ON THE ABEL-JACOBI MAP FOR NON-COMPACT VARIETIES

Donu ARAPURA and Kyungho OH

(Received July 10, 1996)

1. Introduction

Let X be a smooth projective variety over \mathbb{C} of dimension n and S be a reduced normal crossing divisor on X. Then the generalized Jacobian $J(X-S)$ is a group $H^{n-1}\left(X, \omega_{X}(S)\right) / H_{2 n-1}(X-S, \mathbb{Z})$. When X is a curve, this fits into an exact sequence of algebraic groups:

$$
1 \longrightarrow\left(\mathbb{C}^{*}\right)^{\sigma-1} \longrightarrow J(X-S) \longrightarrow J(X) \longrightarrow 0
$$

where σ is the number of points in S and $J(X)$ is the usual Jacobian of X. Let $\operatorname{Div}^{0}(X-S)$ be the set of divisors of degree 0 on X which does not intersect with S. Then integration determines the Abel-Jacobi homomorphism $\alpha: \operatorname{Div}^{0}(X-S) \rightarrow$ $J(X-S)$. We will prove an analogue of Abel's theorem (due to Rosenlicht [8] for curves) that the kernel of α is the following subgroup $\operatorname{Prin}_{S}(X)$ of S-principal divisors:

$$
\operatorname{Prin}_{S}(X)=\{(f) \in \operatorname{Div}(X-S) \mid f \in K(X) \text { and } f=1 \text { on } S\} .
$$

A proof is a variation of our previous work [1], which involves reinterpretation of the Abel-Jacobi map in the language of mixed Hodge structures and their extensions. As a further application of this technique, we prove a Torelli theorem for a noncompact curve, which states that if X is the complement of at least 2 points in a nonhyperelliptic curve, then it is determined by the graded polarized mixed Hodge structure on $H^{1}(X, \mathbb{Z})$.

We would like to thank the referee for thoughtful comments.

2. Hodge Structures

Definition 2.1. A (pure) Hodge structure H of weight m consists of a finitely generated abelian group $H_{\mathbb{Z}}$ and a decreasing filtration F^{\bullet} of $H_{\mathbb{C}}:=H_{\mathbb{Z}} \otimes \mathbb{C}$ such that $H_{\mathbb{C}}=F^{p} \oplus \overline{F^{m-p+1}}$.

[^0]Example 1. The Hodge structure of Tate $\mathbb{Z}(-1)$ is defined to be the Hodge structure of weight 2 with $H_{\mathbb{Z}}=\frac{1}{2 \pi \sqrt{-1}} \mathbb{Z} \subset \mathbb{C}=F^{1} H_{\mathbb{C}}$.

The most natural example of Hodge structure of weight k is the k-th integral cohomology of a compact Kähler manifold. A differential form lies in F^{p} if in local coordinate it has at least p " $d z$'s". To extend Hodge theory to any (singular or non-projective) complex algebraic varieties X, Deligne [3] introduced the notion of a mixed Hodge structure. He showed that the cohomology of any variety carries such a structure.

Definition 2.2. A mixed Hodge structure (MHS) H consists of a triple $\left(H_{\mathbb{Z}}, W_{\bullet}, F^{\bullet}\right)$, where
(1) $\quad H_{\mathbb{Z}}$ is a finitely generated abelian group. (In practice $H_{\mathbb{Z}}$ will be free and we will identify it with a lattice in $H_{\mathbb{Q}}:=H_{\mathbb{Z}} \otimes \mathbb{Q}$.)
(2) W_{\bullet} is an increasing filtration of $H_{\mathbb{Q}}$, called the weight filtration.
(3) $\quad F^{\bullet}$ is a decreasing filtration of $H_{\mathbb{C}}:=H_{\mathbb{Z}} \otimes \mathbb{C}$, called the Hodge filtration.

The Hodge filtration F^{\bullet} is required to induce a (pure) Hodge structure of weight m on each of the graded pieces

$$
G r_{m}^{W} \cdot=W_{m} / W_{m-1}
$$

Example 2. Let D be a divisor on a smooth projective variety X over \mathbb{C}. Set $U=X-D$. By Hironaka, there exists a birational map $\pi: \tilde{X} \rightarrow X$, with \tilde{X} non-singular such that $\tilde{D}=\pi^{-1}(D)$ is a normal crossing divisor. Then $H^{1}(U, \mathbb{Z})$ carries a mixed Hodge structure and the Hodge filtration is given by

$$
F^{0}=H^{1}(U, \mathbb{C}), \quad F^{1}=H^{0}\left(\tilde{X}, \Omega^{1}(\log \tilde{D})\right), \quad F^{2}=0
$$

We will denote $H^{0}\left(\tilde{X}, \Omega^{1}(\log \tilde{D})\right)$ by $H^{0}\left(X, \Omega^{1}(\log D)\right)$. This group does not depend on the choice of \tilde{X}.

