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0. Introduction

In 1973, Drinfeld introduced the notion of elliptic modules, which is now
known as Drinfeld modules. After that the analogies between number fields and
function fields have many interesting new aspects. Drinfeld modular function
theory is one of these.

Drinfeld modular functions were studied by several mathematicians and known
to have many properties analogous to those of classical elliptic functions, such as
the generators of modular function fields, Galois groups between them. ([5],[8],[9]).

In the first part of this note, we establish some more properties of Drinfeld
modular functions in analogy with those obtained by Shimura. In [12], Shimura
proved his exact-sequence and his reciprocity law. Lang proved the exact-sequence
another way in [11] using the isogeny theory. Shimura's proof of the reciprocity
law is not easy. For example he used the parametrizations of the models of a
modular function field over Q. In [11], Lang avoided Shimura's method using
the decomposition gorups which is well-known in algebraic number theory. In
this article, we will follow Shimura's method to prove the exact-sequence, and
Lang's method to prove the reciprocity law in the function field case.

In the second part, we go on to study two variable Drinfeld modular functions
in analogy with two variable elliptic functions studied by Berndt. ([!]). In [2],
he also gerneralized Shimura's exact-sequence and his reciprocity law corresponding
to this extended modular function fields. We discuss the analogies of these in
the Drinfeld setting.

1. Definitions and basic facts

Let Λ=/yT], k=Fq(T\ k^ be the completion of k at 00= (£), and C the
completion of the algebraic closure of k^. Then C has an absolute value extending
that of k^. By an ^-lattice in C, we mean a projective Λ-submodule A of C
which is discrete in the topology of C. A meromorphic function /on C is said
to be even if/(μz)=/(z) for every μeF*. A meromorphic function /on C is
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called a lattice function for Λ if/(z-fΛ,)=/(z) for every A e Λ . For an Λ-lattice Λ,
we define the lattice function

AeΛ

The basic properties of the function eA : C -> C are ([8], 1.2)
(i) e^ is entire, i.e. it converges uniformly on bounded sets.
(ii) £Λ has simple zeros at the points of Λ and no further zeros.
(iii) £Λ is unique up to constant multiple with properties (i) and (ii).
(iv) e^ is /^-linear and surjective.
(v) For c 6 C, ecΛ(cz) = reΛ(z).

Lemma 1.1.
a) If a meromorphic function f on C is even and has a zero of

order m at M, then f has a zero of the same order at μufor every μeF*.
b) If, moreover, f is a lattice function for Λ, then (#—1) divides ordu(f) for

w e Λ .

Proof, a) Let

f(z) = a(z — u)m + higher terms

be the expansion of /around u. Then

f(z) =/(μ ~ 1z) = a(μ ~ *z — u)m -f higher terms

= μ~ma(z — μu)m + higher terms.

Hence we get the result.
b) We may assume w = 0. Write

f(z) = azm -f higher terms.

Then

f(μz) = μmazm 4- higher terms.

Thus μm=l, so that (q-l)\m.

Proposition 1.2. The field of even lattice functions for Λ is generated by e^~ 1(z)

over C.

Proof. Exactly the same proof as in the classical case replacing p(z) by eq^~ l(z)
and using Lemma 1.1 would give the result.
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By a morphism of lattices Λ and Λ' we mean a number c e C with cΛ c: Λ'. Two
lattices Λ and Λ' are said to be similar if Λ' = cΛ for some nonzero c e C. For
each lattice Λ, it is well-known that we associate a Drinfeld module φA so that

e^(az) = (f>a(e*(z)) and the association Λ ι-» φ* defines an equivalence of the categories
of rank r A -lattices in C to the category of Drinfeld modules of rank r over C,
which maps a similarity class to an isomorphism class.

From now on we only consider Drinfeld modules of rank 2 over C, so that
we do not need to distinguish them from rank 2 Λ-lattices. GL2(k00) acts on the
rank 2 lattices in the usual manner. Then Λ = yΛ for yGGL2(kao) if and only if
γ e GL2(A). The similarity classes of rank 2-lattices can be represented by Ω = C—k^
if we identify zeΩ to the lattice Λz = [z,l] generated by z and 1. Therefore the
set of the isomorphism classes of Drinfeld modules of rank 2 is parametrized by
GL2(A)\Ω.

