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0. Introduction

In 1985, A. Casson defined an invariant A for oriented integral homology 3-
spheres by using representations from their fundamental group into SU(2) [1]. It
was extended to an invariant for rational homology 3-spheres by K. Walker [11]. In
1993, C. Lescop [9] gave a formula to calculate this invariant for rational homology
3-spheres when they are presented by framed links and showed that it naturally
extends to an invariant for all 3-manifolds.

Let L be a link in S3 and let £7 be its n-fold cyclic branched cover. Define
An(L) = A(X%). Then A, becomes an invariant of links. For doubles of knots, torus
knots and iterated torus knots, A. Davidow (see [ 3], [4]) calculated Casson’s integer
invariant for n-fold branched covers, when X% is an integral homology sphere. For
any links, D. Mullins [10] have succeeded in calculating Casson-Walker’s rational
valued invariant for 2-fold branched covers, when ¥2 is a rational homology sphere.

In this paper, using C. Lescop’s formula and the result of D. Mullins, we will
calculate the Casson-Walker invariant for branched cyclic covers of S3 branched
over the m-twisted double of a knot. We will show the following theorem and
corollary.

Theorem 3.1. Let K be a knot in S® and D,, K its m-twisted double. Then
M (D K) is determined by d/dtVp, k(—1) and m where d/dtVp, x(—1) is the
derivative of the Jones polynomial of D, K at t = —1.

Corollary 3.2. )\, (D,,K) is determined by a,(K) and m where a,(K) is the
coefficient of z* of the Conway polynomial of K.

1. Preliminaries

DEerINITION 1.1. The Conway polynomial V(z) of an oriented link L is de-
fined by
1. Vy(z) =1, where U is an unknot,
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2. Vip+(2)=Vp-(2) = =2V o(2), where L*, L~, L° are oriented links identical
except within a ball where they are as shown in Figure 1.
It is well known that the Conway polynomial is of the form

VL(Z) = zaL_l(aﬂ(L) +a; (L)22 +--+ ad(L)de(L)).

This defines the coefficients a;(L) of VL (2).
Let K be a knot in S and D,,K its m-twisted double. It is easy to see that
Vb, k(z) =1—m2?% Thus a;(DnK) = —m and a;(DK) = 0 for i > 2.

DEerINITION 1.2. The Jones polynomial Vi (t) of an oriented link L is defined
by
1. Vy(t) =1, where U is an unknot,
2. t7Wis(t) = tVp-(t) = (tY/2 = t~Y/2)Vp.(t), where L, L™, L° are oriented
links identical except within a ball where they are as shown in Figure 1.

KX

Fig. 1.

Let Wp, be a Seifert matrix for an oriented link L.
DEeFINITION 1.3. The signature o(L) of L is defined as

o(L) = signature(Wr, + WY¥).

DeriNiTioNs 1.4, Let £ = {(K1,11),-.-,(Kn,in)} be a framed link in S3,
where each component K is oriented and p; gives integer framing. The manifold
obtained by surgery on L is denoted by x(£). Let L denote the underlying link of
L. Let l;; be the linking number lk(K;, K;) of K; and Kj if i # j and p; if i = j.

e The linking matrix of £ is defined by

E(L) = (lij)i<ij<n-

e The sign of £, denoted by sign(L), is equal to (—1)°- (%) where b_ (L) denotes
the number of negative eigen values of E(L).
e Restriction of a framed link.
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If I is a subset of N = {1,...,n}, then L (resp. Ly) denotes the framed link
obtained by L (resp. the link obtained by L) by forgetting the components
whose subscripts do not belong to 1.

e The circular linking of £;, denoted by Lk.(L;), is defined by

Lk.(Ly) = Z (H lka(k)) ,

o€or \kel

where o; denotes the set of cyclic permutations of I.
e The 6-linking of L;.
Let 6,(L;) be defined by

0s(L1) = D Lke(Lk)lignlae - L\ k) -1\ k) a1\ K))s-
{(Kii’j:g)iKCI,(i’j)EKZ’gesl\K}

(Sn\k denotes the set of one to one maps from {1,...,#(/\ K)}to I'\ K.)
This sum can be seen as the sum of the linking numbers of £; with respect
to the edes of one of the graphs in Figure 2 for all combinatorial ways of
constructing such graphs.

: J
g(D) g#I\K) g(1) g#I\K)
2Q2) g(#I\K—1)

£(2) g(#I\K—1)

Fig. 2.