Given two mixed Hodge structures A and B, we write $B>A$ if there exists m_{0} such that $W_{m} A_{\mathbb{Q}}=A_{\mathbb{Q}}$ for all $m \geq m_{0}$ and $W_{m} B_{\mathbb{Q}}=0$ for all $m<m_{0}$.

Finally, we define the p-th Jacobian of a mixed Hodge structure of H to be the generalized torus

$$
J^{p} H=H_{\mathbb{Z}} \backslash H_{\mathbb{C}} / F^{p} H_{\mathbb{C}} .
$$

The set of mixed Hodge structures forms an abelian category with an internal Hom. Thus one can form the abelian group of extension classes of two objects. Carlson [2] described the structure of this extension group in terms of the Jacobian.

Theorem 2.1 (Carlson). Let A and B be mixed Hodge structures with $B>A$ and B torsion free. Then there is a natural isomorphism.

$$
\operatorname{Ext}_{M H S}^{1}(B, A) \cong J^{0} \operatorname{Hom}(B, A)
$$

3. Homologically trivial divisors

Let X be a smooth projective variety over \mathbb{C} of dimension n and S be a reduced normal crossing divisor on X. Let $\operatorname{Div}(X-S)$ be the group of divisors on X which do not intersect S. Moreover, we set

$$
\begin{align*}
\operatorname{Prin}_{S}(X) & =\{(f) \in \operatorname{Div}(X-S) \mid f \in K(X) \text { and } f=1 \text { on } S\} \tag{1}\\
C l_{S}(X) & =\operatorname{Div}(X-S) / \operatorname{Prin}_{S}(X) .
\end{align*}
$$

The kernel of the cycle map [5, §19.1]

$$
c l: \operatorname{Div}(X-S) \rightarrow H_{2 n-2}(X-S, \mathbb{Z})
$$

will be called the group of homologically trivial divisors and it will be denoted by $\operatorname{Div}^{0}(X-S)$. Note that $\operatorname{Prin}_{S}(X) \subset \operatorname{Div}^{0}(X-S)$.

Let \mathcal{K}^{*} be the sheaf of invertible rational functions on X and $\mathcal{K}^{*}(-S)$ be the subsheaf of \mathcal{K}^{*} consisting of functions which are 1 on S. Similarly, we define $\mathcal{O}^{*}(-S)$ to be the subsheaf of \mathcal{O}^{*} consisting of functions which are 1 on S. Consider the following exact sequence

$$
\begin{equation*}
1 \longrightarrow \mathcal{O}^{*}(-S) \longrightarrow \mathcal{K}^{*}(-S) \longrightarrow \mathcal{Q} \longrightarrow 0 \tag{3}
\end{equation*}
$$

where \mathcal{Q} is the quotient sheaf. Then one can prove that $H^{0}\left(X, \mathcal{K}^{*}(-S)\right)=\operatorname{Prin}_{S}(X)$ and $H^{0}(X, \mathcal{Q})=\operatorname{Div}(X-S)$ as in [7, II, 6.11]. Let

$$
C l_{S}^{0}(X)=\operatorname{Div}^{0}(X-S) / \operatorname{Prin}_{S}(X)
$$

Consider the following diagram :

The map $1 / 2 \pi i d \log$ is the connecting homomorphism associated to the exponential sequence:

$$
\begin{equation*}
0 \longrightarrow j!\mathbb{Z} \longrightarrow \mathcal{O}(-S) \xrightarrow{\exp (2 \pi i)} \mathcal{O}^{*}(-S) \longrightarrow 1 \tag{4}
\end{equation*}
$$

where j is the natural inclusion from $X-S$ to X. By Lefschetz duality [9, Theorem 6.2.19], the right vertical arrow is an isomorphism. Moreover, the diagram is commutative since the cycle map is compatible with Chern class map. Therefore, $C l_{S}^{0}(X)$ is isomorphic to a subgroup of the kernel of the connecting homomorphism

$$
H^{1}\left(X, \mathcal{O}^{*}(-S)\right) \xrightarrow{\frac{1}{2 \pi i} d \log } H^{2}(X, j!\mathbb{Z})=H^{2}(X, S)
$$

So, $C l_{S}^{0}(X)$ is isomorphic to a subgroup of $H^{1}(X, \mathcal{O}(-S)) / H^{1}(X, S ; \mathbb{Z})$. By duality, we can identify $H^{1}(X, \mathcal{O}(-S)) / H^{1}(X, S ; \mathbb{Z})$ with $H^{n-1}\left(X, \omega_{X}(S)\right)^{\prime} / H_{2 n-1}(X-$ $S, \mathbb{Z})$ where $\omega_{X}(S)=\wedge^{n} \Omega_{X}^{1} \otimes \mathcal{O}_{X}(S)$. Thus we obtain an injection

$$
\begin{equation*}
\beta: C l_{S}^{0}(X) \rightarrow H^{n-1}\left(X, \omega_{X}(S)\right) / H_{2 n-1}(X-S, \mathbb{Z}) \tag{5}
\end{equation*}
$$

which will be identified with the Abel-Jacobi map later.

