
A'Campo, N. and Oka, M.
Osaka J. Math.
33 (1996), 1003-1033

GEOMETRY OF PLANE CURVES VIA
TSCHIRNHAUSEN RESOLUTION TOWER

NORBERT A'CAMPO and MUTSUO OKA

(Received September 19, 1995)

1. Introduction.

The weight vectors of a resolution tower of toric modifications for an irreducible

germ of a plane curve C carry enough information to read off invariants such as

the Puiseux pairs, multiplicities, etc [29]. However, each step of the inductive

construction of a tower of toric modifications depends on a choice of the modification

local coordinates. This ambiguity makes it difficult to study the equi-singularity

problem of a family of germs of plane curves or to study a global curve. It is

the purpose of this paper to make a canonical choice of the modification local

coordinates (ui9Vi) (Theorem 4.5), and to obtain a canonical sequence of germs of

curves {C f;/= 1,••-,&} (Ck = C) such that the local knot of the curve Ci is a

compound torus knot around the local knot of the curve Ci-ί. We will show

that the local equations ht{x9y) of the the germs {Cί;ι = 1, ,A:} are the Tschirnhausen

approximate polynomials of the local equation f(x9y) for C, provided that f(x9y)

is a monic polynomial in y.

The importance of the Tschirnhausen approximate polynomials was first

observed by Abhyankar-Moh [3,4], and our work is very much influenced by

them. However, our result gives not only a geometric interpretation of [3,4] but

also a new method to study the equi-singularity problem, see [35], for a given

family of germs of irreducible plane curves f(x9y9t) = O whose Tschirnhausen

approximate polynomials hi(x9y)9 ι = l , ••,&— 1 do not depend on /.

In section 6, we show that a family of germs of plane curves {ft(x,y) = 0} with

Tschirnhausen approximate polynomials ht{x9y)9 i=l9- -9k— 1 not depending upon

t and satisfying an additional intersection condition is equi-singular (Theorem 6.2).

In section 8, we will give a new proof and a generalization of the Abhyankar-

Moh-Suzuki theorem from the viewpoint of the equi-singularity at infinity (Theorems

8.2, 8.3, 8.7).

This work was done when the first author was visiting the Department of Mathematics of the
Tokyo Institute of Technology in the fall of 1993. We thak the Dept. of Math, of T.I.T. for their
support and hospitality.
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2. Tschirnhausen approximate polynomials of a monic polynomial.

Let f(y)=yn + Σ"= \C$n~l be a monic polynomial in y of degree n with coefficients

in an integral domain R which contains the field of rational numbers Q, and let

a be a positive integer such that a divides n. The n/a-th Tschirnhausen approximate

polynomial (or the nja-th Tschirnhausen approximate root) of f{y) is the monic

polynomial h{y)eR[y] of degree a such that degree (f{y)—h(y)n/a)<n — a. The

coefficients of h(γ)=ya + Σ1=ίoίiy
a~i are inductively determined by: αo = l and

ci(x) = Σjι + ...+jι = i0Cjι(x)- (xjι(x) for i=l,-,a. The coefficient α, is a weighted

homogeneous polynomial of degree j in the variables cx,--,ca with weight(cy) =/,

l<j<a. In our application i? will be the ring C{x} or C[x], For further detail,

we refer to [3,4,32]. From the Euclidean division algorithm, it follows that

Proposition 2.1. Let h(y)eR[y] be monic of degree a in y, and let P(y)eR\_y]

such that sa<degyP(y)<(s+ \)a. Then there exits a unique expansion, called the

Euclidian expansion, P(y) = Σs

i = 0(xi{y)h(y)s~ι, where 0ίi(y)eR[y~], i=0, -,s, satisfy

degya f(y)<a. In particular, we can expand f(y) with respect to its n/a-th

Tschirnhausen approximate polynomial, as f(y) = h(y)nla + Σn

i

l"2ci(y)h(y)nla~i, deg^c^)

<a. If f(y)=f{x,y)£C[_x][y], the coefficients ci(y) = ci(x,y) are also polynomials in

x and y.

The second assertion is immediate from the Euclidian expansion oϊf—hn/a. We

call the above expansion the n/a-th Tschirnhausen expansion of f(x,y). The

expansion of P(x,y) with respect to h(x,y) will also be called the Tschirnhausen

expansion if h(x,y) is a Tschirnhausen approximate polynomial. Tschirnhausen

approximate polynomials behave hereditarily in the following sense.

Proposition 2.2. Assume that a,b>2 are integers such that ab \ n. Let h andh be

respectively the n/a-th and n/ab-th Tschirnhausen approximate polynomials of f and

let h' = hb-\-Σb

i=ιcih
b~\ deg yc f<α, be the Tschirnhausen expansion of h with respect

to h. The first coefficient ct is zero and h is the ab/a-th Tschirnhausen approximate

polynomial of h.

Proof. With m:=n/ab, we have άtgy(f-hmb)<n-a and deg//-λ ' m )

<n — ab. Using the expansion of hr with respect to h: W = hb + Σb

i= t eft ~', degycr < a,

we get

where Rt :=ΣΓ=2(T)cι

1Λ
mί)"ί and R2:=Σ?=ι(

nfi(hb + cίh
b-ί)m-ί (Σb

i = 2cih
b-ij. If cx

we would first conclude dQgyR1<n—a + degycί, degyR2<n — a, and then
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= degy(cih
mb~ί)>(mb-l)a = n-a.

So c{=0 and it follows that dcgy{h'-hb) = degy(Σb

i=2cih
b~i)<ab-a. By the

uniqueness of the Tschirnhausen approximate polynomial, the above inequality

implies that h is the ab/a-th Tschirnhausen approximate polynomial of h. Q.E.D.

The generalized binomial formula: ( l + z ) r = Σj°=0Qz j for r > 0 , with coefficients

(r):=r(r— 1)•••(>*—j+l)/fi, converges for | z | < l . When r is a rational number/?/#,

the identity: ( ( l + z ) w ψ = ( l + z ) p gives a recurrent computation of the coefficients

of (1-f z)p/q. In particular, with T r u n c ^ l + z f ^ ^ Σ ^ o ^ V , it follows that

(2.2.1) valz((l +z) ί '-(Trunc ( ' )(l

For a real number xeR, denote by [JC] the largest integer n such that n<x.

Lemma 2.3. Assume that a, b, c, d are positive integers such that gcd(a,b)=l

and that d divides ac. Let F\y,z) = (ya + zb)c and H(y,z)=yac/dΎrunc([c/d]\l + zb/ya)c/d.

Then H is the d-th Tschirnhausen approximate polynomial ofF(y,z) as a polynomial ofy.

Proof. The polynomials F(y,z) and H(y9z) are weighted homogeneous of

degree abc and abc/d respectively with respect to the weight vector P = \b,a). In

particular, the monomials in F\y,z) and H(y,z)d have the form yaizbj with

i +j=c. Note also that degyF\y,z) = ac, dcgyH—ac/dand dcgy(F— Ha)<ac — a\c/d~\

by (2.2.1). As ac — acjd>ac — a\cjd~\—a^ this implies the inequality: dtgy{F\y,z)

-H(y,z)d)<ac-ac/d. Q.E.D.

3. Toric modifications and strict transforms

3.1. Basic properties of toric modifications (see [26,29,30,33]). Let (x,y) be

a fixed system of local (or global) coordinates of C2 at the origin. Let N be the

lattice of integral weights for the monomials in (x,y). The weights Eί(xayb) = a

and E2(xayb) = b span the lattice N, and a weight (xiEί+βiE2 will be denoted by

the integral column vector \oihβ^. Let 7V+ be the space of positive weight vectors

of TV, and similarly let N£ be the positive cone in NR'.— N®ZR. A simplicial

cone subdivision Σ* of N£ is a sequence (7\, ,Γm) of primitive weights in N + ,

called the vertices, such that TO = EU Tm+ί=E2 and det(r i 5 Γ ί + 1 ) = det { £ l > £ 2 }(Γ ί, Γ ί + 1 )

> 1 holds. Them + 1 cones C o n e ^ , Ti + 1):={tTi + sTi + 1 ; M > 0 } , ί = 0, ,m, cover

without overlap the cone N£ . The subdivision Σ* is called regular if det(Th Ti+1) = 1

for each / = 0, ,m. Let σ{ be the integral matrix mapping EY to T{ and E2 to

Using a birational mapping φM'C2 -> C 2 , φM(χ>y) = (χayb>χCyd) f° r a n integral
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unimodular matrix M=\ I, the toric modification p:X-^C2 associated with
\c d)

a regular simplicial cone subdivision Σ* is defined as follows. The non-singular
complex manifold X is covered with m +1 so-called toric coordinate charts
{C2., (xσi,yσi)}, / = 0, vw, where points (xσi,yσι)eC2. and (xσpyσ)eC2. are identified
if and only if the birational map φσriσt is defined at the point (xσi,yσ)eC2.
and φσj-ισi(xσi,yσi) = {xσj,yσ). The morphism πσ.:C

2.-^C2 defined by πσi(xσi9yσi)
= φσi(xσi9yσ) are compatible with the identifications and define a proper birational
analytic map/7: X-+ C2. A toric modification is a composition of finite blowing-ups
(see [18]). The exceptional divisor p~ι(O) is the union of m rational curves
{E(Ti)\i=l9'"9m} and each one is covered by its left chart C2._ι and its right
chart C2. and defined by the equations {xσ. = 0}, {yσ. ^=0}. Thus only E(T^ and
E(Ti+ί) intersect transversely at the origin of the chart C2.. The non-compact
divisors E(Eι):={xσo = 0} and E(E2) := {yσm = 0} map isomorphically onto the axis
JC = O and y = 0.

