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1. Introduction

Let X be a smooth projective variety over C of dimension n and 5 be a reduced
normal crossing divisor on X. Then the generalized Jacobian J(X — 5) is a group
Hn-ι(X,ωx{S)) /H2n-ι{X - S,Z). When X is a curve, this fits into an exact
sequence of algebraic groups:

1 —-> (C*) σ " 1 —> J(X - 5) —> J{X) —> 0

where σ is the number of points in S and J(X) is the usual Jacobian of X. Let
Div°(X — 5) be the set of divisors of degree 0 on X which does not intersect with
5. Then integration determines the Abel-Jacobi homomorphism a : Div°(X —5) —>
J(X — S). We will prove an analogue of Abel's theorem (due to Rosenlicht [8]
for curves) that the kernel of α is the following subgroup Prins(X) of 5-principal
divisors:

Prin5(X) = {(/) G Div(X - S)\f G K(X) and / = 1 on 5}.

A proof is a variation of our previous work [1], which involves reinterpretation of
the Abel-Jacobi map in the language of mixed Hodge structures and their extensions.
As a further application of this technique, we prove a Torelli theorem for a non-
compact curve, which states that if X is the complement of at least 2 points in a
nonhyperelliptic curve, then it is determined by the graded polarized mixed Hodge
structure on Hλ(X,Z).

We would like to thank the referee for thoughtful comments.

2. Hodge Structures

DEFINITION 2.1. A (pure) Hodge structure H of weight m consists of a finitely
generated abelian group Hz and a decreasing filtration Fm of He '= Hz <8> C such
that Hc = Fp® F m - P + 1 .
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EXAMPLE 1. The Hodge structure of Tate Z(—1) is defined to be the Hodge
structure of weight 2 with Hz = 2 π % ^r ϊ ^ C C = FλHc.

The most natural example of Hodge structure of weight k is the k-th integral
cohomology of a compact Kahler manifold. A differential form lies in Fp if in
local coordinate it has at least p "dz's". To extend Hodge theory to any (singular
or non-projective) complex algebraic varieties X, Deligne [3] introduced the notion
of a mixed Hodge structure. He showed that the cohomology of any variety carries
such a structure.

DEFINITION 2.2. A mixed Hodge structure (MHS) H consists of a triple
(Hz,W.,F ), where
(1) Hi is a finitely generated abelian group. (In practice Hz will be free and we

will identify it with a lattice in HQ := Hz Θ Q.)
(2) W. is an increasing nitration of HQ, called the weight βtration.
(3) Fm is a decreasing filtration of He := Hz <S> C, called the Hodge βtration.

The Hodge nitration Fm is required to induce a (pure) Hodge structure of weight
m on each of the graded pieces

Πrw — W IW
^" m — yvm/ vv m— 1

EXAMPLE 2. Let D be a divisor on a smooth projective variety X over C.
Set U = X — D. By Hironaka, there exists a birational map π : X —• X, with X
non-singular such that D = π~1(D) is a normal crossing divisor. Then Hι(U, Z)
carries a mixed Hodge structure and the Hodge filtration is given by

F° = H1(U,C), F1 =H°(X,Ω1(\ogD)), F2 =0.

We will denote H°(X, Ω^logZ))) by H°(X, Ω1(logD)). This group does not depend
on the choice of X.

Given two mixed Hodge structures A and B, we write B > A if there exists ra0

such that WmAQ = AQ for all m > ra0 and W^BQ = 0 for all m < m0.
Finally, we define the p-ih Jacobian of a mixed Hodge structure of H to be the

generalized torus

JpH = Hz\Hc/FpHc.

The set of mixed Hodge structures forms an abelian category with an internal Horn.
Thus one can form the abelian group of extension classes of two objects. Carl-
son [2] described the structure of this extension group in terms of the Jacobian.
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Theorem 2.1 (Carlson). Let A and B be mixed Hodge structures with B > A
and B torsion free. Then there is a natural isomorphism.

) ^ J°Rom(B,A).

3. Homologically trivial divisors

Let X be a smooth projective variety over C of dimension n and 5 be a reduced
normal crossing divisor on X. Let Div(X — S) be the group of divisors on X which
do not intersect 5. Moreover, we set

(1) Prins(X) = {(/) G ΏW(X - S)\f e K{X) and / - 1 on 5}

(2) Cls(X) = Div(X - S)/Pvms(X).

The kernel of the cycle map [5, §19.1]

cl : Div(X - 5) -> H2n_2(X - S,Z)

will be called the group of homologically trivial divisors and it will be denoted by
Div°(X - S). Note that Pήns(X) C Div°(X - S).