For a Drinfeld module φ of rank 2 over C and NeA, let D(φ,N) be the
v4-submodule KeτφN. We call D(φ,N) the set of N-division points.

By a level N-structure we mean an isomorphism

An isomorphism between two Drinfeld modules with level W-structures is defined

as in the classical case. Let Γ(7V) = {yeΓ: y = ( J mod N}. Then the iso-

morphism classes of Drinfeld modules of rank 2 with level TV-structure are
parameterized by Γ(N)\Ω. Let p be the Carlitz module which is defined by
pτ=TX+Xq. Then p corresponds to the lattice πA for some πeC. Let NeA
and ΛN = Ker ρN . Let kN be the field extension of k generated by ΛN , which we
call the N-th cyclotomic function field. Then we have

Theorem 1.3 ([10]) a). kN is a Galois extension of k with Galois group
isomorphic to (A/N)*. The action ofae(A/N)* on \N is that of ρa

b) kN is ramified only on the divisors ofN and oo . The inertia group at co is

c) Let kx be the fixed field ofF* . Then k^ is generated by λq ~ * , λ e Λ N , o ver k.

Theorem 1.4 ([8]). Γ(N)\Ω, can be given a structure of an affine curve Y(N)
over C. If we add some cusps to Y(N\ we get a project ive curve X(N\ X(N) can be
defined over k^ .

DEFINITION 1.5. Let Γ be a congruence subgroup of GL2(A). A function
/ : Ω -* C is a modular form of weight k, if the following conditions are satisfied;



76 S. LEE AND S. BAE

(i) For 7 = 1 leΓ and zeΩ, we have
\c

(ii) /is meromorphic on Ω in the rigid analytic sense
(iii) /is meromorphic at the cusps of Γ, that is,/has a Laurent series expansion

in tN = e-
l(%l where Γ(N) c Γ.

In (ii) and (iii) if we replace meromorphic by holomorphic, we call such a modular
form a holomorphic modular form.

We say that a holomorphic modular form / is a cusp form if / vanishes at
all the cusps. A modular form of weight 0 is called a modular function.

Let φ be the Drinfeld module of rank 2 associated to the lattice Λz = [z, 1]. For
each aeA with degα = rf

Φa= Σ «M*€I
i = 0

Then /i(fl,z) is a holomorphic modular form of weight cf — 1. In particular, let
a=T. Then

The functions g(z) and Δ(z) are the most important modular forms, and Δ(z) is
called the discriminant function. In fact, Δ(z) is a cusp form. j(z)=g(z)q+ί / Δ(z)
is a modular function.

Let Mk be the set of all holomorphic modular forms of weight k for GL2(A\
and M=φfcMfc. Then as in the classical case, we have;

Theorem 1.6 ([9]). M=C[g,Δ].

The function j gives a bijection

GL2(A)\Ω ^ C.
j

Therefore X(l) is the project! vey'-line and C(X(l)) = C(y) Since X(N) is the projective
model of the affine curve Γ(JV)\Ω, the group of ramified covering for X(N) over
X(l) is Γ(1)/Γ(ΛO, which is isomorphic to GL2(A/ N)/Z(Fq) where

) = {γeGL2(A/N):detyεF*}.

For a = (ai9a2)E(N-1A/A)\ define
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where Λz = [z,l]. Then ea is a modular form of weight —1 for Γ(ΛO Define the
Fricke function

Then γeGL2(A) acts on ha via hγ

a(z) — ha.y(z). It is easy to see that ha.y(z) = ha(γz)
and that hγ

a=ha for yeΓ(Λ^).

Theorem 1.7 ([5]). C(X(N)) is a Galois extension of C(X(\})=C(j) generated
by the Fricke functions ha9 ae(N~1A/A)2. The Galois group is GL2(A / N) / Z(Fq)
and its action on ha is that given above.

We now consider the field

Then we have

Theorem 1.8 ([8]).
(i) The algebraic closure of k in FN is k^ .
(ii) Gal(FN/k(j)) = GL2(A/N)/Z(Fq) with its action on ha given by hγ

a = hay.
(iii) The elements in FN have their coefficients of ίN-expansions in kN .
(iv) The subgroup {(l

0§:aE(A/N)*}~(A/N)* of GL(2,A/N) acts on the
coefficients as the action of(A/N)* on kN.