3.2. Admissible toric modifications. Let f(x9y) = Σaaβx
ayβ be the Taylor

expansion of a germ of a holomorphic function / with f(O) = 0. The Newton
polygon Γ+(f;(x9y)) off(x,y) is the convex hull in Ng of {(α + s,β + t)eR2;aaβΦ0,
s>09 t>0} and the Newton boundary Γ(f;(x9y)) is the union of the compact faces
of Γ+{f;(x9y)) (see [26,27,29] for instance). The Newton boundary Γ(f;(x,y))
contains only a finite number of faces of dimension one. Each positive weight
vector P = t(p,q)eN+ defines a non-negative function on Γ+(f;(x9y))9 for which we
denote by d(P;f) its minimal value and by Δ(P;/) the face or the vertex where
this minimal value is taken. We consider on N+ the equivalence relation: P~Q
if and only if Δ(P;/) = A(Q;/). The dual Newton diagram Γ*(f;(x9y)) of f{x,y) is
the conical subdivision of N + given by the equivalence classes. Let P( = \abb^) e N+,
i=l,~-9m be the ordered list of primitive weight vectors such that Δ(P,;/) is the
list of the one-dimensional faces of Γ*(/;(x,j>)) and άet(Phi+ί) = aibi+ί— ai+ίbi>0,
/ = l , ,m—1. The face function fpi(x9y)'=Σ{aβ)€Aip..f)aΛβXayβ admits a product
decomposition fP.(x,y) = cix

riySiΠk

jL1(yaί — y. jXbi)Vi<> with distinct non-zero complex
numbers y u , " ,yα.. Recall that/(x, j) is non-degenerate if and only if v f j = l for
any i, / The partial sum jV(f)(x9y) = Σ"aa,βx

ayβ over all (α,J?)GΓ(/;(x,^)) is the
Newton principal part Jf(f)(x,y).

A regular simplicial cone subdivision Σ* with vertices {T0 = EuTu -,ThTι+ί

= E2} is called admissible for f(x,y) if Σ* is a refinement of the dual Newton
diagram Γ*(f;(x9y))9 meaning Λ = f(flί,6l)e{Γo,Γ1,.. ,Γ/,7V+1}, ι = l , ,m. Note
that Σ* is admissible for/(jcj>) if and only if Δ(77

J;/)nΔ(ΓJ+1 ;/)#0,y = O, ,Λ The
corresponding toric modification p\X-+C2 is called admissible for /(*,>>).

Basic properties of admissible toric modifications are:
(3.2.A) The divisor E(TJ) meets the proper transform C if and only if Tj is a
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primitive weight Pt.

(3.2.B) The divisor E{P^ intersects C at kx points. In the right toric chart

{Cσj9(xσfiyσ)}9 σj = Cone(TpTj+ί), P^Tj, the intersection CnE{P^ is {(0,yu),

-,(0,y ί Λ)}.
(3.2.C) The divisor of the pull back p*f of the function/is given by

m ki ί+1

(/>•/)= Σ Σ <?./+ Σ 4Tj;f)E(Tj)
i=ι e=\ j=o

where Cί<f is the union of components of C which pass through (0,yu).

(3.2.D) If f(x,y) is irreducible as a germ of a function at the origin, then m = \

and k1 = l.

(3.2.E) If/is non-degenerate, the curve Citj is smooth and Cuj intersects transversely

with E(Pi). Thus, iff(x,y) is non-degenerate, the modification p is a good resolution

of f(x9y) (see [18]).

3.3. Intersection multiplicity with a reduced irreducible germ. Let C={f(x9y)

= 0} be a reduced irreducible germ of a curve. The defining function admits for

a weight Pγ — \aubx) an initial expansion f{x,y) = {yai-\-ξιXbι)A2 +(higher terms)

with ξγφQ and gcd(Λ1,61)=l, where "higher terms" collects the monomials of

Px-degree strictly greater than aίb1A2. Let C be another (not necessarily

irreducible) germ of a curve defined by C' = {(x,y)e U;g(x,y) = 0}. Let p:X-> C2

be a toric modification admissible both for C and C , and let Ξt be the interesection

point of C and E(Pγ). Then

Proposition 3.3.1 (Lemma 7.12, [29]). The intersection multiplicity of C and

C at the origin is I(QC';O) = d(Pi;g)A2+I(QC' ΞJ . The term / ( C C ' Ξj)

vanishes if and only if gPί(x,y) is not divisible by (yaι + ζ\Xbi). If g(x,y) has

for a primitive weight vector P\=\a\,b\) the initial expansion g(x,y) = (yaι + ξ\xb'ι)A'2

-{-(higher terms), then d(P1 \g)A2 = m\n{aιb'ua\bι)x A2A2 and moreover I(C,Cf ;ΞX)

= 0 if and only if either PxφP\ or P1=F1 and ξγφξ\.

3.4. A resolution tower of toric modification for an irreducible germ. Let C

be an irreducible germ of a plane curve and let

Pk Pk-l Pi

9~ = {Xk -> Xk _ ί -+ - - - -> Xγ -> Xo}

be a sequence of non-trivial toric modifications where each pί+1 :Xi+ί -• X( is the

toric modification associated with a regular simplicial cone subdivision Σf of the

cone N£ in the space of weights for a local system of coordinates (w;,^) of Xi9

centered at the center S^A^ of the modification pi+1. Let EiU-,EiSi be the

exceptional divisors of p(:Xt -^ Xi_i. By abuse of the notation, we denote by the
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same Eitj9 the strict transform of Ei} to Xe for any ί>i. Thus the exceptional
divisors of the modification Φk:=p{ ° ••• °pk:Xk -» Xo are {EtJ}9 l<i<k, 1<7<^.
Denote by Ξ, e £ί>/?. n C ( 0 the preimage of the singularity in the strict transform
C(ι) of C to Xt. We call 3~ a resolution tower of admissible toric modifications if
the following conditions are satisfied ([29]).
(i) Xo is an open neighborhood of the origin O of C2, (uOivo) = (x,y) and Ξo = O.
(ii) The modification pi+ι: Xi+i -^X( is non-trivial and admissible for

(iii) The coordinate u{ is simply the restriction Ui = xσ.\ W{ of the coordinate xσ. of
the right toric chart of EUβi to a neighborhood Wt of Ξ f.
(iv) /?ί(Bί) = B ί_ 1.
(v) The composition Φfc: Zfc -^ Z o is a good resolution of C

The weight vectors ^ = ̂ ,6,-) corresponding to the exceptional divisors 2sij/?i for
/=1, •••,/: are /Ae weight vectors of the tower ([29]). If the tower &" is admissible
for C, there exist for i = Q9 ,k — 1 non-zero complex numbers ^ e C so that
C(i) = {(iιί,ι;l)e»r

ί;(ιίί + 1 4 ί ί + 1iι? l + 1) i 4 | + 2 + (higher terms) = 0}, where C{0) = C and
Aj = aj'-ak9 j<k and ̂ 4fc+1 = l.

Let D = {(x9y)e C2 ;g(x,y) = 0} be an irreducible, not necessarily reduced, germ
of a plane curve at the origin of C2 = X0 and let D(i) be the strict transform of
D to X{. If D has the same toric tangential direction of depth Θ with C with
respect to T9 i.e. if Ξ . G ^ 0 for i<θ and Ξ θ + 1 φD(θ+ί\ there exist a non-zero
complex number ξf

θ + i9 a positive integer ^4θ+2'
 a n d a primitive weight vector

/ V i ^ K + i Λ + i ) such that

(341) £(o = {(w' ' ^ G ^ ; ^

where A'j = aj'-aθa'θ+ίA'θ + 2,j<θ+\. If jP^+1=
ί(l,O), the transform D{θ) is defined

by {ϋβil2 = 0} since D is irreducible. The case Pf

θ+1=
t(0,\) does not occur as

{uθ+ί=0} is nothing but E{PΘ). Put

+i, ifPi+ 1= f(l,0)

By induction, using Proposition (3.3.1), we get

Lemma 3.4.2 ([29]). Assume that D has the same toric tangential direction of
depth θ with C with respect to 3~. Under the assumption (3.4.1) on D, the local
intersection multiplicity is

i=ί
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Let Dί9-- 9Dr be the irreducible components of a reducible plane curve germ

D. We say that the reducible germ D has the same toric tangetial direction of

depth θ with C with respect to 3~ if Ξ,eDf for any;' = 1, ,r and i< θ and Ξθ+ίφDf0

+ υ

for some j 0 .

4. A Tschirnhausen resolution tower for an irreducible germ

Lemma 4.1. Let p\X-*C2 be a toric modification with respect to a regular

simplicial cone subdivision Σ* of N + . Let σ = Cone(P9P') be a cone in Σ * and

g(x,y)eC{x,y}, such that A(P;g) is a vertex. At each point ΞeE(P)-\JQΦPE(Q)

the function p*gjxd}p'9) is a unit.

Proof. Let {(vuv2)} = A(P;g) and c # 0 be the coefficient of xVιyV2 in

g(x,y). Then the pullback p *g factors xd

σ

iP;9)yd

σ

iP;9){cya

σ+xσg'(xσ,yσ)} for some analytic

function g'(xσ,yσ) and α > 0 . Moreover, α = 0 if and only if A(P';g) 3 A(P;g). In

conclusion, p*gIxd

σ

(P'g) is a unit at Ξ since yσ is. Q.E.D.

In particular, if P = \a,b) and Γ(g;(x,y)) cz {(v1,v2);v2<ίz} or if g{x,y)eC{x][y']

and degyg<«, the face A(P,g) is a vertex, and the lemma applies.

A. Tschirnhausen resolution tower

4.2. Let f(x,y)eC{x}[y~\ be monic of degree n and irreducible with the initial

expansion

(4.2.1) f(x9y) = (yaι+ ξ1x
bι)A2 + (higher terms), aγ>\

for the primitive weight vector / > i = ί ( α i ^ i ) with n = aίA2. The n/a-th

Tschirnhausen approximate polynomial Ha(x,y) is a monic polynomial of degree

a in y and defines at the origin the germ of the curve Da:={Ha(x,y) = 0}.