Let /C* be the sheaf of invertible rational functions on X and /C*(—5) be the
subsheaf of /C* consisting of functions which are 1 on S. Similarly, we define O* (-S)
to be the subsheaf of O* consisting of functions which are 1 on S. Consider the
following exact sequence

(3) 1 —> O*(-5) —> K*(-S) —> Q —> 0

where Q is the quotient sheaf. Then one can prove that H°(X, /C*(—S)) = Prins(X)
and H°(X, Q) = ΌW(X - S) as in [7, II, 6.11]. Let

Cl°s(X) = Div°(X - S)/Prin5(X).

Consider the following diagram :

H°(X,Q) H^X.O^-S)) ^ °g > H2(XJιZ)=H2(X,S)

Div(X-5)

The map l/2πidlog is the connecting homomorphism associated to the exponential
sequence:

(4) 0 —> j,Z —> O(-S) e x ^ Γ } O*(-S) —> 1
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where j is the natural inclusion from X — S to X. By Lefschetz duality [9, Theo-
rem 6.2.19], the right vertical arrow is an isomorphism. Moreover, the diagram is
commutative since the cycle map is compatible with Chern class map. Therefore,
Cl°s{X) is isomorphic to a subgroup of the kernel of the connecting homomorphism

Hλ(X, O*(-S)) ^ ^ O g H2(X, j,Z) = H2(X, S).

So, Cl°s(X) is isomorphic to a subgroup of H^X.Oi-S^/H^X^S Z). By dual-
ity, we can identify Hι(X, O(-S))/Hι(X, S; Z) with Hn~1(X,ωx(S)y/H2n-i(X-
S,Z) where ωχ(S) = ΛnΩ^ ® Oχ{S). Thus we obtain an injection

(5) β : Cl°s(X) -> ̂ " 1 (X,u; x (5))yiJ 2 r ι _ 1 (X - S,Z),

which will be identified with the Abel-Jacobi map later.

Lemma 3.1. In the diagram,

Div(X-S) ^ ^ H2n_2{X-S)

H2n-2(X)

the kernel of the map clx^s is equal to the kernel of the map clχ.

Proof. Clearly, we have ker clχ-s C kerc/χ. We will prove the converse
in dual form. Let D e keτclχ. Consider a long exact sequence of Mixed Hodge
structures, so called a "Thom-Gysin" sequence, associated to a triple 5 C X — \D\ c

X;

(6) 0 —> H^X^S) —+ H\X - \D\,S) —-> H2(X,X- \D\) °^ H2(X,S)

Note that H2{X,X - |L>|) ̂  ^ ( X ) . By Fujiki [4], we have

H2{X,X - \D\) = Rom(H2n-2(D),Z(-n))

as a mixed Hodge structure. Also observe that H2n~2(D) = φ Z ( - n + 1) where
the sum is over all irreducible components of D. Thus H2(X,X — \D\) has a pure
Hodge structure of weight 2. On the other hand, it follows from the long exact
sequence of cohomologies associated to the pair (X,S) that Gr%m H2(X,S) injects
into H2(X). Hence if the class of D in H2(X) vanishes, then so does the class of D
in H2(X,S). D
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4. Extensions of MHS

Let D e Div°(X — S) be a homologically trivial divisor. From the sequence

(6), we get an extension of mixed Hodge structures

(7) 0—>H\X,S) —>Hλ{X- \D\,S) —>K—>0

where K = keτ[H2(X, X - \D\) G^? H2(X, S)]. Let

φD : Z(-l) —> 0 Z ( - 1 ) = H2(X,X - \D\)

be a morphism of Hodge structures denned by </>#(l/2τr>/=T) = ]Γ Di where A are

irreducible components of D. Since D is homologically trivial, ^ factors through

K. By pulling back the extension (7) along φr>, we get a new extension of mixed

Hodge structures:

(8) 0 —• HX{X,S) —> ED —• Z ( - l ) —> 0.

Thus this corresponds to an element in Ext1(Z(—l),if1(X, 5)). By a theorem of

Carlson, Ext 1 (Z(-l),i i r l (X,5)) is isomorphic to

J°Hom(Z(-l), HX(X, S)) = Hλ(X, S; Q/iί^X, 5; Z) + F ^ p f , ,9; C),

which will be denoted by J(X — S). Note that J(X — S) is independent of the choice

of a compactification of X — S.

Lemma 4.1. The Jacobian J(X — S) is naturally isomorphic to

Proof. Consider an exact sequence of cohomologies on X.