Lemma 3.1. In the diagram,

the kernel of the map $c l_{X-S}$ is equal to the kernel of the map $c l_{X}$.
Proof. Clearly, we have $\operatorname{ker} c l_{X-S} \subset \operatorname{ker} c l_{X}$. We will prove the converse in dual form. Let $D \in \operatorname{ker} c l_{X}$. Consider a long exact sequence of Mixed Hodge structures, so called a "Thom-Gysin" sequence, associated to a triple $S \subset X-|D| \subset$ X,
(6) $\quad 0 \longrightarrow H^{1}(X, S) \longrightarrow H^{1}(X-|D|, S) \longrightarrow H^{2}(X, X-|D|) \xrightarrow{\text { Gysin }} H^{2}(X, S)$

Note that $H^{2}(X, X-|D|) \cong H_{D}^{2}(X)$. By Fujiki [4], we have

$$
H^{2}(X, X-|D|)=\operatorname{Hom}\left(H^{2 n-2}(D), \mathbb{Z}(-n)\right)
$$

as a mixed Hodge structure. Also observe that $H^{2 n-2}(D)=\bigoplus \mathbb{Z}(-n+1)$ where the sum is over all irreducible components of D. Thus $H^{2}(X, X-|D|)$ has a pure Hodge structure of weight 2 . On the other hand, it follows from the long exact sequence of cohomologies associated to the pair (X, S) that $G r_{2}^{W \cdot} \cdot H^{2}(X, S)$ injects into $H^{2}(X)$. Hence if the class of D in $H^{2}(X)$ vanishes, then so does the class of D in $H^{2}(X, S)$.

4. Extensions of MHS

Let $D \in \operatorname{Div}^{0}(X-S)$ be a homologically trivial divisor. From the sequence (6), we get an extension of mixed Hodge structures

$$
\begin{equation*}
0 \longrightarrow H^{1}(X, S) \longrightarrow H^{1}(X-|D|, S) \longrightarrow K \longrightarrow 0 \tag{7}
\end{equation*}
$$

where $K=\operatorname{ker}\left[H^{2}(X, X-|D|) \xrightarrow{\text { Gysin }} H^{2}(X, S)\right]$. Let

$$
\phi_{D}: \mathbb{Z}(-1) \longrightarrow \bigoplus \mathbb{Z}(-1)=H^{2}(X, X-|D|)
$$

be a morphism of Hodge structures defined by $\phi_{D}(1 / 2 \pi \sqrt{-1})=\sum D_{i}$ where D_{i} are irreducible components of D. Since D is homologically trivial, ϕ_{D} factors through K. By pulling back the extension (7) along ϕ_{D}, we get a new extension of mixed Hodge structures:

$$
\begin{equation*}
0 \longrightarrow H^{1}(X, S) \longrightarrow E_{D} \longrightarrow \mathbb{Z}(-1) \longrightarrow 0 \tag{8}
\end{equation*}
$$

Thus this corresponds to an element in $\operatorname{Ext}^{1}\left(\mathbb{Z}(-1), H^{1}(X, S)\right)$. By a theorem of Carlson, $\operatorname{Ext}^{1}\left(\mathbb{Z}(-1), H^{1}(X, S)\right)$ is isomorphic to

$$
J^{0} \operatorname{Hom}\left(\mathbb{Z}(-1), H^{1}(X, S)\right)=H^{1}(X, S ; \mathbb{C}) / H^{1}(X, S ; \mathbb{Z})+F^{1} H^{1}(X, S ; \mathbb{C})
$$

which will be denoted by $J(X-S)$. Note that $J(X-S)$ is independent of the choice of a compactification of $X-S$.

Lemma 4.1. The Jacobian $J(X-S)$ is naturally isomorphic to

$$
H^{1}(X, \mathcal{O}(-S)) / H^{1}(X, S ; \mathbb{Z})
$$

Proof. Consider an exact sequence of cohomologies on X.

$$
\ldots \longrightarrow H^{0}\left(X, \mathbb{C}_{S}\right) \longrightarrow H^{1}\left(X, j_{!} \mathbb{C}\right) \longrightarrow H^{1}(X, \mathbb{C}) \longrightarrow \ldots
$$

where j is the natural inclusion from $X-S$ to X. Since this is an exact sequence of mixed Hodge structures and the Hodge filtrations are strictly preserved by the maps, this induces an exact sequence:

$$
\ldots \longrightarrow G r_{F}^{0} \cdot H^{0}\left(X, \mathbb{C}_{S}\right) \longrightarrow G r_{F}^{0} \cdot H^{1}\left(X, j_{!} \mathbb{C}\right) \longrightarrow G r_{F}^{0} \bullet H^{1}(X, \mathbb{C}) \longrightarrow \ldots
$$

