / 2<q \leq n$ and q divides $\left|G_{0}\right|$ by Gruenberg-Kegel's theorem. By Lemma 1 (5), $\{q\}$ is a connected component of $\Gamma(G)$ and a Sylow q-subgroup is cyclic of order q. Then $N_{0} Q$ is a Frobenius group for some $Q \in S y l_{q}(G)$ since $C_{N_{0}}(x)=1$ for any $x \in Q-\{1\}$. Hence q divides $\left|N_{0}\right|-1$. If p is odd, then $\left|N_{0}\right|-1$ is even. We have $q \leq\left(\left|N_{0}\right|-1\right) / 2 \leq(n-1) / 2<n / 2$, a contradiction. Hence we have $p=2$. Then $\left|N_{0}\right|=2,4,8,16$ or 32 by Corollary 1. If $\left|N_{0}\right|=32$, then $q=31$. In this case, G has an abelian subgroup H of order 29 since $32 \leq n$. Since H can not act on N fixed point freely, $N_{0} H$ has an element of order $58>46$, a contradiction. If $\left|N_{0}\right|=16$, then $q=5$ because $q \geq 5$. In this case, G has an abelian subgroup H of order 13 since $16 \leq n$. This contradicts the choice of q. If $\left|N_{0}\right|=2$ or 4 , then $q \leq\left|N_{0}\right|-1 \leq 3$, a contradiction. If $\left|N_{0}\right|=8$ then $q=7$. Since $q=7$ is the largest prime dividing G and G has an abelian subgroup N_{0} of order 8 , we have $8 \leq n<11$. Furthermore we have $5 \in \pi_{1}$, since a Sylow 5 -subgroup of G does not act on N_{0} fixed point freely. This implies that $n=10$. In this case, $C_{G_{0}}\left(N_{0}\right)$ is a 2 group. In fact, if $C_{G_{0}}\left(N_{0}\right)$ has an element x of odd prime order, then $N_{0}\langle x\rangle$ is an abelian subgroup whose order is more than 24 . This is a contradiction. Since G_{0} has a nonsolvable simple factor and $G_{0} / C_{G_{0}}\left(N_{0}\right)$ is isomorphic to a subgroup of $G L(3,2), G_{0} / C_{G_{0}}\left(N_{0}\right) \simeq G L(3,2)$ and $N \simeq C_{G_{0}}\left(N_{0}\right)$. We see that 5 does not divide $|G|$ since orders of $\operatorname{Aut}(G L(3,2))$ and $C_{G_{0}}\left(N_{0}\right)$ are not divisible by 5 . This is a contradiction. This completes the
proof.
The above lemma implies that if G is a nonsolvable $O A_{n}$ group, then there exists a simple group G_{0} such that $G_{0} \subseteq G \subseteq \operatorname{Aut}\left(G_{0}\right)$. We will use this notation in the following propositions.

Proposition 3. Let G be a nonsolvable $O A_{n}$ group.

(1) If G_{0} is an alternating group A_{m} on m letters, then $m=5$. Conversely, A_{5} is an $O A_{5}$ group and S_{5} is an $O A_{6}$ group.
(2) G_{0} is not a sporadic simple group.

Proof. (1) If $G_{0} \simeq A_{m}, \nu\left(\Gamma\left(G_{0}\right)\right) \leq 3$ by [14]. Hence $2 \leq \nu(\Gamma(G)) \leq 3$. This yields that $5 \leq n \leq 16, n \neq 13$ by counting the number of primes p with $n / 2<p \leq n$. (See Lemma 1 (5) and [1, p.396, TABLE I].) If $G_{0} \simeq A_{5}$, then $n<7$ since 7 does not divide $\left|\operatorname{Aut}\left(G_{0}\right)\right|$. Clearly A_{5} is an $O A_{5}$ group and S_{5} is an $O A_{6}$ group. If $G_{0} \simeq A_{6}$, then $n<7$. On the other hand, A_{6} has an abelian subgroup of order 9 . This is a contradiction. If $G_{0} \simeq A_{7}$ or A_{8}, then $n<11$. But $G_{0} \supseteq A_{7} \supset\langle(1,2)(3,4),(1,3)(2,4)\rangle \times\langle(5,6,7)\rangle$ which is abelian of order 12. If $G_{0} \supseteq A_{9}$, then $A_{9} \supset\langle(1,2)(3,4),(1,3)(2,4)\rangle \times\langle(5,6,7,8,9)\rangle$ which is abelian of order 20 . This is a contradiction since $n \leq 16$.

(2) See [4].

Proposition 4. Let G be a nonsolvable $O A_{n}$ group and G_{0} a simple group of Lie type over the field of q elements. Then $G_{0} \simeq A_{1}(4)$.