Then, the 6-linking of £;, denoted by 6(L;), is defined by

Ob(cj) if gl > 2
0(Lr) =1 6p(Ly) —2l;; if I={3,5}
05(Lr)+2  if I={i}.

e The modified linking matrix E(Ly\y; 1) is defined by

E(cN\IQI) = (lijl)i,jeN\I
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with
L ifi#j

i +zlki ifi = j.

kel

lijr =

We state C. Lescop’s formula for the Casson-Walker invariant.

Proposition 1.5 ([9]). Let L and x(L) be as above. Then the Casson-Walker
invariant \ of x(L) is given by

A(x(£))
= sign(£) Z (det(E(‘CN\J; J))ai(Ly) + det(E(LN\J;l('l)“M(ﬁJ))
{J|J#¢,JCN}
+ sign(L) det(E(L)) Sig"atw:(E(ﬁ)) ,

where the determinant of an empty matrix equals to one.

ReEMARK 1.6. We follow C. Lescop’s normalization of the Casson-Walker in-
variant. If \,, denotes the Walker invariant as described in [11],

_ |H(M;2)]

A(M) :

Aw(M).
Finally, we state the result of D. Mullins for two-fold branched covers.

Proposition 1.7 ([10]). Let L be a link in S3. Suppose the two-fold branched
cover of L, ¥2, is a rational homology sphere. Then

o) d o(L
Dvi(-1)+ m sz 22,

ML) = -5

Note that if L is a knot, then ¥2 is a rational homology sphere.

2. Surgery description of cyclic branched covers

Let D,,K be the m-twisted double of a knot K in S2. If we introduce one
surgery curve C which have the framing 1 for the crossing that must be changed
to obtain an unknot, we may arrive at a surgery description of D,, K as shown in
Figure 3, where D,, K is an unknot corresponding to D,,, K in other version of S3.

Applying an isotopy to S%, we can exchange the position of D,,K with that of
C (see Figure 4).
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Fig. 4.

Let Tp,, k denote the tangle which is obtained by cutting C (at two points) by
a spanning 2-disk for D,,K as in Figure 5.

Note that Tp_x has two arcs. By joining n-copies of Tp _x cyclically, we
obtain an n-component link L} = {Ki,...,Ky} as in Figure 6.

Then the n-fold cyclic branched cover of S* branched over D, K, £3,_ ., is
obtained by a surgery on the link L%, . Note that lk(K;, K2) = lk(K2, K3) =
-+ = lk(Kp,, K1) and the framing of the component Kj is equal to —2lk(K;, K3)+1
if n > 3 and is equal to —lk(K7, K3) +1if n=2.
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tangle 7p x
Fig. 5.
Lemma 2.1.
—-m ifn>3
lk(K1, K3) = :
—2m  ifn=2.

Proof.  Consider the crossing of D,, K that must be changed to obtain an
unknot. From the skein relation of the Conway polynomial, we get a1 (D, K) =
—ao(K°) where K° is the 2-component link obtained by splicing the crossing of
D, K. On the other hand, —ao(K?°) is equal to the linking number of the com-
ponents of K° (see [5]). But this is equal to lk(K;, K3) if n > 3 and is equal to
1/2lk(K1, K2) if n = 2. Noting that a;(D,, K) = —m, we get the conclusion. 4

Then from Lemma 2.1, we can express the framing in terms of the twisting num-
ber m. Each K; has the framing 1+2m. Thus £}, , = {(K1,1+2m),..., (K, 1+
2m)} is a framed link for X% .
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Ui ={Kives Ko}

Fig. 6.

3. Calculation of \,

In this section, we will prove Theorem 3.1 and Corollary 3.2 and give a formula
for A\,.

Theorem 3.1. Let K be a knot in S® and D,,K its m-twisted double. Then
M (D K) is determined by d/dtVp, x(—1) and m where d/dtVp, k(—1) is the
derivative of the Jones polynomial of D, K att= —1.

Corollary 3.2. \,(D,,K) is determined by a,(K) and m where a1(K) is the
coefficient of 2% of the Conway polynomial of K.