Now consider the following diagram of cohomologies on X :

The vertical arrows β_{0} and β_{1} are isomorphisms because the spectral sequence associated to the Hodge filtration on $H^{*}\left(S, \mathbb{Z}_{S}\right)$ degenerates at E_{1} [10, (1.5)] [3, (8.2.1), (8.1.12), (8.1.9)]. The vertical arrows α_{0} and α_{1} are isomorphisms by the E_{1}-degeneration of the usual Hodge to DeRham spectral sequence. Hence by 5lemma, the map γ_{1} is an isomorphism. It follows that the sequence

$$
\begin{equation*}
0 \longrightarrow H^{0}(d \mathcal{O}(-S)) \longrightarrow H^{1}\left(j_{!} \mathbb{C}\right) \longrightarrow H^{1}(\mathcal{O}(-S)) \longrightarrow 0 \tag{9}
\end{equation*}
$$

is exact. Note that $F^{1} H^{1}(j!\mathbb{C})=H^{0}(d \mathcal{O}(-S))$. This completes the proof.
Thus for a homologically trivial divisor $D \in \operatorname{Div}^{0}(X-S)$, we can associate an element in the Jacobian $H^{1}(X, \mathcal{O}(-S)) / H^{1}(X, S ; \mathbb{Z})$. By duality, the Jacobian can be identified with

$$
H^{n-1}\left(X, \omega_{X}(S)\right) / H_{2 n-1}(X-S ; \mathbb{Z})
$$

The map

$$
\alpha: \operatorname{Div}^{0}(X-S) \rightarrow H^{n-1}\left(X, \omega_{X}(S)\right)^{\check{ }} / H_{2 n-1}(X-S ; \mathbb{Z})
$$

obtained in this way will be called the Abel-Jacobi map. We will show that the Abel-Jacobi map α can be realized in the following way ;

Theorem 4.2. Given a cohomology class in $H^{n-1}\left(X, \omega_{X}(S)\right)$, choose a $(n, n-$ 1)-form ω representing this cohomology class. Then $\alpha(D)$ is given by

$$
\omega \mapsto \int_{\Gamma_{D}} \omega
$$

where Γ_{D} is $a(2 n-1)$-chain in $X-S$ whose boundary is D.
Proof. After a birational change of X, we may assume that the support of D is a reduced normal crossing divisor. To each homologically trivial divisor $D \in$ $\operatorname{Div}^{0}(X-S)$, one can associate a form $\eta_{D} \in H^{0}\left(X, \Omega_{X}^{1}(\log |D|)\right)=F^{1} H^{1}(X-$ $|D|, \mathbb{C})$ with $\operatorname{Res} \eta_{D}=D$ since the map in the sequence (8) strictly preserves the Hodge filtration F^{\bullet} and $F^{1} H^{1}(X-|D|, S ; \mathbb{C}) \subset F^{1} H^{1}(X-|D|, \mathbb{C})$. To construct a retraction $r: E_{D} \rightarrow H^{1}(X, S ; \mathbb{Z})$, choose a set $\left\{\xi_{1}, \cdots, \xi_{m}\right\}$ of differential $(2 n-1)$ forms on $X-S$ representing a basis of $H^{2 n-1}(X-S, \mathbb{Z})$ such that ξ_{i} vanishes in a neighborhood $N(D)$ of $|D|$. This is possible since we have a surjection $H^{2 n-1}(X-$ $S, D) \rightarrow H^{2 n-1}(X-S)$. Let $\left\{\xi^{1}, \cdots, \xi^{m}\right\}$ be the dual basis of $H^{1}(X, S ; \mathbb{Z})$. We now set

$$
r(\eta)=\sum_{i} \int_{X}\left(\eta \wedge \xi_{i}\right) \xi^{i}
$$

Let $B(D)$ be a small tubular neighborhood of $|D|$ in $X-S$ such that the closure of $B(D)$ is contained in $N(D)$. We can write

$$
\omega=\sum_{i=1}^{m} c_{i} \xi_{i}+d \phi
$$

where ϕ is a $C^{\infty}(2 n-2)$-form on $X-S$. Set $\eta=\eta_{D}$. Via the isomorphism given in Theorem 2.1 (cf. [1, Theorem 6.2]), $\alpha(D)$ is given by sending ω to

$$
\begin{aligned}
& \int_{X} r(\eta) \wedge \omega \\
& =\int_{X} r(\eta) \wedge \sum_{i} c_{i} \xi_{i}=\int_{X}\left(\sum_{i}\left(\int_{X} \eta \wedge \xi_{i}\right) \xi^{i}\right) \wedge\left(\sum_{j} c_{j} \xi_{j}\right) \\
& =\int_{X} \eta \wedge \sum_{i} c_{i} \xi_{i}=\int_{X-B(D)} \eta \wedge(\omega-d \phi) \\
& =\int_{X-B(D)}-\eta \wedge d \phi \\
& =\int_{\partial B(D)} \eta \wedge \phi \quad(\text { by Stokes' Theorem. }) \\
& =\int_{\partial B(D)} \eta \wedge \int \omega \quad\left(\int \omega \text { is a primitive of } \omega \text { on } B(D)\right) \\
& =\int_{D} \int \omega
\end{aligned}
$$