Proof. Suppose that $\nu\left(\Gamma\left(G_{0}\right)\right) \geq 4$. By the classification of the prime graph components of finite simple groups, $G_{0} \simeq E_{8}(q), A_{2}(4),{ }^{2} B_{2}(q)$ or ${ }^{2} E_{6}(2)$ (See [6, p.337, TABLE III] and [14, p.492, TABLE Ie]). The groups $A_{2}(4),{ }^{2} E_{6}(2)$ and their automorphism groups are not $O A_{n}$ groups (See [4]). If $G_{0} \simeq E_{8}(q), G_{0}$ has a maximal torus of order $q^{8}-q^{4}+1 \geq 2^{8}-2^{4}+1>46$, a contradiction (See [3]). Clearly $G_{0} \not \not{ }^{2} B_{2}(8)$ and $G_{0} \not 千{ }^{2} B_{2}(32)$ (See [4]). If $G_{0} \simeq{ }^{2} B_{2}(q)$ where $q=2^{2 m+1}$ and $m \geq 3$, then G_{0} has a maximal torus of order $q+\sqrt{2 q}+1 \geq 2^{7}+2^{4}+1>46$, a contradiction (See [12]). Suppose that $\nu\left(\Gamma\left(G_{0}\right)\right)=3$. This implies that $\nu(\Gamma(G)) \leq 3$ and therefore $5 \leq n \leq 16, n \neq 13$ (See [1, p.396, TABLE I]). If the characteristic is more than or equal to 5 , then q is a prime because q divides $\left|G_{0}\right|$ and $n \leq 16$. Since q^{2} does not divide $\left|G_{0}\right|, G_{0} \simeq A_{1}(q)$. Clearly $G_{0} \nsucceq A_{1}(7), A_{1}(11)$, and $A_{1}(13)$ (See [4]). We have $G_{0} \simeq A_{1}(5) \simeq A_{5}$. Suppose now that the characteristic is 3 . If $n \leq 8$, in a similar way, we have $G_{0} \simeq A_{1}(3)$, which is not simple. If $n \geq 9$, then G_{0} is isomorphic to one of groups in [14, p.492, TABLE Id], that is, $G_{0} \simeq A_{1}(q)(q \equiv 1(4)), A_{1}(q)(q \equiv-1(4)), E_{7}(3), G_{2}(q)(q \equiv 0(3)),{ }^{2} G_{2}(q)$ $\left(q=3^{2 m+1}, m \geq 1\right)$, or ${ }^{2} D_{p}(3)\left(p=2^{n}+1, n \geq 2\right)$. Clearly $G_{0} \nsim E_{7}(3)$ (See [14]). If
$G_{0} \simeq A_{1}(q)$ ，then we have $q=3$ or 9 since a Sylow q－subgroup of G_{0} is abelian and $n \leq 16$ ．Since G_{0} is simple，$G \not \approx A_{1}(3)$ and we see $G_{0} \not 千 A_{1}(9) \simeq A_{6}$ by Proposition 3．Clearly $G_{0} \not \not 二 G_{2}(3)$（See［4］）．If $G_{0} \simeq G_{2}(q)(q \equiv 0(3))$ and $q \geq 3^{2}$ then G_{0} has a maximal torus of order $q^{2}+q+1 \geq 3^{4}+3^{2}+1>16$ ，a contradiction（See［3］）．If $G_{0} \simeq{ }^{2} G_{2}(q)\left(q=3^{2 m+1}, m \geq 1\right), G_{0}$ has a maximal torus of order $q+\sqrt{3 q}+1>16$ ， a contradiction（See［13］）．If $G_{0} \simeq{ }^{2} D_{p}(3)\left(p=2^{n}+1\right.$ is a prime，$\left.n \geq 2\right)$ ，then G_{0} has a maximal torus of order $\left(3^{p}+1\right) / 4>16$ ，a contradiction（See［12］or［14］）． Suppose now that the characteristic is 2 ．Then $G_{0} \simeq A_{1}(q), A_{2}(2),{ }^{2} A_{5}(2), E_{7}(2)$ ， ${ }^{2} F_{4}(q)$ or $F_{4}(q)$ by［6，p．336，TABLE II］．Clearly $G_{0} \not 千 A_{2}(2),{ }^{2} A_{5}(2), E_{7}(2), A_{1}(8)$ and $A_{1}(16)$（See［4］）．If $G_{0} \simeq A_{1}(q)$ ，we have $q \leq 16$ since a Sylow 2 －subgroup of G_{0} is abelian．We have $G_{0} \simeq A_{1}(4) \simeq A_{5}$（See［4］）．If $G_{0} \simeq{ }^{2} F_{4}(q)\left(q=2^{2 m+1}, m \geq 1\right)$ ， then G_{0} has a maximal torus of order $q^{2}+\sqrt{2 q^{3}}+q+\sqrt{2 q}+1>16$ ，a contradiction （See［11］）．Clearly $G_{0} \not \not F_{4}(2)$（See［4］）．If $G_{0} \simeq F_{4}(q)$ ，then G_{0} has a maximal torus of order $q^{4}+1>16$ ，a contradiction（See［3］）．This completes the case where $\nu\left(\Gamma\left(G_{0}\right)\right)=3$ ．Suppose that $\nu\left(\Gamma\left(G_{0}\right)\right)=2$ ．Then $n=6$ or 10 （See［1，p．396， TABLE I］）．If the characteristic is more than or equal to 5 ，we have $G_{0} \simeq A_{1}(q)$ ， a contradiction since $\nu\left(\Gamma\left(A_{1}(q)\right)\right)=3$ ．We have that the characteristic is 2 or 3 ． Suppose now that the characteristic is 3 ．By an argument similar to that in the case where $\nu\left(\Gamma\left(G_{0}\right)\right)=3$ ，we see $n=10$ ．Notice that G_{0} has prime graph components $\pi_{1}=\{2,3,5\}$ and $\{7\}$ ．And G_{0} is isomorphic to one of groups in［14，p．490，TABLE Ib ，p．491，TABLE Ic］whose characteristic is 3 ．We see that there exist no groups satisfying our condition in this case．Suppose now that the characteristic is 2 ．Then $n=6$ and the connected components are $\pi_{1}=\{2,3\}$ and $\{5\}$ or $n=10$ and the connected components are $\pi_{1}=\{2,3,5\}$ and $\{7\}$ ．And G_{0} is isomorphic to one of groups in［6，p．336，TABLE Ia，Ib］．We see that only ${ }^{2} A_{3}(2)$ has the connected components $\pi_{1}=\{2,3\}$ and $\{5\}$ ．However we see $G_{0} \not \not{ }^{2} A_{3}(2)$ by［4］．Also we see that only $A_{3}(2), C_{3}(2)$ and $D_{4}(2)$ have the connected components $\pi_{1}=\{2,3,5\}$ and $\{7\}$ ．However we see that $G_{0} \not \not A_{3}(2), C_{3}(2)$ and $D_{4}(2)$ by［4］．This yields that there exist no groups satisfying our conditions in this case．This completes the proof．