4.3. First observation. Let px: Xx -» C 2 be an admissible toric modification

with respect to a regular simplicial cone subdivision ΣJ for f(x,y). The strict

transform C ( 1 ) of C to Xt intersects only with E{PX\ say at the point Ξ t . In

the chart C £ , where P\=\a'ub\) and σ 1 =(P 1 ,P ' 1 ) is the right cone of i ^ ) , we

have Ξ 1 =(0, — ξj. Put hfayy^H^, C1:=Daι. For a multiple α of αx with

a I«, the A2-th (resp. «/α-th) Tschirnhausen approximate polynomial of (yaι + ξίx
bi)Aι

is the face function h1Pι (resp. HaPί), hence Λλ and /^α can be written as:

(4 3 1)
{H() (a> + ξιx

by'aί+ (higher terms), i fαjα

In particular, A^ayO is non-degenerate. As ptiy^-hξ^^x^Yσ^iyσ. + ζil we
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can write ^ fΛi fep^^^^Kίy^ + ̂ O + x^^x^^J), R(xσi,yσι)eC{xσι,yσί}.
The functions

" i =xσi, vx =Pfh1 /x°\b> =ya

σ\
bι((yσι + ξί) + χσιR(χσί,yσι))

give a system of coordinates (w^t^) in a neighbourhood Ŵ  of Ξj. The strict
transform C[l) of Cx to Λ̂  intersects only with E(Pt) and /7fΛ1=Wilfelι?1.,
C[ί) = {vί=0}9 so C t is irreducible and p1 is a good resolution of Ci.
If Λ2 = 1, we have/^/^ and we have nothing to do further. If A2>2, the pull
back p*f{uuvx) has an initial expansion

(4.3.2) PΐfiuuvJ = uT(f\v? + ξ2u\2)A3 + (higher terms)

with primitive weight vector P 2 = ̂ 2^ 2) where the multiplicity of Φ?/ on 2^ is
mί(f) = a1bίA2 by (4.2.1). Note also Λ2 = <22Λ3 and /(C1,C;O) = α1fe1^24-&2^3 bY
Lemma 3.4.2. The advantage of the "Tschirnhausen coordinates" is the inequality
α 2>2. In fact, in the Tschirnhausen expansion f(xiy) = hί{x,y)A2 + Σf*2cJ{x,
y)hx{x,y)Al~j of f(x,y) with respect to hγ we have cj{x,y)eC{x][y] and
degycJ(x,y)<a19j = 29- -9A2, so the face Δ(PuCj) is necessarily a vertex. Therefore
by the definition of the coordinate (u^v^ and Lemma 4.1 in a smaller neighbourhood
Wί of Ξt the pull-backs are: pfh1{uuvί) = u™l{hι)vι with mi{hί) = aίbi and

pfcJ{uuvi) = u™jUj, where mj = d(PuCj) and £/,- is a unit for y>2 with c, /0. If
^. = 0, we put Uj = 0 for simplicity. Thus we have

(4.3.3) (hύA Σ ^tf

hence, with βo = (mi(^i)^2^2) a n d Qj = {mj + {A2—j)mγ(hΛ\A2—j\ the Newton
polygon Γ+^f/ ίw^t;!)) is the convex hull of the sets {Qo + R2

+} and {g7 + J? + },
2<j<A2, Cj^O. The Newton principal part ^ ( P * / ) ( M I , ^ I ) contains (mι(f) + b29

A2—a2) by (4.3.2). It follows that (^i(/)4-έ2,^2 — 2̂) = ̂  fory=0 or for some
y>2, hence a2>2. Moreover, if c^O, we have d{P2\p*cih

Aτ-ί)>d(P2\p*f), with
equality if and only if a2 \j.

Let ax\a and α|«. The following Tschirnhausen expansions start aty = 2 by
Proposition 2.2:

(4 3 4)

By (4.3.3), the principal part oϊpffiu^υ^) with respect to the weight vector P2 is

(4.3.5) ptfpHuuVt) = uT{f\v? + ξ2uΐ)A3

With Ra:=Σn

j

/"2

cjHaa~J>we h a v e t h a t degyRa<n-a and therefore the Tschirnhausen
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expansion of Ra with respect to hx can be written as Ra = Σfio

a/aί γβ€h\ for some

βteC{x}[y] and dcgyβ^a^ If β^O, we can write pf(βM)=^yM by

Lemma 4.1 for a unit Ue and a non-negative integer )ve7V. Thus we have for

the Newton principal part

(4.3.6) dcgVl^(pfRa)(uuvι)<A2-a/aι-l.

% \ of (4.3.4) and (4.3.5),

^AY^1 of u'?«f\vγ + ξ2u
b

ίγ* for
The expansions (4.3.4) and (4.3.1) give

So, comparing the pull-back pϊf{ux,υx)

we see that the monomials u ^ x ^

i>A3-a/a1a2-\/a2 come from p\Hn

a

la

with some analytic functions ga, Ga

(4.3.7)

Note that mί(Ha)n/a = mί(f). Applying the above argument to pΐHa{uuυx\ we

can conclude that the Newton boundary Γ(/?1*//α;(w1,ι;1)) is situated in the region

{(vί,v2)eR2;O<v2<a/a1} and that B^iu^H^a/ax) is the vertex of the left end

of T{pU\iμ\^i)) b y ( 4 3 7 ) N o t e a l s o t h a t (n/a)Ba = (mι(f)>A2) is the left end of

Γfrί/;(κi,ι>i)) by (4.3.7). Let Δα be the first face of Γ(pfHa) which contains Ba

and let β = f(p2^2) be the weight vector of Δ f l.

Assertion 4.3.8. The inequality q2/p2^b2/a2 holds.

Proof. Assuming by contradiction that q2lp2<b2ja2, we have pXf^μγ,v^)

= w m i ( y V 2 , and we will prove the assertion by excluding the following three cases:

J () d(QfH»Ja) d(Q
= w VV , p

(a) d(Q;pfH?a)>d(Q;pϊRal (b) d(Q;pfH"Ja)<d(Q;pfRa% (c)
p*Ra). Figure (4.3.A) indicates the respective situations. In case (a), umiif)υ^2

= {pfRa)Q(uuυι) holds, which is impossible by (4.3.6). The case (b) is impossible

as (pΐHa)Q{uuvx)
φΦumύf)vi2 by the assumption. If case (c) holds, from (4.3.6) it

f o l l o w s i p i H ^ u u υ 1 γ l a + { p ΐ R ά < ί μ u υ 1 ) Φ Q , a n d t h e n d ( Q ; p f H t ) = d ( Q f R )

Case (a) Case (b)

Figure (4.3.A)

Case (c)
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= d(Q;pff) and finally the equality ifliWvt2 = MHJdui>ViYla + {PiRMui>vi) B u t

this equality is impossible. In fact, let us write (p*Ha)Q(uuv1)==u™ιiHa)va

)

lai + yua

1

1vβ

ί

i

+ S{uuv1)whereγ^0,0<βι<a/aί anddegυιS(ui,υ1)<β1 ifSφO. Then(pfHa)Q(ul9

Q

v1)
nla = urΐiif)vi2+n/a'γu^vβ

1^S'(uuvί) with dεgΌιS'<β\, where oc\=(xί+(n/a

— ϊ)mι(HJ and β\=A2-a/a1+βι>A2 — a/aί. On the other hand, the second

term of the right side of the equality has no monomial u\lv\2 with

v2>A2-a/aί. Q.E.D.

By Assertion 4.3.8, the face function (pfHJp^u^v^ for the weight vector P2

is divisible by u™ίiHa\ hence H^u^v^'^ipfHJp^u^v^/u™ί(Ha) is a polynomial. By

a similar discussion as above, we conclude: d(P2;pff(uuvί))==d(P2;p*Ha(uuvί)
n/a)

= diP2;pΐRJiuuvM^ΐnp2 = {pΐHJ}l;+(pίlQP2 and deg0Jffl + ξ2t/?)A>-H?i'(ul9

vί))<A2 — a/ai — l. In other words, H'a(uuvx) is the n/a-th Tschirnhausen

approximate polynomial of (v\2 + ξ2u\2)A3. In particular, if axa2 divides a,

A3/(n/a) — a/aίa2 is an integer and we can see easily that H'a{uu vι) = (va

i

2 + ξ2u
b

ι

2)a/aίa2

if ata2\a and pfHa(uuv1) = u^ιiHa\vγ + ξ2u\2)alaιa2 + (highQΐ terms). Putting h2

= Haιa2, C2=Daιa2 and a = ata2, we observe that pfh2(uί,vi) = u'ϊί{h2)(va

ί

2 + ξ2u
b

ί

2)

+ (higher terms) and therefore p*h2(uuvί) is clearly non-degenerate.

Pj Pi

4.4. Inductive construction of a tower. Let ^~j= {Xj -> Xj-1 -• -> ̂  -• Xo

= C2} be a tower of toric modifications with the corresponding weight vectors

P^^bi) such that aί'"aj\n and a{>2, i = l , j Put Λ ί + 1 :=n/aί ~ai9 i<j

and for simplicity Λf(x,j) = Hav..aι(x9y\ Cf = Dβ l...β | and Φf =/?! o . . oPi: ^ -• X o . Let

Di° and C/°, (/>/) be the strict transforms of Da and Cf to Xx respectively. The

map Pi'.Xi-* Xi-ι is an admissible toric modification for Φf_γf associated with a

regular simplicial cone subdivision Σf_ί. Let Ξ ^ C ^ n X , be the center of the

modification pi+1 and let (ubv^ be the chosen modification local coordinate system

with the center Ξf so that {M; = 0} is the defining equation of the exceptional divisor

Ei'.^EiPi) for i = l, "J. We assume the following properties (1-j), (2-j) and (3-j)

for the tower.

(1-j) (Cί? O) is a germ of an irreducible curve at the origin for /= 1, J and the

strict transform C/° to Xt is smooth and is defined by {ι̂  = 0}. The pull backs

o f / a n d h^ i<j equal:

(441) Φ- / ί ^ ^ ί
κ ' ' } ι \uTi{f\vT+1 + ξt +1 u\*+ *)Ai + 2 4- (higher terms), otherwise

(4.4.2)
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The modification coordinates (ui9υt) are characterized by (4.4.2). We assume aj+1>2

in (4.4.1), if Aj+ί>2. More generally, for any positive integer a with a\n and

aί'-ai+1 \a, we have

(4.4.3) Φ?Ha{ubVi) = uTi{hι)(vV+ί + ξi+1uϊi + ι)a/aι~'ai+*+ (higher terms)

Here m ^ ), m,(//α) and mfj) are the respective multiplicities of the pull backs

Λj>Φ*#β a n d Φ*/on the exceptional divisor 2^ and they satisfy the equalities:

ntiihi) x Ai+1=rnι{HJxn/a = mι{f)

(2-j) The local intersection multiplicities at the origin are given by

More generally, I(DaiC'9O) = Σi=ίaJ?Jf+J(n/a) + I(D^\C^;Ξjl if a\n and at

(3-j) For any non-zero polynomial 0L(x,y)eC{x]{y] with dcgyoc(x9y)<aί - Όj,

the pull back Φfoc can be written as Φfoc=UxuSj in a small neighbourhood Wj

of Ξj for some integer ^>0.