Since D is also algebraically equivalent to zero [6, p. 462] it is enough to consider the following case: Let T be a non-singular curve and \mathcal{D} be an irreducible divisor on $X \times T$, flat over $T . D$ is given by $p_{2 *}\left(p_{1}^{*}(0)-p_{1}^{*}(1)\right)$ for some points $0,1 \in T$.

Let $\widetilde{\mathcal{D}}$ be a desingularization of \mathcal{D} and p_{1}^{\prime} be the composition of $\widetilde{\mathcal{D}} \rightarrow \mathcal{D}$ and p_{1}. Let

$$
\begin{array}{r}
\widetilde{\mathcal{D}} \xrightarrow{f} X^{\prime} \\
g \mid \\
\\
X
\end{array}
$$

be the Stein factorization of $\widetilde{\mathcal{D}} \rightarrow X$. So f has connected fibers and g is a finite surjective map. Now choose a path γ from 0 to 1 in T such that p_{1}^{\prime} is smooth over $\gamma-\partial \gamma$. Let $\widetilde{\Gamma_{D}}=p_{1}^{\prime-1}(\gamma), \Gamma_{D}^{\prime}=f_{*} \widetilde{\Gamma_{D}}$ and $\Gamma_{D}=g_{*} \Gamma_{D}^{\prime}$. Take a division $\gamma=\Sigma_{i} \gamma_{i}$ of γ so that p_{1}^{\prime} is trivial over γ_{i}. Set $\left(\widetilde{\Gamma_{D}}\right)_{i}=p_{1}^{\prime-1}\left(\gamma_{i}\right),\left(\Gamma_{D}^{\prime}\right)_{i}=f_{*}\left(\widetilde{\Gamma_{D}}\right)_{i}$. Then each $\left(\widetilde{\Gamma_{D}}\right)_{i}$ shrinks to a fiber, hence $H^{2 n-1}\left(\left(\widetilde{\Gamma_{D}}\right)_{i}, \mathbb{C}\right)=0$ and so $H^{2 n-1}\left(\left(\Gamma_{D}^{\prime}\right)_{i}, \mathbb{C}\right)=0$. Therefore we have

$$
\begin{aligned}
& \int_{D} \int \omega \\
& =g_{*}\left(\int_{D^{\prime}} g^{*}\left(\int \omega\right)\right) \text { where } D^{\prime}=f_{*}\left({p_{1}^{\prime}}^{*}(0)-{p_{1}^{\prime}}^{*}(1)\right) \\
& =g_{*}\left(\Sigma_{i} \int_{\partial\left(\Gamma_{D}^{\prime}\right)_{i}} g^{*}\left(\int \omega\right)\right) \\
& =g_{*}\left(\Sigma_{i} \int_{\left(\Gamma_{D}^{\prime}\right)_{i}} g^{*} \omega\right) \text { by Stokes' theorem } \\
& =g_{*}\left(\int_{\Gamma_{D}^{\prime}} g^{*} \omega\right)=\int_{\Gamma_{D}} \omega
\end{aligned}
$$

Note that $g^{*}\left(\int \omega\right)$ is extendable to Γ_{D}^{\prime} since $H^{2 n-1}\left(\Gamma_{D}^{\prime}, \mathbb{C}\right)=0$.
Note that when $S=\emptyset$, our Abel-Jacobi map agrees with the classical AbelJacobi map. The initial step of the proof contains a useful method for calculating α. Under the original definition

$$
J(X-S)=H^{1}(X, S ; \mathbb{C}) / H^{1}(X, S ; \mathbb{Z})+F^{1} H^{1}(X, S ; \mathbb{C})
$$

$\alpha(D)$ is represented by $r\left(\eta_{D}\right)$, where $\eta_{D} \in F^{1} H^{1}(X-D, S ; \mathbb{C})$ is given by a logarithmic 1-form with $\operatorname{Res} \eta_{D}=D$ and r an integral retraction onto $H^{1}(X, S ; \mathbb{C})$. Note that a form in $H^{0}\left(\Omega_{X}^{1}(\log |D|)\right)$ defines a class in $H^{1}(X-D, S)$ if and only if it vanishes on S.

5. Abel's Theorem

We will establish Abel's Theorem by showing that the two definitions of the Abel-Jacobi map α and β (5) agree up to sign.

Theorem 5.1. α and β coincide up to sign.