If one follows the methods in [11], pp66-67, one gets

Corollary 1.9. The action of γεGL(2,A/N) on k^ is given by

for λeλ(N).

2. Shimura exact sequence

Let F=uNFN. We discuss the structure of automorphism group Autk(F) of
F over k. For each finite place v of fc, let Gυ = GL2(kv). Define

Uf= Π GL2(AV)
V

finite

and
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G(Af)= Y\'GL2(kυ)

finite

where IT means the restricted product with respect to Uf . Let £αb be the maximal
abelian extension of & where oo splits completely. Then we have a natural map

σ:G(Af)-+Ga\(Kab/k)

given by

REMARK. We use Kab, instead of the maximal abelian extension of fc, because
the algebraic closure of k in FN is k£ .

For u e Uf , define τ(u) e G2λ(F/Fv} by hτ

a

(u) = hau for every aek2/A2. Then we get

Proposition 2.1. (i) The sequence

1 -> /7 ->[/,-> GaKF/FO -> 1

is exact.
(ii) τ(u) = σ(u) on Kab.
(iii) Λ t(v) = h o y for every h e F and γ e GL2(A).

Now it is easy to see that GL2(Af) = GL2(k)' Uf. Hence we have to define
the action of GL2(k) on F. For γeGL2(k) and Λe/% define

Then on GL2(k)nUf = GL2(A), the two definitions coincide from the fact that
ha.y(z) = ha(yz) and j(yz)=j(z\ To show that τ is a well-defined homomorphism,
we need the following proposition.

Proposition 2.2. (i) For every yeGL2(k) and for every heF, the function h°y
belongs to F.

(ii) If y^y2ε GL2(k\ uί9u2eU and yίu^=u2y29 then ( j ° y r f ( U l ) = j ° y 2 > ™d
(ha°yJ(Ui) = ha.U2°y2for every aek2/A\ ^0.

Proof. Let F'=k(hoy: heF, yeGL2(k)). Choose a point z0eΩ such that
the specialization map f-+f(z0) defines an isomorphism of F' onto F'Q = {/(z0) :

Taking suitable scalar multiples of y± and y2 instead of y1 and y2, we
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may assume that y f 1 and y^"1 belong to M2(A). Define a Drinfeld module φ of
rank 2 such that

2

Let Λ20 = [z0,l] and Λ be the corresponding lattice for φ. Then Λ = cΛZo for some
ceC. Define

by ξ(x) = c eAz (x). Since c is isomorphism of Λzo to Λ, it is easy to see that
g(z0) = cq~l. Let Zι = γιZ0 for ι=l,2. Replacing z0 by z ί 9 we can define φ*, ci and
ηt corresponding to φ, c and ξ. Then we have

η.oa = φi

aoηi for all 0eA

We also have that g(zt) = c?~ * If α = (J J) 6 GL2(A:), define μα = cz0 -h d. Let μ, = μyi

for ι = l,2. Then we have

It follows that the multiplication by c~iμ^~lci defines an isogeny

hence it induces an isogeny

Then we have the following commutative diagram.

Λ20 -» C Λ C

A T 1 I MΓ 1 I Λ< I

Λ2 j -, C ^l C

Let σ be the automorphism of k(h(z^ : h e F) over k(j(z0)) such that
for all aek2 / A2, /O. Extend it to an automorphism of C, and denote it again
by σ. Then we see that
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for some εeF€*, because

- Γ
Then following the method of Proposition 6.22 of [12], our proposition
follows. The only thing to note in (i) is that any field extension is separable in
the classical case, but we need to check it in our case. So we need to show that
F' is separable over F. Then it reduces to showing that j(γz) and ha(yz) are
separable over F. Let z' = γz. Since the coefficients of the polynomial

Π

are invariant under GL2(A) and holomorphic on Ω, they lie in &(ΛN)[y(z')]. In
fact, they lie in fc[/(z')], because they are fixed by

(e.g. Theorem 1.8 (ii), (iv)). Then it reduces to showing thaty(yz) is separable over
F since λα(z')'s are distinct. Following the method in [11, pp54-55], we havey(yz)
is integral over A\J] and separable over k(j\ This completes the proof.

Theorem 2.3. The sequence

1 -> fc* -> G(Af) ^ Autk(F) -> 1

is exact.