If Aj+ί = l, then A — / a n d (4.4.1) says that ΦJ:XJ-+X0 is a good resolution

of C. If Aj+ί>2, we will add to the tower a toric modification /?j+i : ^ + i -• A^

keeping the above properties. Let Pj+ί=
t(aj+ίibj+ί) be the weight vector of the

unique face of Γ(Φff ;(upVj)) characterized by (4.4.1) and (4.4.2): Φff(upVj)

= u']ίj{f)(va

j

i+ι + ξj+ίu
bjj+1)Aj+2 + (higheΐ terms). Choose a regular simplicial cone

subdivision Σf of the Γ*(Φff ;(upVj)) and make the corresponding modification

pj+ 1:Xj+ί-+ Xj with center Ξ, eEj. Then Φ*hj+ \{upυ^ is non-degenerate by (4.4.2),

so in the right toric chart σ = (PJ+l9FJ+1) we can write Φf+ίhj+ί(xσiyσ)

= x™j+ι(hj+ι)yy+ιihi+l)((yσ + ξj+i) + xσG) where mJ+1(hJ+1) and m'J+i(hJ+1) are

multiplicities on Ej+ί=E(Pj+ί) and E(P'j+ι) respectively. The functions uj+ί :=xσ

and vj+ί:=y™J + ιihj+ι)((y<r + ξj+ί)xσG) give a system of coordinates in a neighborhood

Wj+! of the intersection point ΞJ+1 of C)j+X

l) and Ej+1. By the definition the strict

transform CfVV* ^s smooth and is defined by {vj+ι=0} in Wj+ί. We show

(3-(j-hl)) first. For cί(x,y)eC{x}[y] with degy(x<aί -"aj+ί, its Tschirnhausen

expansion with respect to hj:oc(x9y) = Σ%+

ί

ι(xi(x,y)ha

j

j+1~i(x,y) has coefficients with

degy(xi<aί"'aj. A p p l y i n g i n d u c t i v e l y if α ^ O w e g e t Φf{<xih
a

j

i+1~i)=Uiu)iυa

j

i + i~i

with v£>0 and a unit C .̂ So by Lemma 4.1, ΦjVtα =/?*+1(Φ*α) = Uxus

j+ί for a

unit (/ on WJ+1 and ^ > 0 .

If aj+ί=Aj+ί i.e., Aj+2 = 1, the modification Φ J + 1 : A " 7 + 1 - • Xo is a good
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resolution of C, so clearly we have (l-(j + l)) and (2-(j + l)). If Λj+2>29 we write

(4.4.4) Φ/ + /(i*, + 1,i;,+ 0 = i<7riiω^^^^

Note that mj+ι{f) = aj+ιmJ{f) + aj+λbj+ιAj+2. Using the Λ i + 2 -th Tschirnhausen

expansions oϊ f:f(x,y) = hfi\2-\-Σfi2

2cj+ίtihfl\2~ι

9 and repeating the argument in

4.3, we will prove aj+2>2. As above, if c ; + u # 0 , write Φf+ i(cj+ uhfi\ι~ι)(uj+ u

Vj+ί)=Uj+itiuJiιvfί\ί~ι for some integer mi9 and a unit Uj+ίJ. The Newton

principal part Jr(Φf+ ifjiu^vj contains the exponent (mj+ γ{f)+bj+2,Λ;+ 2

— α 7 + 2 ) by (4.4.4) and we conclude that aj+2>2 as in 4.3.

Now we show (l-(j + l)). For a with a\n and ^ •• tf/+1 |α, consider the

Tschirnhausen expansions:

with degyc,<β and degyrf ί<ίϊ1 αJ + 1 where βj+ι:=a/a1'"aj+ι. Applying the

same argument to the hj+ί-expansion of R:=f—H"/a = Σn

i^2ciH"/a~\ we see:

degVj+ιΦf+ί(R)<Aj+2-βj+ί. But from (4.4.3) with ga,GaeC{uj+uvj+ί} follows:

=P*+

a(uj+ l9vj+ 0

So Ba:=(mJ+ί(Ha),βJ+ί) is the left end vertex of Γ(Φ/+ 1//a), n/axBa is the left

end vertex of Γ(Φf+1H"la) and also of Γ(Φ/+ 1/;(ιι< / + 1,t; J.+ 1)). By the arguments

of 4.3 and (4.4.3), the first face Δα of Γ(Φ/+1//α;(MJ+1,t;J.+ 1)), which contains Ba,

has the weight vector Pj+2 = t(aj+2,bj+2), hence

(44 5)

Note: d e g l 7 J + 1 Φ ; + 1 / = d(Pj+ί;Φff). The polynomial H^UJ+19ΌJ+1)

:=(Φf+ιHJPj+2/ufiγ(Ha) is monic in vj+ί of degree βj+ί=a/aί - aj+ί, implying

with the inequality of (4.4.5) the

Assertion 4.4.6. Ifai -aj+ι \a, then H'a(uj+l9vj+l) is the n/a-th Tschirnhausen

approximate polynomial of (Φf+inpj+2(uj+uVj+ι)/um^^) = (vγ+\2 + ξj+2u%\Y^2

e % i f e + J In particular, if aι—aj+2\a, then H£uj+uvj+ί) = (vγ+\2

+ ξj+ 2tή'+
+tΫ'+2

9 Φ/+ ίHa(uj+ l9vj+ 0 = M7ri l ( H α )(^ i+i2 + ξJ+2u
bjj

+\2)βi+2 + (higher terms),

with βj+2'=cι/aί'"aj+2.

This proves (l-(j + l)). The assertion about the intersection multiplicities
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(2-(j + l)) follows immediately from Lemma 3.4.2.

As al"-ai divides n and α f >2 for each /=1,•••,&, the above inductive

construction stops after a finite number of toric modifications. In fact, k (respectively

k— 1) is the number of Puiseux pairs if b1>\ (resp. if bί = \.) See [29] and

[18]. Thus we have proved the following.

Theorem 4.5. Letf(x,y) e C{x} [y] be monic of degree n with the initial expansion

b A terms), n = aίA2, ax>\

and defining in a neighbourhood Wo an irreducible curve C := {(x,y) e Wo f(x,y) = 0}

at the origin. There exits a resolution tower 3~ 9 satisfying the following conditions
Pk Pi

(1) and (2), of toric modifications'. βΓ — {Xk -+ Xk_ x -• >X1-*X0 = C2} having the

weight vectors {Pi =
 t(ai9bi);i=l9- 9k} where n = aί---ak9 a{>2, i=l,-,k. With

Ai = aiai+ί - ak, let h^x.y) be the Ai+ί-th Tschirnhausen approximate polynomial of

f(x,y) and let Q = {(x,y) e C2 ht{x,y) = 0}, i = 1, ,k. Note hk =fand Ck = C. Denote

by ΞieEi:=E(Pi) the center of pi+ίi by {ubv^) the modification local coordinate

centered at Ξf so that {wt = 0} is the defining equation of the divisor E{. Put

Φi=pίo...oPi:Xi^X0.

(1) For each i=l,--9k, C, is an irreducible curve at the origin having the good

resolution Φi9 such that the strict transform C/° in Xt is defined by {̂ . = 0}. The

pull backs are

i tΨ»v()-jw^(Λl)^?i + i + ξi+iUbi + ίyn.2/Aι+i+ (higherterms), i<£

In particular, putting έ = k,

(nmk(f)v i = k

terms), i<k

where the multiplicities m^h^) and m{{f) of the pull backs Φfh^ and Φ?f on E( satisfy

the equalities: mi(h^) = mi(f)/A^+ί9 mί(f) = aίbίA2 and mi(f) = aimi_ί(f) + aibiAi+ί

for i = 1, , /. More explicitly

(2) The local intersection multiplicities are

The equality (4.5.2) follows from (4.5.1). The other assertions are etablished
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in the inductive argument.

DEFINITION 4.5.3. The toric tower of Theorem 4.5 is a Tschirnhausen

resolution tower of toric modifications of C, the coordinates (uhVi) of W{ are

Tschirnhausen coordinates centered at Ξ ί 5 and the curve Cf is the Ai+ι-th

Tschirnhausen approximate curve of C.

The combinatorial choice of the admissible subdivisions Σ^'s determines

completely the Tschirnhausen resolution tower of toric modifications. In Theorem

4.7, we will show that the length of the tower k and the sequence of the weight

vectors {Pi9--,Pk} a r e independent of the choice of a certain resolution tower of

toric modifications.