Proof of Theorem．Straightforward from Propositions 2， 3 and 4.

References

［1］R．Brandl and W．Shi：Finite groups whose element orders are consecutive integers，J．Al－ gebra， 143 （1991），388－400．
［2］R．Brandl and W．Shi：The characterization of $P S L(2, q)$ by its element orders，J．Algebra， 163 （1994），109－114．
［3］R．Carter：Conjugacy classes in the Weyl group，Compositio Math． 25 （1972），1－59．
[4] J. Conway, R. Curtis, S. Norton, R. Parker and R. Wilson: Atlas of Finite Groups, Clarendon Press, Oxford, 1985
[5] L.K. Hua: Introduction to Number Theory, Springer-Verlag, Berlin Heidelberg, 1982.
[6] N. liyori and H. Yamaki: Prime graph components of the simple groups of Lie type over the field of even characteristic, J. Algebra, 155 (1993), 335-343; Corrigendum, ibid. 181 (1996), 659.
[7] N. Iiyori and H. Yamaki: A problem of Frobenius, Canad. Math. Soc. Conf. Proc. 14 (1993), 237-244.
[8] B.H. Neumann: Groups whose elements have bounded orders, J. London Math. Soc. 12 (1937), 195-198.
[9] D.S. Passman: Permutation Groups, Benjamin, New York, 1968.
[10] C.E. Praeger and W. Shi: A characterization of some alternating and symmetric groups, Comm. Algebra, 22 (1994), 1507-1530.
[11] K. Shinoda: The conjugacy classes of the finite Ree groups of type $\left(F_{4}\right)$, J. Fac. Sci. Univ. Tokyo, 22 (1975), 133-159.
[12] T.A. Springer and R. Steinberg: Conjugacy classes, Seminar on Algebraic Groups and Related Finite Groups, Lecture Notes in Mathematics 131, Springer-Verlag, Berlin-HeidelbergNew York, 1970.
[13] H.N. Ward: On Ree's series of simple groups, Trans. Amer. Math. Soc. 121 (1966), 62-89.
[14] J.S. Williams: Prime graph components of finite groups, J. Algebra, 69 (1981), 487-513.

Department of Mathematical Sciences Muroran Institute of Technology
Hokkaido 050, Japan
e-mail: chigira@muroran-it.ac.jp