Proof. We claim that
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k*-UN={xeG(Af):τ(x) = id on FN},

where

UN = {u = (uv)eUf:uv = \ modN-M2(Av)}.

Let xeG(Af) be in the kernel of τ. Write x = uγ with ueUf, yeGL2(k). Since
j τ(χ) _y 0 y _y? jt js easy to see that y — y . y for some y e fc *? y E GL2(A). Then we have

,nauy'

It follows that

ha = hauf for all ae(N~l/A)2.

We regard uy' as an element in GL2(A/N). Putting a equal to (£,0), (0,£) and
(̂ ,̂ ) respectively, it is easy to see that

0

for some εe/^*. Thus our claim follwos. Then it is easy to see that

Exactly the same proof as in the classical case in [12] gives that τ is surjective.

3. Shimura's reciprocity law for F

Let L be an imaginary quadratic field, that is, L is a quadratic extension of

k where oo does not split completely. Let I=IL be the group of the ideles in L
without oo -component, and let Lab the maximal abelian extension of L where the

infinite place splits completely. Let

be the Artin-homomorphism in class field theory. Then we have

Theorem 3.1 [6,(4.5)] For any ω0eLnΩ, we have
(i) y'(ω0) lies in Lab and j(ωQ)(s~^L)=j(s[ωQ,Y]) for seL.

(ii) Lab is generated by {J(ω^g(ωG)ea(ωQγ-1 :ae(k/ A)2} over L ι/j(ω0)^0
and generated by {Δ(ω0)eα(ω0)

α2 ~ A :ae(k/A)2} over L ifj(ω()) = Q.

Fix a point ω0eLnΩ. We set the following notations;
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S=the integral closure of the ring R in F

m = {/eΛ:/K)=0}

Then 9K is a maximal ideal of S lying above m. If η is an automorphism of S
which maps $R onto 9JZ then >/ induces an sutomorphism on the residue class field,
denoted by

η:S-+S.

We identify S with the set of all elements /=/(ω0), feS. Let Gm be the
decomposition group of Gal(F/Fι). If σeGO T, then we will denote by σ its image
in the Galois group of S/Wl over R/m.

Lemma 3.2. Suuppose y(ω0) ̂ 0. T/* τ(w) e Gal(F/ FJ satisfies

for all ae(k/A)2, then fτ™=f for allfeS.

Proof. It suffices to show that /t(M) =/ for feSnFN for any given TV. Then
we can view u as an element in GL2(A/NA). Since hτ

a

(u\ω0) = ha(ω0) for 0 = (̂ ,0),
(0,̂ ) and (̂ ,̂ ), it is easy to see that

°}εGL2(A/NA)
0 ε/

for some εeF*. Thus τ(w)=l, hence our Lemma follows.
We will show that Lemma 3.2 still holds in the case thaty(ω0) = 0 if we change

ha slightly. Define

Then τ(u) acts on h'a via /£(M) = h'au .

Lemma 3.3. Suppose y(ω0) = 0. T/* τ(w)eGal(F/F1) satisfies

for all ae(k/A)2

9 then f^=f for allfeS.
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Proof. Since ω0 is (7L2(/0-equivalent to an element in Fq2 — Fq, we assume
that ω0eFq2 — Fq. Then we have Λωo = Fq2[T~]. We may assume that/e/^ for
some N. Write

u = (a }eGL2(A/NA).
\c d

Putting a equal to (̂ ,0), (0,£) and (£,£) respectively to the equation

h'««\ω0)=h'a(ω0),

it is easy to see that ueGL2(Fq) and

for some εefyξ, so that τ(u) lies in the inertia group at ω0.
Define an embedding

q:L*-*GL2(k)

(a b\

^cd)'

satisfying sω0 = aω0 + b and s — cω0 + d. By the continuity, we can extend q to
an embedding of the idele group A£ of L, again denoted by

Then we have the following Shimura's reciprocity law.

Theorem 3.4. Suppose feF is defined at ω0. If Lfl6(/(ω0)) is a separable
extension of Lab then /(ω0) lies in Lab and fτ(q(s)\ω0)=f(ω0)

(s~1>L\ If Lab(f(ω0)) is
not separable over Lab, then it is a purely inseparable extension of Lab. In this case,
we can extend (s~l'L) uniquely to an embedding of Lab(f(ω0)) over L. We denote
it again by (s~^L). Then fτ(q(s\ω0)=f(ω0}

(s~l>L\

Proof. Write q(s) = u-oc9 ueUf, vL€GL2(k). First we will show that our
Theorem holds in the case that j(o}0)^0. Let φω° be the Drinfeld module
satisfying

xq2.