REMARK 4.5.4. Let άί=min(aί9bί) and B1 =ma,x(aubi) and let nx =άx, m1=B1

and nt = αh mi = bi + bi_1αi-\—+b2α3'>αi + Eια2•• αί for i>2. Then we have

shown in Corollary 6.8 of [29] that the Puiseux pairs of Ci is given by

{(ni9mύ;i=h~'J}> ( * i > l ) °r {(ni,mύ;i=29~ J}9 (bί = ll The isotopy class

of the knot depends only on the set of Puiseux pairs. Thus the knot given by

Cj at the origin can be considered as a compound torus knot along the knot given

by Cj_ί for j= 2, •••,£. There exist tori in the Milnor sphere for an ireeducible

plane curve singularity, which are transversal to the Milnor fibration of the

singularity, such that the tori give a decomposition of the complement of the knot

and of the monodromy diffeomorphism of the singularity. For instance, on each

piece of this decomposition the monodromy can be realized by a monodromy

vector field having all its orbits closed and a surface of genus 0 as orbit space. In

particular, the monodromy is in this decomposition piecewise of finite order (see

[1]). More precisely, using the Tschirnhausen resolution and the modification

coordinates, this decomposition of [1] is given explicitly as follows. First, the

modifications Φ,: Xt -> C2 are isomorphisms above the spheres Sr of radius r > 0

around O e C 2 . Let (ui9vt)9 \<i<k be the modification coordinates of EteXi as

in Theorem 4.5. The strict transforms Cf\ j=i,- ,k give germs of irreducible

curves at Ξ, and C/° is given by {yf = 0}. The sphere Sr is isotopic to \Uj\ = r' for

some r ' > 0 in a neighborhood of Ξ έ. For ε>0, let Γ ί f β f r={(iι i,i; i)e5Γ;|!; ί |<ε}. For

sufficiently small r and ε, TUεr is diffeomorphic to the product Kt x Dε where

Ki:=C}l)nSr and Dε:={ηeC;\η\<ε} and TUεr gives a canonical tubular

neighbourhood of Kt. We can take positive numbers ri9et>0 for z'=l, ,fc so

that C)l) intersect transversely with SΛ for any α < r f and j=i,-,k and

C j ° n 5 α c Γ ί ε. / 2 j α. By the inductive argument, we can assume also that

T t

i Λ β n3Γ i _ l f β < _ l / 2 i β = 0. Now taking r o =min(r 1 , ,rk), we get

Theorem 4.5.5. Let f(x,y) be as in Theorem 4.5. Then for every 0 < r < r o ,

the following properties hold.
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(1) TUii2tr^ Ti+Uεi + itrfor i=U~>,k-l where,

(2) the boundary of Tiε.r is a torus transversal to the Milnor fibration of the

singularity off

(3) the restrictions off/\f\ to Sr-TUtur and TitEur-Ti+Ui+ur, i = l , . . . ,*- l are

locally trivial fibrations over the circle and

(4) the monodromy diffeomorphism of the restriction to the differences Sr—Tίειr

and TifEur — Ti+ltEi + itr, i= 1, ••-,& — 1 can be chosen to be of finite order.

B. Intersections of other Tschirnhausen approximate polynomials. Let, as

before, Ha(x,y) be the n/a-th Tschirnhausen apporoximate polynomial and

D. = {HJίx,y) = 0}.

Theorem 4.6. If a\n, aι "as\a, a1" as+ί \a and aφax--as, then Da and C

have the same toric tangential direction of depth s and I(DωCi;O) = Σa

ji[ajbjA
:j+i

/(Aί+ίn/a) where α = min(j,/).

Proof. Recall that Φ?f(us,vs) = u™sσ\va

s

s+i + ξs+ιu
b

s

s + 1)As+2 +(higher terms).

We consider the face function of the pull-back Ψ*Ha and put Hά(us,vs)

:=(Ψ*//fl)ps+1(Ms,ι;s)/w^s(Hα). We have seen in the inductive construction of the

Tschirnhausen tower that Da has the same toric tangential direction at least of

depth s with C. We have shown in Assertion 4.4.6 that H^(us,vs) is the n/a-th

Tschirnhausen approximate polynomial of (f£e+1 + £ s + γu
b

s

s+ ι)As+2. Now the main

step of the proof is the following.

Lemma 4.6.1. The constant term of the polynomial H'a(us,υ^eC{u^\v^ is zero

and va

s

s+1 + ξs+ίu
b

s

s+ί does not divide H^(us,vs).

Proof. Put βj = a/aί'-aj. The point is that βs+i:=As+2/(n/a) is not an

integer. As H'a(us,v^ is the n/a-th Tschirnhausen approximate polynomial of

W s + 1 + £s+iws s + 1)A s + 2> we have H^(us,vs) = vβ

s

sΎmnci[βs+i]){\ + ξs+iu
b

s

s^υ;as+ί)βs+i

= vβ/Σjto+ι])(βSjι)(ξs+iUbss+1vΓs*1)j by Lemma 2.3. Thus H£uS9vs) does not have a

constant term as a polynomial of vs. If va

s

s+1 + ξs+ίu
bs+i divides H^us,vs\ we will

get a contradiction. In fact, the polynomial

(4.6.4) H:{US,VS) :=(var1 + ξs+ ^ T ιK(u,υs)

is the n/aΛh Tschirnhausen approximate polynomial of (Vss+ι + ξs+iu
bs+ι)As+2~nla.

By the generalized binomial formula again, we have

[βs+ι]-l/β _

H:{uΛ)=υβras^ Σ

j=o \ J

Comparing the coefficients of v

βΰlβs + ι]as+1 in (4.6.4), we get: {S'.l$ = (&'.Viy-\)> w h i c h
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is a contradiction as j8 s + 1 ^[ j? s + 1 ] . Q.E.D.

Now by the Lemma the curve Da has the same toric tangential direction of

depth s but not of.depth s+l with C In particular, Z)<f + 1 ) nC ( s + 1 ) = 0. The

main problem in proving the assertion about the intersection multiplicity is that

Da may be neither irreducible nor reduced. See Example 4.9. Let DaΛ,- ,Daί

be the irreducible components. Let ka(us,vs) and kajus,vs)j= 1, •,/, be the defining

functions of the strict transforms D® and Dfy f o r y = l , / . Then we can write

K(us,vs) = vβ

s° + ΣξLίyt(us)vξ*-\ yt(us)eC{us} and

(4.6.5) * a M {(f

where gcά(as+ί pbs+ιj)=l and £/,- is a unit. They satisfy:

(4.6.6) βs=Σas+iΛ+2,j

Recall that the weight vector of the unique face of Γ(kaj;(us,vs)) corresponds to

the weight vector of a face of Γ(ka (us,vs)). By Assertion 4.4.6, the Newton boundary

Γ(ka;(us,vs)) starts with the face (possibly a vertex) of the weight vector Ps+ί and

any other face has a milder slope. Therefore we have bs+ίj/as+iJ>bs+ί ,as+ί

if bs + i j φ 0. Now we apply Lemma 3.4.2 to compute the intersection numbers. For

we have I(Da,Ci) = Σi

jt\ajbjA:j+ί/(Ai+1n/a)9 i<s and for i>s, with

:= ffa+uΛ+u) w e h a v e

= Σ a/>jA*+1/(Ai + 1n/a)+ t bs+γβs,tAs+2ttAs+2/Ai+1 by (4.6.6)
7=1 ί = l

s + l

= Σ «;M,2+1/(^+ i"/ β ) ' ' > ^ by (4 6 5).
j=i

where 7 ( P s + 1 ) J P ί s + 1 ) is defined as in Lemma 3.4.2.

C. Relations with other toric towers. Consider two toric resolution towers:

where F is a Tschirnhausen tower of resolution with the weight vectors P—Xa^
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ι '=l, ,fc and n = ax --ak, a{>2, i=\9.-Ίk as in Theorem 4.5. Let Ai = aiai+l'"as

and let ht(x9y) be the Λ I + 1-th Tschirnhausen approximate polynomial off(x,y) and

let Cf be the corresponding Tschirnhausen curve for z = l , •,& as before. Let

Qi = \θLi9β^ i= l, ~>s be the corresponding weight vectors of Ά with n = oί1 α s . We

assume that α,>2, i = l, ,s and Qi = i V We call such a toric tower St a

Tschirnhausen-good resolution tower. A Tschirnhausen resolution tower is a

Tschirnhausen-good resolution tower by Theorem 4.5. Now Theorem 4.5 can be

generalized as follows.

Theorem 4.7. Let f(x,y) be as in Theorem 4.5. Let 3~ and Ά be as

above. Assume that qi+ί:Yi+ί^Yiisa toric modification centered at Θ t e E[ := E(Qt)

with the modification local coordinate system (whzt), so that {̂ , = 0} defines the

divisor E[. Put xϋi, = qt °... o q. y. -> y o . 77ie« w^ /zαve f/ze following properties.

(1)) (Uniqueness of the weight vectors) s = k and Q. = p.for ι=l,•••,&.

(2) For ̂ ΛcΛ / = 1, •••,£, Ψ f : ̂  -*> y 0 g/v^ α #00*/ resolution of C{ and the pull backs

of the polynomials are written (up to a non-zero constant factor) as

n MJ*L ( ^ Ϊ^ΛzV + Oi + ̂ YHhighertermsl i<{
A) τ ,

z is either z JJi with a unit Ut or ci((zi + ηiw}i) +(higher terms)) with ci9 ηteC*

for some integer yi9 yi>bi+ί/ai+ί. In particular, putting ί = s, we have

(4.7.2) " ' * " - ̂ - ^ . ~^Λi + ιyt + 2Hhigherterms), i<s

where the multiplicities m'^) and m\(f) of the pull backs Ψi*hι and Ψ f * / on El

satisfy the same inductive equalities:

Thus we have also the uniqueness of the multiplities: m'f(Λs) = mf(Λs) and m'^f) = mt(f).

Proof. We consider the tower St. Let α1=min(α1,j81) and ̂ 1=max(α 1,jS 1)

and let / i 1 = α 1 , mι=βι and ̂  = a i 9 m ^ ^ + ̂ . j ^ H h/?2a3*--ai + /?ia2**<ai f° r

/>2. Then we have shown in Corollary 6.8 of [29] that the Puiseux pairs of C

is given by {ni9rn^9 I = 1 , ,J}, ( j ^ ^ l ) or {w^m,); ι = 2, •••,*}, (/?! = 1). The same

assertion is true for the Tschirnhausen tower 9~. By the assumption Qι=Pγ and

by the uniqueness of the Puiseux pairs, we conclude that s = k and Q~Pi. The

expression (4.7.1) for ί>i follows easily by the induction on /. In fact, we know

that Q is irreducible and I(C^C\O) = yL{t\aJbsAl+1 /A^+ί. So by Lemma 3.4.2,

Q can not be separated from C on Yi9 i<L Thus we have the expression
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(4.7.1). As Ψ Ί. ̂ hiiWfrZi) is non-degenerate, we can write

H + ( h i g h e r terms), q ^ e C * or

: a unit

In the first case, with the formula of Theorem 4.5 we get I(C}i\C(i);®i) = bi+ιAi+2-

So, yi>bi+ι/ai+ί. As bi + ί/ai+ι is not an integer, we have yi>bi+ί/ai+i.