Proof of Theorem 3.1 and Corollary 3.2

The case of n = 2 follows from Proposition 1.7 and the fact that |H1 (2%, ;Z)|
= |1 — 4a; (D K)| = |1 + 4m|. So, assume that n > 3. We use Proposition 1.5 and
the surgery description of £3, 5. Let L} . = {(K1,1+2m),...,(Ky,,1+2m)} be
the surgery description for X7, , as in section 2. The linking matrix is determined
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by m as follows;

1+2m —-m —-m

-m 14+2m —-m
E(LD, k) =

-m 1+4+2m —-m

-m -m 14 2m

Then sign(Cp, ), det(B((Lp, x)ns5 ), det(E((LD, )ma) 0((LD, 1))
det(E(LD, k)) and signature(E(L}, )) are also determined by m. So we want to
know whether or not a;((L}_k)s) can be expressed in terms of the original data
of D, K.

To do this we introduce the following notations and proposition. For given
tangles A and B, the tangle A + B is defined as in Figure 7. Also, there are two
operations that associate knots and links to a given tangle A. These are denoted
N(A) and D(A) as in Figure 7.

A+B

&
>~

v A

-&
>

A | A D(4)
NA | | )

Fig. 7.

Proposition 3.3 ([2], [7]). Let A and B be tangles. Then

Vna+B) (2) = VN (2)Vp(B)(2) + Vpa)(2)VN(B)(2),

Vp(a+B)(2) = Vpay(2)Vp(s)(2)-

Let T, , be the tangle which is obtained from Tp,, k by splitting two arcs of
Tp,.x as in Figure 8.
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—
@ _/ O
Ip.x Tp.x
Fig. 8.

Since the Conway polynomial of a split link is zero, we only consider the case
§7—1

that (L}, )y is not split. Then (L} x)s = N(Ip,.x +- +Tp,.k +Tp, k) if

i

J#Nand (L} g)v=N (Tp, k + -+ Tb, k). Then it follows from Proposition
3.3 that

Vo, )OO Vinay, o) fJ#N
(1 V(anK)J(z) = { o o

nVD(TDmK)(Z)n_l if J=N.

(Note that D(T, ) is a split link and N(Tp,, k) is an unknot.)
Hence

ao(D(Tp,,x))*~*{ao(D(Tp,.x))a1(N(Tp,, k)
(2) a1((Lp,.x)7) = + (#J - 1)a1(D(Tp,.x))} if J#N
n(n — 1)ao(D(Tp,, k)" 2a1(D(Tp,. k)) if J=N.

Note that D,, K, D, K(= unknot) and D(Tp,, k) are related by single crossing
changes as indicated in Figure 9.

) [ (G [ (G

D, K D, K(=unknot) D(Ip, x)

Fig. 9.

Then from the skein relation of the Conway polynomial, we get

3) ao(D(Tp,.k)) = —a1(DmK) =m
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and
4) a1 (D(Tp, . k)) = —a2(Dp K) = 0.

(Recall that Vp_k(z) =1 —mz2.)

Thus only a; (N(Tp_ )) has not been expressed in terms of the original data of
D, K yet. To do this, we will caluculate A2(D,, K) in two ways using Proposition
1.5 and Proposition 1.7.

The two-fold branched cover Zsz k 1s presented by the surgery description
L3k ={(K1,1+2m),(Kz,1+2m)}. Note that [k(Ky, K2) = —2m. The linking
matrix is

14+2m —-2m
—2m 142m /)’

s

The eigen values of E(L%, i) are 1 and 1+ 4m. So,
det(E(L k))=1+4m,
sign(L3, ) = sign(det(E(L, g))) = sign(l + 4m),
and
signature(E(LY ) =1+ sign(l + 4m).
Moreover we.get
det(E((c%mK){la}\J; J) =1
and

1+2m ifgJ=1

det(E((LD, k) {1.20\0) = { 1 if 47 = 2.

Note that from (2)
a1((Lp,.x)iy) = a(Kj) =a(N(Tp, k) (G=1,2)
and from (2) and (4)
a1 (L, k),21) = a1({K1, K2}) = —2a2(DmK) = 0.
By considering all graphs appearing in Figure 2, we get

4m? +4m+3  iffJ =1

0((£2DMK)J) = {4m(2m +1)2 if §J = 2.
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Then according to Proposition 1.5, we get

(2m +1)(2m + 3)

2Dk = sign(1 + 4m) (201(N(Th, ) -

12
5) +(1+4m)(1+sign(1+4m))) .
8
On the other hand, from Proposition 1.7, we get
i7(PmK) g cr(D K)

6) X(DpK)=-— —Vp, k(—1) + sign(l + 4m)(1 + 4m)

12 dt
(Note that |Hy (3%, k;Z)| = |det(E(LY, k)| = sign(1 + 4m)(1 + 4m).)