Then we can find c such that cAωo is the corresponding lattice to φω°. Then
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cq~^ =g(ω0). Replacing ω0 by α(ω0), we can define φα(ωo) and find d corresponding

to c satisfying ί/9"1=g(α(ω0)). Let μ = μα be as in the proof of Proposition
2.2. Following the classical method in [11, pp!50-151], we have the following

commutative diagram

(*) " I

with sΛ0)0=μΛ«(o o) Then we have

KF ''L)=M«o,l]) by (3.1)

Let σ be any automorphism of C such that σ = (^~1,L) on Lab. Since d is

well-defined up to the multiplication by an element in F* , the following commutative

diagram follows from [6,(1.12)].

(**) "•" I

^ΛΛ(ωo)/Λa(ωo)

By (*) and (**), we have

" ' ω°*— --
for ae(k/A)2. Taking the (q— l)-st power, we have

Thus our theorem holds for/=y',λα.

Next we prove that the relation of the theorem is true for all elements in

F. Define

R'=L\J ]

S' = the integral closure of the ring R' in L F
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R^ = the decomposition group of Gal(L F/L(/)).
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where L - F is the compositum of L and F. Since the infinite place does not split
in L, it is easy to see that

Thus we will view τ(u) as an element in Gal(L F/L(/)).
We claim that there exists an element peAutL(L F) which maps S' and 9JΪ'

onto 5" and 9Jί' respectively satisfying p = τ(q(s)) on k(j) and ρ = σ on S'. Extend
τ(α) to the automorphism of L - F such that /τ(α) =/ o α for fe L F, and denote it
again by τ(α). Since yΌα is integral over L\j"], τ(α) induces an automorphism of
5". The formula A<xω0)=j(ω0)

(s~l L} shows that m'τ(α) c SDΓ because τ(α) leaves the
constants fixed. Consequently m' c 9JΓ(α~ 1}. Since Wτ(a~ 1} and 9JT are prime ideals
lying above m', there exists an element πeGal(L F/L(y')) such that 9K'π =
SR'^'^, whence we obtain aJl'̂ ^^ΪR'. Clearly πoτ(α) = τ(̂ )) on k(j\ Then

^l"s'°(π°τ(α))~1 lies in Galois group of 5" over R'. By the surjectivity of [11,
pp364], there exists an automorphim λeGm> satisfying Joπoτ(α)=σ on S". Put
p = λ o n o τ(α). Then p satisfies all the requirements of our claim.

Then τ(^))p~1eGal(L F/L(/)) = Gal(F/A:(/)) satisfies the requirements of
Lemma 3.2, whence

for all fe S. Since S is a normal extension of R containing Lab and the equation
fτ(q(s» =fσ holds for any extension σ of (^~1,L), our theorem follows.

The case thaty(ω0)=0 follows similarly by taking Lemma 3.3 into account.

4. Two variable modular functions

Define

X=CxΩ.

Let

1 ri r2

0 a b

\0 c d

=kl GL(2,kJ.

We fix the following notations;

G(l) = A2-GL(2,A)
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G(N)=(NA)2-Γ(N)

We let g = (ri9r29aι) in G act on X via

ί 2 aω + b.
g (v,ω) = ( - — , - -).

cω + d cω+a

Let

t = t(ω) = e^ (πω) and ε(v) = e^A

l(πv).

Put

e(Ό9ω) = e[ωtl^Ό):=eω(Ό).

Then from [7]

where fa(t)^pa(Γl)t^ \a\ = qd**a. Thus

because fa(t)^A{f] with the constant term in F*. We know from [9] that

], and

ί), for some h(t)eA\_[t~]~].

Define the^ϊr^ Weber function z(v,ω) by

z(v,ω)=g(ω)e(v,ω)q~l.