Q.E.D.

REMARK 4.8. Theorem 4.7 can be proved without using the uniqueness of

the Puiseux pairs by comparison stage by stage of the formulae for the intersections

for the two towers.

EXAMPLE 4.9. Put f(x,y) = (y4 + x3)6+x17y3. The first toric modification

px :Xt -> Xo can be defined by the subdivision

with weight vector P 1 = P O f 3 . Let σ3 = Cone(i\>,3, Po>4). On the chart C*3, we

take uί =xσ3 and ι;x = ^ σ 3 + 1 . Then C ( 1 ) is defined by {(u^vje Wx\υ\ + u\-h(higher

terms) = 0}. Thus we need one more toric modificationp2:X2-*X\ and we choose

the modification with respect to

with weight vector P2

 = Pι,5' The weight vectors of the tower are jP1=
ί(4,3) and

P 2 = f(6,5). By computation, we have n = 24 and the various Tschirnhausen

approximate polynomials are: H2(x,y)=y2, H3(x,y)=y3, H4(x,y) = hγ{x,y)~y4 + x3,

H6(x9y)=y6 + 3/2x3y2, Hs(x,y) = (y4 + x3)2 and Hί2(x,y) = (y* + x3)3. The inter-

section multiplicities are given by 7(Dfl,C;O) = 36,54,77,108,154,231 respectively

for a = 2,3,4,6,8,12. This example shows that Da which is different from C ί 9

1 < i < k is not necessarily irreducible or reduced. The zeta function and the Milnor

number are given by Theorem 5.1 in §5: C(O = ( l - ί 7 2 ) ( l - ί 4 6 2 ) / ( l - ί 2 4 X l - ί 1 8 ) ( l

-tΊΊ) and

5. The zeta function of the monodromy. Let/(jc,y) be a monic polynomial in y
Pk Pί

of degree n and irreducible at the origin. Let &~ = {Xk -• Xk-ι -* ••• -> A\ -• A^}

be a Tschirnhausen-good toric resolution tower with the weight vectors

{P—fyfrbi); ι=l,••-,&}. We will read off the zeta function of the monodromy

and Milnor number from the data of the Tschirnhausen-good resolution tower.
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Let Σ/* be the regular simplicial cone subdivision which is used to
construct the modification pi+ί :Xi+1 -> Xt and let {Pi0,PiΛi -,Piri,PUri + ί} be the
vertices of Σ,* so that P i>o = *(l,0) and P I > < + 1 = ' ( 0 , 1 ) . Let Pi%j^\aupbi^. We
assume that Pi+ί=Pifli for ί = 0, ,Λ:-l. Note that, as det(Pit0,Pitι) = det(Pttri9

PiϊΓ< + 1) = l, PiΛ and Pir. have the forms P u = f ( f l u , l ) and PUri = \\9bitr)
respectively. This implies that «f < rέ. The configuration of the exceptional divisors
{E(PiJ)j=l,'-,ri} is a line configuration and E(Pi0) is nothing but E(Pi_lni_ι).
Thus the exceptional divisors of the resolution Φk:Xk-+ Xo is the union of the
strict transforms {E(PitJ);O<i<k—l9 \<j<r^. Let m ( J be the multiplicity of the
pull-back Φ*+i/ along E(PU^ and let δitj be the number of irreducible components
of the divisor (Φ*/) which intersect with E(Pιj). By Theorem 3 of [2], the zeta
function ζ(t O) of the monodromy of f(x,y) is determined by those E(PiJ) with
δujφ2. As we have seen in §3, mij = d(PiJ;Φ?f) and

3 j=ni { 3 j=nx

I / = ! or r i , ι = 0

otherwise 2 otherwise

If no = \, we subdivide Cone(P0tθ9PΌtl) so that we can assume that no>\. Note
that δk_Unk_ι = 3 as E{Pk_lnk_) = E{Pk) and it intersects with C(k). Recall that
the multiplicity mi>nχ is given by mini = d(Pi + ι;Φ^f) = mi+ί(f) = ai+1mi{f)
+ ai+ίbi+ίAi+2 in the same notation as in §4. Thus we need determine m 0 1 ,
mir. for ι = l , ••-,£. To determine w i r., we consider the expression by (4.7.2):
Φ*huhvi) = u?iif\v<ii + 1 + ζi+iubii + 1)Ai + 2 + (higher terms) for i<k. As Σf* is assumed

to be admissible for Φ,*/, we know that ( m ^ + fei+^f+ijOjGΔίP^. Φf*/). This
observation and the expression PUri = \\9bUr) implies that mitri = mi(f) + bi+ίAi+2

= mi+ί(f)/ai+ι. Finally as (0,«)eΔ(PoΛ;/), we have that mOΛ=Aι by a similar
argument as above. Thus applying Theorem 2 of [2], we obtain the first part of

Theorem 5.1. The zeta function and Milnor number off(x9y) are:

1 k (λ _/W«(/)\ k

Proof. By the equality — l + μ ( / ; O) = άegζ(t;O), we have

i = l

ί = l
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= -A1+ Σ aAAhiΣ (l--)/At+ι
•=i i=Λ aj

= -Aι+Σ (A,-\)b,Aί+ι. Q.E.D.

6. Conditions implying equi-singularity. Let ft(x,y) =f(x,y> ή e C{x, t] [y~\ be an

analytic family of monic polynomial in C{;t}[>>] of degree n in y defined for t in

an open connected neighborhood U of the origin in C. Let C(t):={ft(x,y) = 0}9

teU, be the corresponding family of germs of curves at the origin. We assume

that C(0) is irreducible and reduced at the origin and that ft(x,y) has an initial

expansion

(6.1.1) ft(x,y) = (ya>+ ξ1x
b>)Λ> + (higher terms)

Pk PI

with ξX7^0 independent of t and a^>2. Let Xk-+ Xk_i -* > Xt -+ X0 = C2 be

the Tschirnhausen approximate resolution tower of (C(0),<9) with the weight vectors

{Pi = t(ahbι); /=1,••,&}• We assume further that the Ai+ί-th Tschirnhausen

approximate polynomials h^x.yj) of ft(x,y) for / = 1 , •••,/:— 1 are independent of

the parameter /. Note that this is the case if the coefficients of yj do not depend

on t for anyy'>« — aγ • α f c_ 1 . Consider the germs of curves CI:={Ai(xj>):=^i(x>.M)

= 0}, ι = 1,••-,& — 1 . Finally we assume that the local intersection multiplicities

satisfy the inegualities:

(6.1.2) akI(Ck-uC(ή;O)<I(C(0lC(s)\O)< + oo, for any Us, with sφO.

Theorem 6.2. Under the above assumptions for the family ft(x,y\ the

germs C(t), t e U, are irreducible at the origin and have the same toric tangential

direction of depth k\k'>k — \. The family of germs of plane curves {C(t\ O);teU}

is an equi-singular family and Φk:Xk-+ Xo gives a simultaneous resolution for the

family {C(t);te U) where Φk=Pι ° ••• °pk. In particular, the Milnor number μ(f; O)

is constant and coincides with μ(/0; O). Moreover, if equality holds in akI(Ck__ l9 C(t) O)

<ϊ(C(0),C(s);O)for any t,s, with s^O, the germs C(t% teU do not have the same

toric tangential direction of depth k.

Proof. We fix τ # 0 , τeU. We first assume that C(τ) is irreducible. The

irreducibility will be proved later. Assume that C(τ) has the same toric tangential

direction with C(0) of depth Θ, θ<k. Then we can write Cu\τ) as

(621)
^f{J\ )(fi *»+ ξ'j +,u)Ί - Ύ'ι * * + (higher terms)
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where A'j+1 :=a'j+ί •• « β + 1^0+2 for j<Θ. Let Fθ+1:=
t(^Θ+ί9b

f

θ+1). P'θ+ί is a

primitive weight vector and if P'θ+ί=Pθ+l9 we must have ξ'θ + ίφξθ+ί by the

assumption. Comparing (6.1.1) and (6.2.1) and by the assumption, we have ξj = ξj9

a'j = ap b'j = bj and Af

j+ί=Aj+ί ϊor j<θ. Assume first that θ<k— 1. By Lemma

3.4.2, the local intersection multiplicity is given by

0

(6 Ί 71 Ί(C(Ύ\ ΠO)' Γ»— V n h A1 Λ- UP P' \Λ A'

0 0+1

biAi+1A'i + bΘ+1A$+2A'e+1=
i=ί

where equality holds if and only if a'θ+ xbθ+ γ <aθ+ίb
f

θ+ί or b'θ+1 = 0. On the other

hand, by Theorem 4.5 we have the equality: akI{Ck_ u C(0) O) = Σf = ^ M H . I Thus

(6.2.2) and the assumption (6.1.2) implies that we must have Q — k— 1 and dkbk<akbk

or bk = 0 and I(C(τ),C(0);O)=Σιl=ίaibiAf+ί. We assert furthermore

(6.2.3) 6;#0, flΛ = ****.

In fact, assume first that bk = 0. Then C ^ ^ ^ Q . ! and C(τ) is not reduced. This

is a contradiction to the assumption dimcC{x,}>} /(/t,Λk_ x )< oo. Assume that 6^/0

and akbk<akbk. Then we get a contradiction:

> *Σ β^f + , + flj^^i +1 = Σ flί*^?+, = /(C(τ), C(0) 0).
ΐ = l i = l

Thus we have proved (6.2.3). As gcd(ahbk) = gcd(ak,bk)= 1, (6.2.3) implies Pk = Pk

and y4̂ + j = 1. This also shows that C(fc)(τ) is smooth. Thus under the assumption

that C(τ) is irreducible at the origin, we have proved that C(τ) is reduced and

θ>k-1, P'k = Pk. This implies that μ(/τ; O) = μ(f0; O) by applying Theorem 4.5 to

C(τ). Note that Φ k : Xk -> Xo gives a simultaneous resolution of the family

{C(τ);τeU}. If θ=k, the assertion is obvious and C(k\τ) intersects with C(Λ)(0)

at Ξk and therefore /(C(0),C(τ);O)>Σ^=1α/Z?Iv4?+1. This implies that the strict

inequality in (6.1.2) must hold.