. . . —> H°(X, Cs) —> H^XJiC) — ί f 1 ^ C) —> . . .

where j is the natural inclusion from X — S to X. Since this is an exact sequence

of mixed Hodge structures and the Hodge nitrations are strictly preserved by the

maps, this induces an exact sequence:

. . . —> Gro

F.H°(XXs) — * Gr%H1{X,jιC) —> Gr°F.H\X,C) —> . . .

Now consider the following diagram of cohomologies on X:

Gr°F.H°(Cs) —*

A I 71 I «i I A
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The vertical arrows β0 and β\ are isomorphisms because the spectral sequence
associated to the Hodge filtration on H*(S,ZS) degenerates at E\ [10, (1.5)] [3,
(8.2.1), (8.1.12), (8.1.9)]. The vertical arrows a0 and aλ are isomorphisms by the
Eι-degeneration of the usual Hodge to DeRham spectral sequence. Hence by 5-
lemma, the map 71 is an isomorphism. It follows that the sequence

(9) 0 —• H°(dO(-S)) —• ̂ (jiC) —> H^Oi-S)) —> 0

is exact. Note that i^ i/ 1 (jiC) = H°(dO(-S)). This completes the proof. D

Thus for a homologically trivial divisor D G ΌΪY°(X — 5), we can associate an
element in the Jacobian HX(X, O(-S))/H1(X, S; Z). By duality, the Jacobian can
be identified with

The map

a : Div°(X - S) -+ H^ι{X,ωx{S)) /H^.^X - S Z)

obtained in this way will be called the Abel-Jacobi map. We will show that the
Abel-Jacobi map α can be realized in the following way

Theorem 4.2. Given a cohomology class in Hn~1(X1 ωχ(S)), choose a (n,n —
I)-form ω representing this cohomology class. Then a(D) is given by

L ω

where TD is a (2n — 1)-chain in X — S whose boundary is D.

Proof. After a birational change of X, we may assume that the support of
D is a reduced normal crossing divisor. To each homologically trivial divisor D G
Div°(X - 5), one can associate a form ηD G tf°(X,Ω^(log \D\)) = F1H1{X -
\D\,C) with Resr/^ = D since the map in the sequence (8) strictly preserves the
Hodge filtration F* and F1H1(X - \D\, S C) c F1H1(X - \D\,C). To construct a
retraction r : ED —• Hλ{X, 5; Z), choose a set {£l5 , ξm} of differential (2n - 1)-
forms on X — 5 representing a basis of H2n~1(X — 5, Z) such that ξi vanishes in a
neighborhood N(D) of |J9|. This is possible since we have a surjection H2n~1(X —
S,D) -• ff^-^X-S). Let {^, ,£m} be the dual basis of Hλ{X, 5; Z). We now
set
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Let B(D) be a small tubular neighborhood of \D\ in X — S such that the closure

of B(D) is contained in N(D). We can write

& + dΦ

where φ is a C°°(2n — 2)-form on X — S. Set η = ηp. Via the isomorphism given

in Theorem 2.1 (cf. [1, Theorem 6.2]), a(D) is given by sending ω to

/ r(η)Λω
Jx

= / ^ Λ V Ciξi = ηA(ω-dφ)
Jx i Jx-B(D)

= / —η Λ dφ
Jχ-B(D)

(since r/Λα; = O o n I - B(D))

= η Λ φ (by Stokes' Theorem.)

JdB(D)
= η Λ ω (/α isa primitive of ω on B(D))

JdB(D) JdB(D)

--u
Since D is also algebraically equivalent to zero [6, p. 462] it is enough to consider

the following case: Let T be a non-singular curve and T> be an irreducible divisor

o n l x Γ , flat over T. D is given by P2*(PΪ(°) ~ Pii1)) f o r s o m e points 0, 1 e T.

P i

Let P be a desingularization of V and pi be the composition of V —> 2? and pi. Let
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V -U Xr

9

X

be the Stein factorization of V —> X. So / has connected fibers and g is a finite
surjective map. Now choose a path 7 from 0 to 1 in T such that p[ is smooth over
7 - dΊ. Let ΓD = P i " 1 (7). Γ'D - /*f^and TD = g*ΓD. Take a division 7 = Σ i 7 i

of j so that pi is trivial over 7*. Set ( Γ D ) ^ = Pi~1(7i), (ΓD)» = f*(ΓD)i- Then each
(ΓD)i shrinks to a fiber, hence H2n'1((ΓD)i,C) = 0 and so ^ ^ ( ( Γ ^ ^ C ) = 0.
Therefore we have

w h e r e D ' = /•«'(«) -PΊ*(i»

by Stokes' theorem

= 9*1 9*v)= ω
\Jr<D J JτD

Note that g*(fω) is extendable to Γ'D since H2n-1(Tt

D, C) = 0. D

Note that when 5 = 0, our Abel-Jacobi map agrees with the classical Abel-
Jacobi map. The initial step of the proof contains a useful method for calculating
a. Under the original definition