Then z(v,ω) has an expansion in k(ε)((ή).
Let A: be a subfield of C containing k. Let MN(K) (resp. ft£(/0) be the field

of functions / on X such that
(1) /is meromorphic on X in the rigid analytic sense.
(2) / is G(N) (resp. G°(N))-in variant, that is,

a) f(v + rlω + r2,co)=f(Ό9ω) if rί9r2eNA (resp. rί9r2eA)

b)

(3) /has a meromorphic ίN = ί(f )-expansion with coefficients in K, that is,
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there exist R > 0, n > 0 and L e N such that for 0 < |ε| < R, 0 < \t\ < n|ε|L, and all

geG(l\ we have

with b* εK(εN), εN = έft).

Put

) = $N and

Then imitating the proof of Theorem 1 of [1] and using Proposition 1.2 we get;

Theorem 4.1. Kv(K)

For (r,,y)eΛ2-{(0,0)}, put

TV

Γ'ΛV ' v N

and

, , e(v,ω)

Then it is not hard to see that zr>s(ω), wrtS(v,

Theorem 4.2. Assume that K contains kN. Then we have

a) «̂ ) = ̂ (̂ ,s,̂ Ks),,s)

b)

c)

Proof. Note that ®° = G(1)/G0(N) = GL(29A)/Γ(N) = GL(29A/N)9 and that

{σd = ( }:de(A/N)*} acts on the N-th root AN of p by σJ[λN) = pJ(λN). Then
\0 rf/

exactly the same proof as in the classical case ([1], Theorem 2) works replacing

{±1} by F* and SL&Z/N) by GL(2,A/N).

Now let, for (r,s)eA2,

-7 ί \ .ϋ frω + j
Zr?s(t;,ω) = z( - — - , ω).
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Then we easily get

(1)

(2) ZftS(v + r γω + r2 , ω) = Zr>s(ω) if (r I9r2) = (0,0) mod TV.

(3) Z^^pd, α(ω)) = Z(r,s)α(ι?,ω) = ZΓfβ(t?,ω) if α = 1 mod TV.

It is straightforward to see that Zrs(g(v9ω)) lies in fcN(εN)((ίN)), for any

geG(\). Following the methods in [1] we get;

Theorem 4.3. Assume that K contains kN .

a) *„(*) = K(J, Mr.* ̂  Kλ.* (Zr,*U

b) Gal(9ίN(^) / M^ΛO) = (A / N)2 GL(2, Λ / TV)

c)

Let

be the Drinfeld module associated to the lattice [ω,l]. Then

For Me Λ we have

for some homogeneous polynomial hMεk(j)[_X~\. For r,^6y4, we have

= eω(—)' polynomial in z t 0 with coefficients in k(j\

and

2degs αf- i

Σ

= eω(—)- polynomial in z04 with coefficients in k(j).
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Then

Therefore we have

Also

.
= z(

TV

' s

7\ ̂  - V-CUV A Γ

 t'~

V =o TV

e

v = 0

Therefore

ι,o

Therefore we have

^-Ek('z z gl'°)

Note that

= ΣαvZ0>0( ̂ -4̂ - 'polynomials in z1)0 +
 go>1

/t^ -polynomial in z0 f l 1
V ^ω(]v) ^ω(jv) /



90 S. LEE AND S. BAE

5. The Automorphism of 9ΐ over k

Let 9ί = u9tN. For any L, define GL — L2-GL2(L\ as G in section 4. By
Theorem 4.3 (c), we have

Gal(9l / SRi) = li

= Π (AV)
2 GL2(AV)

v .finite

=:0.

Since the level is not fixed in 9ί, write zr s = za , wr>s = wfl, Zr s = Zα if a = (ft,^). For
any element ΰ = (m, u) ε £7, let τ(ίί) be the corresponding element in Gal(9l / 91 i). Then
τ(ΰ) acts on 5RN via

We need some explanation about the notation au-\-^. There exists a canonical
isomorphism

φ:(k/A)2-+ U (kv/Av)
2.

v .finite

Then φ-ί(au + ̂ )e(N-ίA/ A)2. Denote it by au + 5 . Define /t(*} :=/o g for g e Gk

and /e 91. Following the method in [2], τ(g) e Autk(9ί) for all ge Gk, and two
difinitions of τ are the same on the intersection of their defined domains,

Define

G(Af)=:l\'kϊ GL2(k0)9

where ["]' means the restricted product with respect to U. Then we have

) = Gk'U=U-Gk.