Proof. First, we will give an explicit description of the map β in (5). By construction β is a composite of the injection

$$
\beta^{\prime}: C l_{S}^{0}(X) \longrightarrow H^{1}(O(-S)) / H^{1}(X, S ; \mathbb{Z})
$$

and the duality map

$$
H^{1}(O(-S)) / H^{1}(X, S ; \mathbb{Z}) \cong H^{n-1}\left(X, \omega_{X}(S)\right)^{r} / H_{2 n-1}(X-S, \mathbb{Z})
$$

Let D be a homologically trivial divisor on $X-S$. Choose a finite open covering $\left\{U_{i}\right\}_{i=0, \cdots, m}$ of X such that D is defined by $f_{i}=0$ on U_{i} and $U_{0}=X-|D|$. As S and D are disjoint, there is no loss in assuming that $f_{i}=1$ on S. Then the cohomology class $[D]$ of D in $H^{1}\left(\mathcal{O}^{*}(-S)\right)$ can be represented by $\left\{f_{i} / f_{j}\right\}$. Since D is homologically trivial, there is a cocycle $\phi_{i j} \in Z^{1}(\mathcal{O}(-S))$ such that $\exp \left(2 \pi i \phi_{i j}\right)=f_{i} / f_{j}$. Then $\beta^{\prime}(D)$ is represented by $\phi_{i j}$.

Next we calculate $\alpha(D)$. We make use of the identification

$$
J(X-S) \cong H^{1}(O(-S)) / H^{1}(X, S ; \mathbb{Z})
$$

to view $\alpha(D)$ as an element of the latter group. By degeneration of the Hodge to De Rham spectral sequence, there exists $\psi_{i} \in H^{0}\left(\Omega_{X}^{1}\left(U_{i}\right)\right)$ such that $d \phi_{i j}=\psi_{j}-\psi_{i}$. Therefore $\eta=1 / 2 \pi i d \log f_{i}+\psi_{i}$ is a globally defined logarithmic 1-form satisfying Res $\eta=D$ which also vanishes on S. As explained in the remarks at the end of the last section, $\alpha(D)$ is represented by $r(\eta)$, and in fact we are free to modify η by adding an element of $F^{1} H^{1}(X, S)$. Note that $H^{1}(X-D, S ; \mathbb{C})$ is isomorphic to the first hypercohomology group of $\Omega_{X}^{\bullet}(\log D+S)(-S)$, and this can be described using Cech methods. In particular ($\phi_{i j}, d \log f_{i}$) is a cocycle defining a class $\Phi \in$ $H^{1}(X-D, S ; \mathbb{C})$. We claim that Φ can be decomposed as a sum $\Phi_{1}+\Phi_{2}$ where the first term lies in $L=H^{1}(X-D, S ; \mathbb{Z})$ and the second in $F^{1} H^{1}(X-D, S)$. To see this, first observe that the quotient $H^{1}(X, O(-S))$ by the image of L is isomorphic to the quotient of $J(X-S)$ by the subgroup of homologically trivial divisors with support in $|D|$ (under β^{\prime}). Therefore as the image of Φ in $J(X-S)$ is D, it follows that modulo L, Φ can be represented by a form in $F^{1} H^{0}(X-D, S)$. As Φ has integral residues, it follows that after subtracting off an addition element of L, the difference lies in $F^{1} H^{1}(X, S)$. In other words, we have obtained the desired decomposition of Φ. Now set $\eta^{\prime}=\eta-\Phi_{2}$. Let $E_{D} \subset H^{1}(X-D, S)$ be the extension defined in (8). Consider the unique retraction $\eta: E_{D} \rightarrow H^{1}(X, S ; \mathbb{Z})$ with kernel $\mathbb{Z} \Phi_{1}$. Then $\eta^{\prime}=a \Phi_{1}+r\left(\eta^{\prime}\right)$, and by matching residues, we see that $a=1$. Therefore $r\left(\eta^{\prime}\right)=\eta-\Phi=-\left(\phi_{i j}, \psi_{i}\right)$ represents $\alpha(D)$. But of course $\alpha(D)$ is the image of this class in $J(X-S)$ and this is represented by $-\phi_{i j}$, or $-\beta^{\prime}(D)$.

6. Hodge Theoretic Proof of Abel's Theorem

We give an alternative proof of Abel's theorem based on Carlson's theorem.
Theorem 6.1. A homologically trivial divisor $D \in \operatorname{Div}^{0}(X-S)$ is S-principal if and only if there exists $\eta \in H^{0}\left(X, \Omega_{X}^{1}(\log |D|)\right.$ such that
(1) $\operatorname{Res} \eta=D$
(2) η has integral periods for any closed loop in $X-|D|$.
(3) $\int_{\gamma} \eta \in \mathbb{Z}$ where γ is a path in $X-S$ connecting points of S.

