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1. Introduction.

The weight vectors of a resolution tower of toric modifications for an irreducible
germ of a plane curve C carry enough information to read off invariants such as
the Puiseux pairs, multiplicities, etc [29]. However, each step of the inductive
construction of a tower of toric modifications depends on a choice of the modification
local coordinates. This ambiguity makes it difficult to study the equi-singularity
problem of a family of germs of plane curves or to study a global curve. It is
the purpose of this paper to make a canonical choice of the modification local
coordinates (;,0;) (Theorem 4.5), and to obtain a canonical sequence of germs of
curves {C;;i=1,---,k} (C,=C) such that the local knot of the curve C; is a
compound torus knot around the local knot of the curve C;_,. We will show
that the local equations /(x,y) of the the germs {C;;i=1,---,k} are the Tschirnhausen
approximate polynomials of the local equation f(x,y) for C, provided that f(x,y)
is a monic polynomial in y.

The importance of the Tschirnhausen approximate polynomials was first
observed by Abhyankar-Moh [3,4], and our work is very much influenced by
them. However, our result gives not only a geometric interpretation of [3,4] but
also a new method to study the equi-singularity problem, see [35], for a given
family of germs of irreducible plane curves f(x,y,f)=0 whose Tschirnhausen
approximate polynomials Ay(x,y), i=1,---,k—1 do not depend on ¢.

In section 6, we show that a family of germs of plane curves {f,(x,y)=0} with
Tschirnhausen approximate polynomials A(x,y), i=1,---,k—1 not depending upon
t and satisfying an additional intersection condition is equi-singular (Theorem 6.2).
In section 8, we will give a new proof and a generalization of the Abhyankar-
Moh-Suzuki theorem from the viewpoint of the equi-singularity at infinity (Theorems
8.2, 8.3, 8.7).

This work was done when the first author was visiting the Department of Mathematics of the
Tokyo Institute of Technology in the fall of 1993. We thak the Dept. of Math. of T.LT. for their
support and hospitality.
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2. Tschirnhausen approximate polynomials of a monic polynomial.

Let f()=y"+ X! ;c" " be a monic polynomial in y of degree n with coefficients
in an integral domain R which contains the field of rational numbers @, and let
a be a positive integer such that a divides n. The n/a-th Tschirnhausen approximate
polynomial (or the n/a-th Tschirnhausen approximate root) of f(y) is the monic
polynomial h(y)e R[y] of degree a such that degree (f(y)—h(»)")<n—a. The
coefficients of A(y)=p"+Z{_ 0" " are inductively determined by: ao=1 and
c(X)=Zj 4.4 =it (x) - aj(x) for i=1,---,a. The coefficient o; is a weighted
homogeneous polynomial of degree j in the variables c,,---,c, with weight(c;)=/,
1<j<a. In our application R will be the ring C{x} or (Tx]. For further detail,
we refer to [3,4,32]. From the Euclidean division algorithm, it follows that

Proposition 2.1. Let h(y)e R[y] be monic of degree a in y, and let P(y)e R[y]
such that sa<deg,P(y)<(s+1)a. Then there exits a unique expansion, called the
Euclidian expansion, P(y)=ZXi_ o))", where a(y)eR[y], i=0,---,s, satisfy
deg,o(y)<a. In particular, we can expand f(y) with respect to its n/a-th
Tschirnhausen approximate polynomial, as f(y)=h(y)"*+Z/,c(n)h(y)"*~", deg,c{y)
<a. If f)=f(x,y)e CLx][y], the coefficients c(y)=c{x,y) are also polynomials in
x and y.

The second assertion is immediate from the Euclidian expansion of f—h™?.  We
call the above expansion the n/a-th Tschirnhausen expansion of f(x,y). The
expansion of P(x,y) with respect to A(x,y) will also be called the Tschirnhausen
expansion if h(x,y) is a Tschirnhausen approximate polynomial. Tschirnhausen
approximate polynomials behave hereditarily in the following sense.

Proposition 2.2. Assume that a,b>2 are integers such that ab|n. Let h and h' be
respectively the n/a-th and n/ab-th Tschirnhausen approximate polynomials of f and
let W =h*+Xb_ ch"~", deg,c;<a, be the Tschirnhausen expansion of h' with respect
to h. The first coefficient c, is zero and h is the ab | a-th Tschirnhausen approximate
polynomial of K.