Under this decomposition, we can define the action of G(Af) on 91 via τ. To
show that
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is a well-defined homomorphism, we need the following proposition.

Proposition 5.1. If gΰ = ϋ'g' for g,g'eGk and ύ,ΰ'eU9 then τ(g)τ(u) = τ(ΰ')τ(g').

Proof. Write # = (/,α), g' = (/',α'), ΰ = (m,ύ) and ΰ' = (m',u'\ Since gΰ = ϋ'g\ we
have aw = w'a' and m + lu = Γ + m'xf. It suffices to show that two actions are the
same on the generators of WN. By Proposition 2.2, two actions are the same on
y, zb. If the level N is 1, Zb is equal to z. Thus it suffices to show that these
actions are the same on Zb and wb. Choose a point z0 = (t;0,ω0)eCxΩ such that

the specialization f\—>f(z0) defines an isomorphism of 91 to 9t0

 = {/(zo)l/e^}
Under this specialization map, it suffices to show our assertions for Zb(z0),
wb(zo)' We will view τ(ΰ) as an automorphism of 9ί0. Extend it to an automorphism
of C, and denote it by σ. Throughout this proof, we will denote V0,ω0 simply
by υ,ω. Let α = 6α + ̂ . By definition, we have

On the other hand,

Thus we are going to show that two last terms of above equations are equal. First
we assume that α"1, α/~1eM2(^). Let φω be the Drinfeld module satisfying

In the proof of Proposition 2.2, we can find c(ω) such that c(ω)Λω is the corresponding
lattice to φω satisfying g(ω) = c(ω)q~1. Let c = c(ω\ d=c(a.(ω)) and d' = c(α'(ω)).
Then the multiplication by c~lμ~ld defines an isogeny

and it induces the isogeny

Similarly we can have tthe isogeny
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Following the proof of Proposition 2.2, we can find ε e F£ such that

(1) λ* = ελ'.

(2) *Λα(ω)

0- = ̂ °^Λω.

(3) d'e^ l( o- = λΌceA .v / •**« (α>) / /»oj

We claim that there exists ε'eF* such that

Taking (9— l)-th power of left hand side of (4), we have

Γ , , {» MV"Ίt(iί)

He-U+fl(ιjj j
By definition of τ(ΰ), this is equal to

v
— h Uti/H —
N \ Nj\l

Γ v ( mV
= ce\ -+ flw+-L ΛΛ^v V MI

This proves our claim. Now we have

t; / ω

V

N* V I
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This proves our assertion for Zb in the case of α *, α' leM2(A). In general case,
write oc = rβ and α' = r/Γ, with re A and /Γ1, β'~l eM2(A). Then the multiplication
by c~lrμ~ld defines an isogeny

and it induces the isogeny

λ : φω -> φ"(ω\

Then equation (1) is unchanged whereas equations (2) and (4) are changed as follows.

(2') -

Similarly we can show that two actions are same on Zfc. Now it remains to
show that two actions are same on wb . We will only prove it under the assumption
that α~1,α'~16Λf2(^ί). The general case can be shown similarly. By definition,
we have

On the other hand,

by (2).
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Taking the (q— l)-th power and using the definition of τ(ΰ\ we can prove fallowings
as we did in (4).

and

for some ε1,ε2e/Γ
€*. By definition of τ(w), the following equation holds, which

implies ε 1=ε 2 .

Together with these facts and by (1), we have

w (v ωγ
εε2A'(ceΛ>α«(T)))

)))

This proves our assertion for wα, hence our proposition follows.

Proposition 5.2. τ : G(Af) -> Autfc(5R) is infective.

Proof. Let x = («,α)eG(^/) be a kernel of τ. By Theorem 2.3, α equals to

for some yek*. Write n = /H-mα, /efc2, meΠ^y)2. Then x = ΰ-g with
P

M = (m, l)e ί/,g = (/,α)e Gk. Since zt(x) = z, it's easy to see that yeFf and /e^42. Since

ωj<*> = ωfl, it follows that ̂  = 1. Thus x = («, 1) 6 Ό. Finally, n = 0 because Zfl

t(x) = Zα.