By the way, the statement (2) is included in (3).
Proof. Given η as above, set

$$
f(z)=\exp \left(2 \pi \sqrt{-1} \int_{z_{0}}^{z} \eta\right)
$$

Conversely, if $D=(f) \in \operatorname{Prin}_{S}(X)$, let

$$
\eta=\frac{1}{2 \pi \sqrt{-1}} \frac{d f}{f}
$$

Corollary 6.2. $\quad \alpha(D)=0$ if and only if D is S-principal.
Proof. $\alpha(D)=0$ if and only if the extension (8) splits in the category of Mixed Hodge Structures. Hence $\alpha(D)=0$ if and only if η_{D} represents an integral class in $H^{1}(X-|D|, S)$. Thus $\alpha(D)=0$ if and only if η_{D} satisfies the conditions in Theorem 6.1.

7. Non-compact Curves

When X is a curve, $J(X-S)$ is an extension of the classical Jacobian $J(X)$ by the complex multiplicative group.

Lemma 7.1. Let X be a smooth projective curve and S be a set of distinct points. Then we have an exact sequence of algebraic groups:

$$
1 \longrightarrow\left(\mathbb{C}^{*}\right)^{\sigma-1} \longrightarrow J(X-S) \longrightarrow J(X) \longrightarrow 0
$$

where σ is the number of points in S and $J(X)$ is the usual Jacobian of X.
Proof. Consider an exact sequence of cohomologies on X :
$0 \rightarrow H^{0}\left(\Omega_{X}^{1}\right) \rightarrow H^{0}\left(\Omega_{X}^{1}(\log S)\right) \rightarrow H^{0}\left(\mathcal{O}_{\mathcal{S}}\right) \rightarrow \mathcal{H}^{\infty}\left(\otimes_{\mathcal{X}}^{\infty}\right) \rightarrow \mathcal{H}^{\infty}\left(\otimes_{\mathcal{X}}^{\infty}(\log \mathcal{S})\right) \rightarrow \prime$

By Serre duality, $H^{1}\left(X, \Omega_{X}^{1}(\log S)\right)=H^{0}(X, \mathcal{O}(-\mathcal{S}))=\prime$ and $h^{1}\left(X, \Omega_{X}^{1}\right)=1$. This sequence fits into the following diagram:

The cokernels of the vertical arrows will give the desired sequence. The cokernel of the leftmost arrow is identified with the multiplicative group $\left(\mathbb{C}^{*}\right)^{\sigma-1}$ via the exponential map $\exp (2 \pi i(\quad))$.

Example 3. Let $X=\mathbb{P}^{1}$ and $S=\{0, \infty\}$. Then $H^{0}\left(X, \omega_{X}(S)\right)$ is generated by $d z / z$. By the above Lemma, we have $J(X-S)=\mathbb{C}^{*}$. By Theorem 4.2, the Abel-Jacobi map $\alpha: \operatorname{Div}^{0}(X-S) \rightarrow \mathbb{C}^{*}$ is the natural linear extension of

$$
\alpha(x-1)=\exp \int_{1}^{x} \frac{d z}{z}=x, \quad \text { for } x \in X-S
$$

if we choose $1 \in X-S$ as a base point. Thus $\operatorname{ker} \alpha=\left\{\sum n_{p} p-\left(\sum n_{p}\right) \cdot 1 \in\right.$ $\left.\operatorname{Div}^{0}(X-S) \mid \Pi p^{n_{p}}=1\right\}$ On the other hand, a rational function f on X is in $\operatorname{Prin}_{S}(X)$ iff

$$
f(z)=\frac{\prod_{i=1}^{n}\left(z-a_{i}\right)}{\prod_{i=1}^{n}\left(z-b_{i}\right)}
$$

with $\Pi a_{i}=\Pi b_{i} \neq 0, \infty$. As expected by our Abel-Jacobi theorem, $\operatorname{ker} \alpha=\operatorname{Prin}_{S}(X)$.
As an application, we give a version of Torelli theorem for noncompact curves. A similar result for complete singular curves was obtained by Carlson [2]. Let X be a smooth non-compact curve and \bar{X} its unique smooth compactification. Then the mixed Hodge structure on $H^{1}(X, \mathbb{Z})$ carries a natural graded polarization given as follows: The polarization on $G r_{1}^{W \cdot} H^{1}(X, \mathbb{Z})$ is induced by the polarized Hodge structure on $H^{1}(\bar{X}, \mathbb{Z})$, which is determined by the intersection product of one-cycles on \bar{X}. For $G r_{2}^{W \cdot} H^{1}(X, \mathbb{Z})$, choose the unique symmetric bilinear form on $\bigoplus_{i=1}^{n} \mathbb{Z}(-1)$ so that $\left\{e_{j}\right\}$ forms an orthonormal basis. Then restrict this polarization to $G r_{2}^{W \cdot} H^{1}(X, \mathbb{Z})$.