Irreducibility of C(τ). Now we prove that C(τ) is irreducible for any τ. Fix

a τ and assume that C(τ) has s irreducible components at the origin s>2. Let

C(τ;l), - ,C(τ;j) be the irreducible components and let C ω (τ; l) , ,Cω(τ;,s) be
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their strict transforms on Xj. We assume that C(τ ί) has the same toric tangential

direction of depth fy with C(0). Then we can write

(C<Λ(τ 0 = {(upυj)e W,;f$(upυ} = 0}

Vτ??K>Vj) = K 1 J + * + ξij + 1 t ή i J + ι ) A u s + 2 4- (higher terms), j< Θ{

where Aij = aij-~aitθi+ιAitθi + 2 for j<θ{. By the assumption, we have aij = ajf

bij = bj, ζij = ζj for j<θi. Put θo = mm(θu--,θs). Then C(τ) has the same toric

tangential direction of depth θ0 with C(0) and we can write C0)(τ) as:

(6.2.4)

where A'i+ί:=a'i+ί--a'θ+ιA'θ+2 and by the assumption, we have d{ — ab b\ = b{,

ξ'i = ξi9 A'i+ι=Ai + ί for i<θ0. Comparing the defining equations of C ( 0 (τ ; 1), •••,

C(i\τ;s) and C ( 0(τ), we must have

/τ

(O(x,j>)= Π / M ^ ' Λ ^ I , H — +AsJ = Ai, i<θ0
i = l

As v4f 1=ail--ait9iAitθi + 1 and ̂ > 2 , this implies that

(6.2.5) 0f<Λ:—1 and

We use the following notations for simplicity. Ajfi:=Ajti for i<θj+l and ^ - ^ =

for i>θj+l. Then by (6.2.4) and (6.2.5) we get

(6.2.6) ΣAj,i = Ai9 i<θo + l and j

By Lemma 3.4.2, we have with Pjyθj+ί:=(alθj+ubjtθj+ί) that

/(C(τ;y),C(0);O)= £ «A^ i+1^, i+

Adding these inequalities for 7 = 1 , ,$ and using (6.2.5), we get

);O)< f btAi+l f ^ ,< f Mί+i^ι,
7 = 1

where the right side is equal to αk/(Ck_,,G(O);0) by Theorem 4.5. With the

assumption (6.1.2), we get 7(O(τ),O(0);O) = Σ* = s l 6 i ^ i + 1 ^[ i , which is equivalent to
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the following two equalities:

(6.2.7) /(C(τ;ΛC(0);O)= Σ M i + Λ * J=l->s

(6.2.8) Σ*j.t=Aι> i=U-;k
j= i

By (6.2.6) and (6.2.5), (6.2.8) is equivalent to θo = k-l. Therefore (6.2.) and (6.2.8)
holds if only if £?£ = A: — 1 for i=l9 ~9s and akbjk>ajkbk. But, assuming that
aφjQfk^-ajo,kbk f°Γ s o m e 7 o > w e obtain the inequality:

k-l s

> Σ Mι + i4 + Σ ajΛ
i = l 7 = 1 i = l

which contradicts « fc/(Q-i^W; O)>/(C(0),C(τ);(9). So, we must have akbjΛ

= aj,Φk> j=h~-9s- As gcd(ak,bk) = gcd(ajk,bjΛ)=l, this is possible if and only if
ajk = ak and bjk = ak. Again this gives a contradiction: Ak = Aί>Λ+ ••• -4-^4^ = ̂ ^ .

This proves the irreducibility of C(τ) and the proof of Theorem 6.2 is now

completed.

7. An example of an equi-sίngular family. We study a typical equi-singular
family ft(x,y) :=f(x,y) + txm, where f{x,y) is a monic polynomial whose Newton
diagram A(f;(x,y)) is a triangle with the vertices A=(0,n\ jβ = (ft1^2>0), C=(ra,0)
with m>bίA2, having the initial expansion /(x,^) = (yai + ̂ 1x

bl)^2 + (higher terms),
aί>2, and defining an irreducible germ of a plane curve C={f(x,y) = 0} at the
origin. Then the α-th Tschirnhausen approximate polynomial of ft(x,y) does not
depend on t for any a\n with \<a, so we can apply the previous consideration
to the family of germs C(ή:={(x,y)eC2;ft(x9y) = 0}. A similar family is studied
by Ephreim [7] using polar invariants. Let {P—Xa^bi); /=1,•••,/:} be the weight
vectors of the Tschirnhausen resolution tower. Let ht be the Ai+ r t h Tschirnhausen
approximate polynomial of ft(x,y) for /=l , ,fc —1 and let C{, = {(x,y)eC2

Hχ,y)}.

Propositon 7.1. PF/7A ίΛ̂  αέov^ assumptions and notations, we have I(C(t),
C(s);O) = nmfor tφs and akI(Ck-uC(t);O)<nm for any teC.

Proof. For the proof of the equality, note: I{C{t\C(s); O) = d\mcC{x,y} /(fsjt)
and therefore it is equal to dimcC{x,y}/(ft,(t—s)xm) = nm. To prove the inequality,
we first observe the Newton diagram Δ(hk_x) is a subset of the triangle Δ' whose
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vertices are Af = (0,n/ak), B' = (blA2/ak,0)9 C' = (m/ak,0). Here the Newton diagram

A(h) of a polynomial h(x,y) = ΣM = (v μ)

cMxvyμ is the convex hull of the lattice point

M with cM φ 0. In the case of m = n, the assertion follows from the Bezout theorem

in P2\ akI(Ck-uC(ή;O)<akCk-ί'C(ή = n2 = nrn, where C is the projective

compactification of C cz C2 and the right side is the intersection number in P2. In

the case mφn, we need another argument. Choose a small ball B centered at

the origin B containing no other intersection than the origin O. Let

fi(x,y)=fjίx9y) + ε1 and ht

k^1{x9y) = hk^1(x9y) + ε2 and let C{s)f = {{x,y)eC2 \f^{x,y)

= 0} and Cfe_! = {(x,y)eC2'9hk_ί(x,y) = 0}. For sufficiently small ε1? ε2 the

intersection C(s)rnCk_1 is a subset of the torus C* 2 and the number of the points

of C(s)'r\C'k_γ in B counted with multiplicity is equal to I(Ck_uC(ή;O). The

Newton diagram Δ := Δ(/̂ ' (x,y)) is the triangle with vertices 0, A and C. The

number of intersection points C(s)''Ck_i in C* 2 is bounded by the theorem of

Bernshtein ([6,30]):

Here F2(Δ1,Δ2) is Minkowski's mixed volume and we have used the monotone

increasing property of Minkowski's mixed volume to the inclusion Δ(Afc-i)

c=Δ/α fc. See [6,30]. As C{s)'- Q . ^ / ί Q - ^ C ^ ) ) , the inequality of the pro-

position follows. Q.E.D.

8. The equί-sίngularity at infinity and the Abhyankar-Moh-Suzuki theorem. Let

F: C2 -> C be a polynomial mapping of degree n. We say that τ e C is a regular

value at infinity if there exits a large number R and a positive number δ so that

the restriction F.E^R.δ)^ Dδ is a trivial fibration where

Dδ = {ηeC;\η-τ\<δ}, EJR,δ)={(x,y);F{x,y)eDδ, Λx\2+ \y\2>R}

Let Ct = F~l(t) and let Ct be the projective compactification. The set

Ct — Ct = {pί,'",p^} c= L^ does not depend on t. We recall the following result:

Proposition 8.1 ([11]). A complex number τ is a regular value at infinity if

and only if the family of germs of plane curves {{C^p^ teC} is topologically stable

at t = τ for any / = 1 , •••,/.

We consider hereafter the simplest case that C o has one place at infinity, say

at p =(1 0 0). Namely assume that ί = 1 and the germ (C0,p) is irreducible. Then

F(x,y) is written as

(8.1.1) F{x,y) = (γai + ξ1x
cι)A2 + (lower terms), ci<a1, n = aγA2.

for some positive integers aί9 ci and A2 with ai<2. As C0nLO0 = {p} and C o
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is assumed to be locally irreducible at p, the polynomial F\x,y) has only one

outside face and its outside face function has only one factor. See [19] or [30]. The

standard affine coordinates u = Z/X, v= Y/X are centered at p and the curve Ct

is defined by {ft(u, v) = 0} where /f(w, ϋ) =f{u, v) - tun and f[u, v) = F{ 1 / w, V / ύ) x un. In

this simplest case, we have the initial expansion

(8.1.2) f{u,v) = (vaί + ξίu
bι)A2 + higher terms)

here bi=aι-cι. Let Ct

ao = {(u,v)eC2;J{u,vj):=J{u,v)-tun = 0}. We can apply

Theorem 6.2 using Proposition 7.1 to this family and we obtain:

Theorem 8.2. For the mapping F and the family {(Ct"
>,O);teC} the following

holds:

(1) The family of germs of germs of plane curves {(Cf°°,0);ίeC} is an equi-singular

family of irreducible curves and the Tschirnhausen approximate resolution tower of

(Cf°°,O) resolves simultaneously each curve of the family {(Ct

co,0);teC}.

(2) The mapping F:C2->C has no critical point at infinity.

Ephraim has also obtained a similar result about the equi-singularity using

a different method [7]. See also Moh [21].

Before giving applications, we will need the following facts. Let D a P2 be a

projective curve of degree n and let qί9'-,qv be the singular points of D. Then

by Pliicker's formula and by Mayer-Vietoris argument, the topological Euler

number of D — {qu--,qv} is given by

From this equality follow two equivalences. First, μ(D;q1) = (n — \)(n — 2) if and

only if the curve D — {qί} is smooth and homeomorphic to the line C. Second,

μ(D;qί) = (n—\)(n — 2) — 2g and v = l if and only if the curve D— {qγ} is smooth

and homeomorphic to a punctured Riemann surface of genus g. As a first

application, we will give an elementary proof of:

Theorem 8.3 (Abhyankar-Moh [5], Suzuki [31]). Let F(x,y) be a polynomial

of two variables of degree n and assume that the plane curve C= {(x,y) e C2 F(x,y) = 0}

is smooth and homeomorphic to the complex line C. Then there exists another

polynomial G{x,y) so that (F9G) is an automorphism of C2.