6. Shimura's reciprocity law for 9ί

Let L, Lflfc, 7 and ( ,L) be as in section 3. Fix a point z0 = (ι>0,ω0)e(L x L)c\X.
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We set the following notations;

R=k[jtz}

5= the integral closure of the ring R in 5R

m = {/6Λ:/(z0)=0}

CM = the decomposition group of

Under this fixed point z0 , we can define S9 σ and /for σ e Gm ,feS as we did in
section 3.

Lemma 6.1. Suppose y(ω0) /O. If τ(ΰ) e Gal(9ΐ / 9tj) satisfies

for all ae(k/A)2, then Jm=J for allfeS.

Proof. It suffices to show that /t(w)=/ for all feSn9lN, where degTV is
suffiiciently large. Then w = (ra,w) can be viewed as an element in (A/NA)2

GL2(A/NA). Since zf )(z0) = zfl(z0) for α = (̂ ,0), (0,£) and (î ), it is easy to see
that

for some εeF*. We claim that

'ω<Λ = .
1

Putting a equal to (£,0), (0,£) and (J,0), respectively, to the equation Zτ

a

(ΰ\zQ) = Zfl(z0),

we have

.., ίωθ\ , x ι A Γ A
(1) ι;0 + εω0-l-w l = ει(^o~ί~ωo) m°dNΛωt.

\ 1 /

/,
(2)

(3)
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for some ε l s ε2 and ε3 e Ff . Write v0 = xω0 +y with x,y e k. Then (l)-(2) gives that
(4) (ε1-ε2)x + (ε1-ε) = 0 modNA

(5) (zi-Z2)y + (z-£2) = ® modNA.

If xφFq (respectively yφFq), then (4) (respectively (5)) gives that ε j=ε 2 = ε because
degN is large. Then our claim follows from (1). If both x and y lie in Fq then
the equation (l)-(3) gives that ε3 = ε, whence our claim follows from (3). Thus we
can write

ε

for some Nl,N2eNA. It follows that

=/
When y"(ω0) = 0, we change za and Zα slightly by

J2-1

v /α/
—+ 01
N V I

Then we have

Lemma 6.2. Suppose j(ω0) = 0. If τ(u) e Gal(5R f^Λ^ satisfies

for all ae(k/A)2, then f*®=f for all/e5.
Define an embedding

q:L*->k2 GL2(k)

with the properties;



DRINFELD MODULAR FUNCTIONS 97

(8)

By the continuity, we can extend q to an embedding of the idele groups A£ of L, and
denote it again by

q:A£-+G(Af).

Then Shimura's reciprocity law in our case is given by

Theorem 6.3. Suuppose /e 9Ϊ is defined at z0. If Lab(f(z0)) is a separable
extension of Lab thenf(z0) lies in Lab and fτ(ξ(s)\z0)=f(z0)

(s~1^. If Lab(f(z0J) is not
separable over Lab, then it is a purely inseparable extension of Lab. In this case,
we can extend (s~l,L) uniquely to an embedding of Lαfc(/(z0)) over L. We denote

it again by (s~ 1,L). Then /t(*(s))(z0) =/(z0)
(s~ * L>.

Proof. Write q(s) = ΰg with M=(m,M)eί7, g = (l,a)eGk. Then we have

(9) q(s) = rn

(10)

We will show that our Theorem holds fory(ω0)^0. By Theorem 3.4, our theorem
holds for/=y,zα. For/=ZΛ, we have

,")

where σ is any automorphism of C such that σ = (s~i,L) on Lflί>. Since z = Zα if
the level N is equal to 1, we have proved our theorem for the special functions
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/=/,z,zβ,Zβ. Define

Note that L is contained in 9ί, so we need not define S", 9Dt' as in the proof of
Theorem 3.4 because they are the same with S, 501, in this case. It is not hard
to see that y o g and z°g are integral over k\J9z]. Then the proof of the following
claim is mostly the same as that of the claim in the proof of Theorem 3.4.

Claim: There exists an element peAutk(9ί) which maps S and ΪR onto S
and $R respectively satisfying p = τ(q(s)) on k(j,z) and p = σ on S.

The rest are mostly the same as the proof of Theorem 3.4 by taking Lemma
6.1 into account. In the case that y(o>0) = 0, we can argue similarly by taking
Lemma 6.2 into account and by replacing z, za and Za by z' = Δ(ω)e(v,ω)q2~l

9 z'a
and Z'a respectively.
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