Using (5), (6) and the fact that o(D,, K) = 0 if m > 0 and o(D,, K) = -2 if
m < 0, we can express a; (N (Tp,_g)) in terms of m and d/dtVp,, x(—1) as follows;

1d

1
24dtVD k(- 1)+6m(m—1).

(7 a1(N(Tp, k) =

Thus in the case of L}, g, all terms appering in Proposition 1.5 are expressed
in terms of the original data d/dtVp, x(—1) of D, K and m. This completes the
proof of Theorem 3.1.

To prove Collorary 3.2, note that N(T, ) is isotopic to Kf(—K). Since the
Conway polynomial is multiplicative under connected sum, we have

(8) a1(N(Tp,, x)) = a1(K#(—K)) = 2a1(K).
This proves Corollary 3.2.

REMARK 3.4. From equations (7) and (8), we can get a relation between the
Conway polynomial of K and the Jones polynomial of D,, K as follows;

1d

200 (K) = =51 %

oy w(~1) + ém(m— 1)

or equivalently

%VDMK(—l) = —48a;(K) + 4m? — 4m.
A formula for A\,

Note that the linking matrix E(L}, ) can be diagonalized to the following
matrix;

E,(DnK)
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1
1 —2m (cos &= — 1) O

- 1—2m(coszﬁﬂ—1)

O 1—2m(cos.:‘2$‘"—;1i—1)

Then

1 n: odd

sign(Lp, i) = sign(det(E,(DmK))) = { sign(1+4m) n: even

Let J be a subset of N = {1,...,n} such that (L} ), is not split. We only
consider such J since a,((Lp, g)s) =0 and 8((L},_g)s) =0 if (LD ) is split.
Then from (2), (3), (4) and (7) we get

1
m# 1 (= e Vou(-1) + gmm —1)) i1 <40 <m 1

a1((Lk)s) = {
0 if §J = n.

Let A;(D,K) be the j x j matrix

1+4m —m O

-m 14+2m -m

-m 142m —-m

O -m 1l4m

and B;(D,,K) be the j x j matrix

14+2m —m O

-m 14+2m —-m

-m 142m —-m
O -m 14+2m

Then

det(E((LD,, k)n\J; J)) = det(An_ys(Dm K))
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and
det(B((LD,,x)n\s)) = det(Bn_ys (DmK)).

By considering all graphs appearing in Figure 2, we can calculate 6((L},_ g ).)
as follows;

2m(3m?2 +2m+1) iffJ =2
6 if § = 3,4N =3
(L =
(£onx)) =9, . if §7 = 3, 4N > 3
0 if4<fJ<n-1
2n(-m)"(2+m) if § = n.

Then A\, (D, K) can be expressed as a combination of m and d/dtVp, x(—1)
as in the following theorem.

Theorem 3.5. Let K be a knot in S® and D,, K its m-twisted double. Then

Jj=1

A (DmK) = Sp(m)n <<p(DmK) Z_:mj'ldet(An_j(m))
1 « i
+51 2 (-1) det(Bn—j(m))wj(m))

det(E,(m))signature(E,(m))
8

+ Sp(m)
with

1 n: odd orn: even, m >0
Sn(m) =

-1 n:even, m <0,

the j x j matrix
14+m -m O
-m 142m —m

-m 14+2m —m

O -m 14+m
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the j X j matrix

14 2m -m O
—-m 1+2m -m
B](m)= )
-m 142m —-m
O -m 142m
1d 1
(4m? +4m +3 ifi=1
2m(3m? +2m+1) ifj=2
6m* ifj=3,n=3
Yim)=4q . , o
2m ifi=3n>3
0 ifea<j<n-1
L 2(—m)™(2 +m) ifj=n,

and the n x n diagonal matrix

E, (m)
1

1—2m(cosgn’—'— )

2km

n

1—-2m (cos

0

REMARK 3.6.

_1)

1—2m(cosgn—;1)3——1)

In case of m = 0 (untwisted double), the n-fold cyclic branched

cover X3,y is an integral homology sphere. J. Hoste [6] has caluculated A\, (DoK)

in terms of a1 (K) as follows;

An(DoK) = 271,(11 (K)

Note that ¢(D,, K) = 2a;(K). Therefore Theorem 3.5 is a generalization of this

formula.

On the other hand, A, (Do K) is expressed in terms of d/dtVp,x(—1) as follows;

n d

An(DoK) = —— —=Vp,kr(—1).

24 dt
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