Proof. The polynomial F(x,y) has one place at infinity, say at p = (1 0 0). To

prove the theorem by the induction on n = degree F{x,y), it is enough to show that

cγ = 1 in (8.1.1). In fact, if cγ = 1, we apply the coordinate change (X, Y) = (yaι 4- ζγX.y)
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and achieve degF{{X— Yaι)/ξu Y)<n. Therefore the assertion is proved by the

induction on degF.

Let Co°° and C o be as above. We have μ(C£);O) = (n-l)(n-2) since the

smooth part of the curve Co is homeomorphic to the line C. Let us consider the
Pk

Tschirnhausen approximate resolution tower of (C<5°, O): ZΓ = {Xk -• Xk_ ί -»
P\

-+X1-+X0 = C2} and let P^'fab^, i = l , ,Λ be the weight vectors of the

tower. Then by Theorem 5.1 and n=Al9 we have

which leads to

(a)
i=ί

From Theorem 4.5 and Bezout theorem, we deduce

(b)

since akI(Ck-uC(0);ξo) = Σk

i = 1aibiAf+1<akCk-1 C(0) = A2

1. Now we are ready to

show ci = l. We follow the proof of Abhyankar-Moh, Lemma 3.1, [5]. Recall

that c1=a1—bι. For the case &>2, the equality (a) reads (a1 — I)b1=(a1 — 1)2.

Thus we get c1=aί—bί = l. For the case k>2, we rewrite (a) and (b) as

(c)

(d)
ϊ = 2

Thus taking the sum: (c)xA2 + (d) x(l—A2), we obtain

i = 2

The left side is obviously negative. The right side is negative only if cγ — 1, which

completes the proof.

Theorem 8.4. The weight vectors of a good toric resolution of the singularity

at infinity of a smooth acyclic curve in C2 satisfy Z?£ = α(_ i^— 1 for each ι = l , « ,fc,

where ao = l.
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(e)

Proof. Substituting cx = 1 in (c) and (d), we get

(0 Σ
ί = 3

where c—a^^ — bi for ι = 2, ••-,£. Thus again taking the sum: (e)xv43-f(f)
x(l—Λ 3), we obtain

ί = 3

The left side is obviously negative. The right side is negative only if c 2 = l. The
assertion for i>2 can be proved by an easy induction. Q.E.D.

The following example shows that all weight vectors having the property of
Theorem 8.4 occur.

EXAMPLE 8.5. Let α f >2, i=l,-9k be given integers, and let n = ai"ak. Let
us consider the sequence of automorphisms:

where xo = x and xt=y. Let F(x,y) = xk + ί(x,y). Then F(x,y) obviously satisfies
the assumption of Theorem 8.3. Let

(*l)

2<i<k

and let /(w, v) = hk(u, v). Then (Co°° O) is defined by Co°° = {(w, v) eC2 f(u, v) = 0}. It
is easy to see that Λr is the Λ ί+1-th Tschirnhausen approximate polynomial of/
By an inductive argument we can prove that the weight vectors of the Tschirnhausen
approximate resolution tower are given by

and the pull-backs of the Tschirnhausen approximate polynomials to Xt are given by
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vi) = u?iihJψjLί+ξi + ίfϊj_2u?''aJ^

where fϊJ{ui,vί)'=Φ^hJ(uhvι)/wfl(/lj) and ξi+1 is a unit in a neighbourhood W{ of

Ξ, . The Milnor number is equal to (n —1)(« — 2) by Theorem 5.1. It is convenient

to introduce the notation ao = \ and mo(Af)=0 to understand (JfJ as a

special cases of (#f+i).

REMARK (8.6). Let F[x,y) be a polynomial of degree n and coefficients in a

subfield & of C, such that the curve C={F(x,y) = 0} c= C2 is smooth and

contractible. Then the completion of C requires one extra point p at infinity

having its coordinates in k. So, after a linear change of coordinates defined over

k, the pencil Lt = {y = ί} ί e C passes through p. Let (5(0,0 be the barycenter, computed

in the affine line Lt, of the points of the intersection LtnC, weighted

by the multiplicity. The automorphism (x,y) -+(x — B{y\y\ which is defined over

£, moves the curve C to a curve C" of lower degree and having at infinity one

Puiseux pair less. In the notation of Theorem 8.3, we can write B(y)= —yaι/ξ1

4-(lower terms). The iteration of this procedure constructs an automorphism

defined over k, which moves the curve C to a line. Of course, we can apply this

procedure to any curve D = {G(x,y) = 0}, as long as the completion of the curve

D has only one irreducible singularity at infinity and c 1 = l. After at most

log2(degree(G)) automorphism applied to the curve D, either the curve D becomes

a line and the equation linear, in which case the curve D was smooth and

contractible, or the curve D becomes a curve for which c±>2. This provides a

test for the contractibility and smoothness of the curve D. It is straightforward

to make a fast testing procedure with the help of Maple or Mathematica.

We can apply the above remark and argument to get:

Theorem 8.7. Let C a C2 be a smooth curve homeomorphic to a Riemann

surface with one puncture of genus g, g=l or 2. Then there exists an automorphism

of C2 moving the curve C to a smooth cubic curve which is tangent to the line at

infinity with the intersection multiplicity 3 if g = l, and to a curve of degree 5 with

a cusp singularity at infinity, which is homeomorphic to U5 + M 3 = 0 , if g = 2.

Pk PI

Proof. Let F={Xk -• Xk_x -• > Xt -> Xo = C2} be a Tschirnhausen tower

of resolution of the singularity at infinity with the corresponding weight vectors

{p. = \abb^ / = 1, -,k} as before. Applying barycentric automorphisms if necessary,

we can assume that cί>2 (see Remark 8.6). The equalities (a) and (c) take the
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following form.

K)
i=ί

(cg) Σ M « -
i=2

The inequality (b) and (d) are valid as before. Then taking the sum:

(cg)xA2+(d)x(l— A2\ we obtain

(eg) 0>ΣbiAi+1(Ai-A2)>A2

2((aί-\)(cί-\)-\)-(2g-l)A2.
i=2

Note also that ax>3 by the assumption cί>2.

(1) Assume first k=\. Then we have (aί — l)(c1 — 1) = 2g. So, for the natural

number c1:=a1—bι we have aί>cί = l+2g/(aί — l). We conclude that aί=3, if

g = l and that α1 = 5, if g = 2.

So, for g=l, we have ^ = 3 , c1 = 2. As έj = l, the curve C has no singularity at

infinity but C is tangent to the line at infinity with the tangent multiplicity 3. An

example of such curve is given by C={y 3 + x 2 + l = 0 } . For g — 2 we have aί = 5

and cγ = 2. An example of such curve is given by C= [y5 +x2 + 1 =0}. The curve

C has a non-degenerate cusp singularity at infinity.

(2) Now we show the case k>2 does not occur.

With aί>cί>2, we deduce from the inequalities (eg):

(*) Λ2< ??—ί <{2g-\)

If g = l , we get, from (*), A2 = \, and hence k = \.

If g = 2, we reduce from (*): >4 2 ^^ that A2 = l,2 or 3. We first rule out the case

A2 = 3: indeed, from (*) we conclude k = 2, aί=3, c 1 = 2 , fex = 1. So, a2 = A2 = 3,

n = 9 and έ 2 = 18 by (ag). This is not possible since we have assumed gcd(fl2>&2)

= 1.

Next, we rule out the case A2 = 2: from (*), we conclude k = 2, « i = 3 , cί=2,

bί = l. So, a2=A2 = 2, n = 6, bί = l and b2 = ll by (ag). Thus the tower has the

weight vectors Pί ='(3,1) and jP2 = ί(2,ll). No easy contradiction yet. However

we assert that there is no polynomial f(u,v) of degree 6, irreducible at the origin,

whose weight vectors are as above. Indeed, let/(M,ι;) = (t?3 + w)2 + Σ vc vw
vV2 where

6<3v 1 + v2, v 1 + v 2 < 6 . Consider an admissible toric modification p:Xχ -+C2.

We may assume that σ = ConciE^Py) is the left toric cone of the divisor E{Pi) and let

(sj) be the toric coordinates. Then we have u = st3 and v = t. The pull backs

can be written as π*(v3 + u)2 = t6(l+s)2 and π*ι/vV2 = .yVl/3vi + V2. So, in t~6n*f(s,t)
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the monomial tίl does not occur and hence P2 is not the second weight vector
for/(w,ι;). Thus this case does not occur. So A2 = ί proving fc=l. Q.E.D.

REMARK (8.9). Using (*) and the inequality: 2{k~ί)<A29 we get the following
estimate for the length of the tower:

fc<log2(2g-l)+l, for g>U c^L

The classification for g>3 is more complicated, as the model is not unique. For
example, in the case of g = 3, we can move C by an automorphism to one of the
following.
(a) k=l9 P 1 = ί (4, l) and n = 4. The curve is smooth at infinity and tangent to
the line at infinity at a single point. An example is given by J>4 + JC3 + 1=0.
(b) & = 1, />

1=
ί(7,5) and n = Ί. The curve has a non-degenerate cusp singularity

at infinity. An example is given by >>7 + Λ:2 + 1 = 0 .
(c) k = 2, Pi = \39l)9 P2 = \2,9) and « = 6. An example is given by (y3 + x2)2+x.

We thank Professor Walter Neumann for communicating to us the reference
of his earlier work [23], in which he obtained the classification of smooth affine
curves with one place at infinity for g<4. Professor M. Miyanishi recently
communicated to us that he gave a new proof of Theorem 8.3 using the classification
of surfaces [9]. Also, the paper [34] contains interesting results about contractible
affine curves with one isolated singularity.
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