Theorem 7.2. Let X be a smooth non-compact curve and \bar{X} its unique smooth compactification. Suppose \bar{X} is non-hyperelliptic of genus >1 and the number of points in $\bar{X}-X$ at least 2 . Then X is determined by the graded polarized MHS on $H^{1}(X, \mathbb{Z})$.

Proof. Let $\bar{X}-X=\left\{p_{1}, \ldots, p_{n}\right\}$. Consider the 'Thom-Gysin' sequence :

$$
0 \longrightarrow H^{1}(\bar{X}, \mathbb{Z}) \longrightarrow H^{1}(X, \mathbb{Z}) \longrightarrow \bigoplus_{i=1}^{n} \mathbb{Z}(-1) \longrightarrow H^{2}(\bar{X}, \mathbb{Z})=\mathbb{Z}(-1)
$$

where each point p_{j} contributes to the j-th component vector $\left\{e_{j}\right\}$ of $\bigoplus_{i=1}^{n} \mathbb{Z}(-1)$. Note that $K=\operatorname{ker}\left(\bigoplus_{i=1}^{n} \mathbb{Z}(-1) \longrightarrow H^{2}(\bar{X}, \mathbb{Z})=\mathbb{Z}(-1)\right)$ is just $G r_{2}^{W \cdot} H^{1}(X, \mathbb{Z})$ and $H^{1}(\bar{X}, \mathbb{Z})=G r_{1}^{W \cdot} H^{1}(X, \mathbb{Z})$. Now we provide a polarization on $H^{1}(X, \mathbb{Z})$.

First, by the classical Torelli theorem, the polarization on $G r_{1}^{W \cdot} H^{1}(X, \mathbb{Z})$ determines \bar{X}. Second, define a map $\phi_{i j}: \mathbb{Z}(-1) \rightarrow \bigoplus_{i=1}^{n} \mathbb{Z}(-1)$ sending $1 / 2 \pi \sqrt{-1}$ to $e_{i}-e_{j}$. Then these maps are all possible maps from $\mathbb{Z}(-1)$ to $\bigoplus_{i=1}^{n} \mathbb{Z}(-1)$ which factors through K and minimizes the length of the image of the generator $1 / 2 \pi \sqrt{-1}$. By pulling back along $\phi_{i j}$, we get an element in $\operatorname{Ext}^{1}\left(\mathbb{Z}(-1), H^{1}(\bar{X}, \mathbb{Z})\right) \cong J(\bar{X})$, which depends only on the polarized Hodge structure on $G r_{2}^{W \cdot} H^{1}(X, \mathbb{Z})$. This corresponds to $\alpha\left(p_{i}-p_{j}\right) \in J(\bar{X})$ under the Abel-Jacobi map α [1, Theorem 6.2]. As \bar{X} is not hyperelliptic, $\alpha\left(p_{i}-p_{j}\right)$ uniquely determines p_{i} and p_{j}. Otherwise, there exists a meromorphic function f on \bar{X} such that $(f)=p_{i}+p-p_{j}-q$ by the classical Abel's theorem. Therefore the graded polarized MHS on $H^{1}(X, \mathbb{Z})$ determines X.

References

[1] D. Arapura and K. Oh: Abel's theorem for twisted Jacobians, Trans. of AMS. 342 (1994), 421-433.
[2] J. Carlson: Extensions of mixed Hodge structures, Journées de géométrie algébrique d'Angers 1979, Sijthoff \& Noordhoff International Publishers B.V., (1980), 107-127.
[3] P. Deligne: Théorie de Hodge II, III, Publ. de l'Inst. des Hautes Études Scientifiques, 40 (1972), 5-57; 44 (1974), 5-77.
[4] A. Fujiki: Duality of mixed Hodge structures of algebraic varieties, Publ. RIMS, Kyoto Univ. 16 (1980), 635-667.
[5] W. Fulton: Intersection theory, Springer-Verlag, New York, (1984).
[6] P.A. Griffiths and J. Harris: Principles of algebraic geometry, John Wiley and Sons, 1978.
[7] R. Hartshorne: Algebraic geometry, Springer-Verlag, New York, 1977.
[8] M. Rosenlicht: Generalized Jacobian varieties, Ann. of Math. 59 (1954), 505-530.
[9] E.H. Spanier: Algebraic topology, McGraw-Hill, New York, (1966).
[10] J.H.M. Steenbrink: Mixed Hodge structures associated with isolated singularities, Singularities (Proc. Symp. Pure Math. 40), Amer. Math. Soc. Providence, 2 (1983), 513-536.

D. Arapura
Department of Mathematics Purdue University
Indiana 47907
e-mail: dvb @ math.purdue.edu
K. Oh
Department of Mathematics and Computer Science University of Missouri-St.
Louis, St. Lous, Missouri 63121
e-mail: oh @ arch.umsl.edu

[^0]: 1991 Mathematics Subject Classification : 14H40, 14C30.