J(X -S) = Hλ (X, S; Q/H1 (X, S; Z) + FλHλ (X, 5; C)

a(D) is represented by r(ηD), where r\D e F1H1(X — D,S;C) is given by a log-
arithmic 1-form with Resr/D = D and r an integral retraction onto H1^, 5;C).
Note that a form in Jff0(Ω^(log |^ | )) defines a class in if ^ X - D, S) if and only if
it vanishes on S.

5. Abel's Theorem

We will establish Abel's Theorem by showing that the two definitions of the
Abel-Jacobi map a and β (5) agree up to sign.
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Theorem 5.1. a and β coincide up to sign.

Proof. First, we will give an explicit description of the map β in (5). By
construction β is a composite of the injection

β' : Cl°s(X) -^

and the duality map

H\O{-S))IH\X,S;Z) ~ Hn-1(X,ωx(S)y/H2n-i(X ~ S,Z).

Let D b e a homologically trivial divisor on X — S. Choose a finite open covering
{^ΐ}i=o, ..,m of X such that D is denned by fc = 0 on U{ and Uo = X - \D\.
As 5 and D are disjoint, there is no loss in assuming that /j = 1 on S. Then
the cohomology class [D] of D in F 1 (£)*(-#)) can be represented by {fi/fj}.
Since D is homologically trivial, there is a cocycle φij G Z1((9(—S)) such that
exp(2πiφij) = fi/fj. Then β'(D) is represented by ̂ .

Next we calculate a{D). We make use of the identification

J(X -S)<* H^Oi-S^/H^X.S Z)

to view a(D) as an element of the latter group. By degeneration of the Hodge to
De Rham spectral sequence, there exists ψi G ϋ ^ Ω ^ (£/;)) such that dφij = ψj — ψi.
Therefore η = l/2πidlogfi + φι is a globally denned logarithmic 1-form satisfying
Res?7 = D which also vanishes on 5. As explained in the remarks at the end of
the last section, a{D) is represented by r(η), and in fact we are free to modify η
by adding an element of F1H1(X, S). Note that Hλ(X - D, 5; C) is isomorphic to
the first hypercohomology group of Ωχ(logD + S)(—5), and this can be described
using Cech methods. In particular (φij,dlogfi) is a cocycle defining a class Φ G
Hι(X — D,S;C). We claim that Φ can be decomposed as a sum Φi + Φ2 where
the first term lies in L = Hλ(X - D,S Έ) and the second in F1H1(X - D,S).
To see this, first observe that the quotient Hλ(X, O{—S)) by the image of L is
isomorphic to the quotient of J(X — S) by the subgroup of homologically trivial
divisors with support in \D\ (under βf). Therefore as the image of Φ in J(X — S) is
D, it follows that modulo L, Φ can be represented by a form in F1H°(X — D, S). As
Φ has integral residues, it follows that after subtracting off an addition element of
L, the difference lies in F1H1(X,S). In other words, we have obtained the desired
decomposition of Φ. Now set ηf = η — Φ2. Let ED C H1 (X — D, S) be the extension
defined in (8). Consider the unique retraction η : ED —• ^(X.S Z) with kernel
ZΦi. Then η' = αΦi +r(τ/), and by matching residues, we see that a = 1. Therefore
r(ηf) = η - Φ = —(φij,ψi) represents a(D). But of course a(D) is the image of this
class in J(X — S) and this is represented by —φij, or —β'(D). D
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6. Hodge Theoretic Proof of Abel's Theorem

We give an alternative proof of Abel's theorem based on Carlson's theorem.

Theorem 6.1. A homologίcally trivial divisor D e Div°(X — S) is S-principal
if and only if there exists η e iJ°(X,Ω^(log \D\) such that
(1) Resη = D
(2) η has integral periods for any closed loop in X — \D\.
(3) f η e Z where 7 is a path in X — S connecting points ofS.

By the way, the statement (2) is included in (3).

Proof. Given η as above, set

(2V^ϊf η

D

Corollary 6.2. OL(D) = 0 if and only if D is S-principal.

Proof. OL(D) = 0 if and only if the extension (8) splits in the category of
Mixed Hodge Structures. Hence OL{D) = 0 if and only if Ύ]Ό represents an integral
class in Hλ(X — \D\, S). Thus a(D) = 0 if and only if ηD satisfies the conditions in
Theorem 6.1. •

7. Non-compact Curves

When X is a curve, J(X — S) is an extension of the classical Jacobian J(X) by
the complex multiplicative group.

Lemma 7.1. Let X be a smooth projective curve and S be a set of distinct
points. Then we have an exact sequence of algebraic groups:

1 —> (C*)σ~1 —> J(X - S) —> J(X) —> 0

where σ is the number of points in S and J(X) is the usual Jacobian ofX.

Proof. Consider an exact sequence of cohomologies on X:

0 -> H0^) -+ iJ0(Ω^(log5)) ^ H\OS) - «
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By Serre duality, H1 (X, Ω^ (log S)) = H°(X,O{-S)) = / and hl(X,V}x) = 1. This
sequence fits into the following diagram:

0 — H2(X,X-S)/H2{X,%) * ffi(X-S,Z) - HX(X,Z) — 0

0 • C 7 " 1 - i ϊ ^ Ω ^ l o g S ) ^ — • * iΓ0(X,Ω^y —- 0

The cokernels of the vertical arrows will give the desired sequence. The cokernel
of the leftmost arrow is identified with the multiplicative group (C*)*7"1 via the
exponential map exp(2τri( )). •

EXAMPLE 3. Let X = P 1 and S = {0,oo}. Then H°(X,ωx(S)) is generated
by dz/z. By the above Lemma, we have J(X — S) = C*. By Theorem 4.2, the
Abel-Jacobi map a : Div°(X — S) —• C* is the natural linear extension of

Γ dz
Ji z

a(x — 1) = exp / — = x, foπc G X — S
J\ z

if we choose 1 G X — S as a base point. Thus kerα = {J2npp — (Σnp) ' 1 ̂
Div°(X — S)\ΐlpnp = 1} On the other hand, a rational function / on X is in

iff

with Ildi = Π6i 7̂  0, oo. As expected by our Abel-Jacobi theorem, ker a =

As an application, we give a version of Torelli theorem for noncompact curves.
A similar result for complete singular curves was obtained by Carlson [2]. Let
X be a smooth non-compact curve and X its unique smooth compactification.
Then the mixed Hodge structure on H1(X^ Z) carries a natural graded polarization
given as follows: The polarization on Gr^9 H1 (X, Z) is induced by the polarized
Hodge structure on ϋf1(X,Z), which is determined by the intersection product of
one-cycles on X. For Gr^'9H1(X, Z), choose the unique symmetric bilinear form on
0Γ=i ^(—1) s o t n a t iej} forms an orthonormal basis. Then restrict this polarization
to Gr^H1{X,Z).

Theorem 7.2. Let X be a smooth non-compact curve and X its unique smooth
compactification. Suppose X is non-hypereϊίiptic of genus > 1 and the number of
points in X — X at least 2. Then X is determined by the graded polarized MHS on
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Proof. Let X — X = {pi,... ,pn} Consider the Ύhom-Gysin' sequence :

n

0 —> H\X,Z) —^ Hλ(X,Z) —

where each point pj contributes to the j-th component vector {e }̂ of 0™=1 Z(—1).
Note that K = ker(0" = 1 Z(-l) —> H2(X,Z) = Z(-l)) is just G r ^ ff^Z) and
i J ^ ^ Z ) = GrY*Hl{X,Z). Now we provide a polarization on i ^ p ^ Z ) .

First, by the classical Torelli theorem, the polarization on GrY*H1{X^Έ) de-
termines X. Second, define a map φij : Z(—1) —> 0Γ=i Z(—1) sending l/2π>/^ϊ to
ei — βj. Then these maps are all possible maps from Z(—1) to 0 ^ = 1 Z(—1) which
factors through ϋί and minimizes the length of the image of the generator l/2π\/^ϊ.
By pulling back along φiJ9 we get an element in Ext 1(Z(-l), HX{X,Έ)) ^ J(X),
which depends only on the polarized Hodge structure on Gr^%Hι(X, Z). This cor-
responds to a(pi — Pj) £ J{X) under the Abel-Jacobi map a [1, Theorem 6.2]. As
X is not hyperelliptic, a(pi — Pj) uniquely determines pi and Pj. Otherwise, there
exists a meromorphic function / on X such that (/) = Pi+p — Pj — q by the classi-
cal Abel's theorem. Therefore the graded polarized MHS on HX(X, Z) determines
X. D
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