Proof. With m:=n/ab, we have deg(f—h™)<n—a and deg/(f—h™)
<n—ab. Using the expansion of &’ with respect to h:h'=h"+XZ!_ ch*~", deg,c;<a,
we get

b m
h,m=((hb+clhb— l)+ Z cihb—i) =hMb+mC1hMb_ ! +R1 +R2 ’
i=2

where R, :=Z" ,(Mch™ " and R,:=Z" (MR +c B~ Y"1 (Zb_,ch® Y. If ¢y #0,
we would first conclude deg R, <n—a+deg,c,, deg,R, <n—a, and then
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n—a>deg,(f—h™)=deg,(f—h™+mc, A"~ + R, + R,)

=deg,(c;A™" )= (mb—1)a=n—a.

So ¢;=0 and it follows that degyh'—h")=deg(Z}.,ch’ )<ab—a. By the
uniqueness of the Tschirnhausen approximate polynomial, the above inequality
implies that A is the ab /a-th Tschirnhausen approximate polynomial of #’. Q.E.D.

The generalized binomial formula: (1+42)" =X ()2’ for r>0, with coefficients
():=r(r—1)---(r—j+1) /!, converges for |zl<1. When r is a rational number p /g,
the identity: ((142z)"9)?=(1+z)? gives a recurrent computation of the coefficients
of (14+2)"4. In particular, with Trunc(1+z)?/4:=X/_("/9)z/, it follows that

(2.2 1 ) Va]z((l -+ Z)p — (Trunc(/)(l + Z)p/q)q) >/

For a real number x€ R, denote by [x] the largest integer n such that n<x.

Lemma 2.3. Assume that a, b, ¢, d are positive integers such that gcd(a,b)=1
and that d divides ac. Let F(y,z)=(y"+z%° and H(y,z)=y*"“Trunct(1 4 zb / y?)/4,
Then H is the d-th Tschirnhausen approximate polynomial of F(y,z) as a polynomial of y.

Proof. The polynomials Fy,z) and H(y,z) are weighted homogeneous of
degree abc and abc/d respectively with respect to the weight vector P='(b,a). In
particular, the monomials in Fy,z) and H(y,z)! have the form y*z%/ with
i+j=c. Note also that deg ,F(y,z)=ac,deg H=ac/d and deg (F—H")<ac—a[c/d]
by (2.2.1). As ac—ac/d>ac—a[c/d]—a, this implies the inequality: deg,(F(y,z)
—H(y,z)")<ac—ac/d. Q.ED.

3. Toric modifications and strict transforms

3.1. Basic properties of toric modifications (see [26,29,30,33]). Let (x,y) be
a fixed system of local (or global) coordinates of C? at the origin. Let N be the
lattice of integral weights for the monomials in (x,y). The weights E,(xy*)=a
and E,(x“y%)=b span the lattice N, and a weight o,E, + B,E, will be denoted by
the integral column vector “(«;,8;). Let N* be the space of positive weight vectors
of N, and similarly let N{ be the positive cone in Ng:=N®_,R. A simplicial
cone subdivision £* of N7 is a sequence (T}, -, T,,) of primitive weights in N*,
called the vertices, such that Ty=E,, T, =E, and det(T}, T;, ) =det g, g,(T;, T; 4 1)
>1holds. The m+1 cones Cone(T;, T;y):={tT;+sT;+,;t,5>0}, i=0,---,m, cover
without overlap the cone N . The subdivision Z* is called regular if det(T;, T; 4 ;)= 1
for each i=0,---,m. Let o; be the integral matrix mapping E, to T; and E, to
Tiiy.

Using a birational mapping @y : C2 = C2, @plx,y)=(x*", x°y%) for an integral
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. . a
unimodular matrix M =<
c

a regular simplicial cone subdivision X* is defined as foliows. The non-singular
complex manifold X is covered with m+1 so-called toric coordinate charts
{CF, (X50Y5)}> i=0,---,m, where points (x,,y,)e CZ and (x,,y, )€ C?, are identified
if and only if the birational map ®s;: 14, is defined at the point (x,,y,)e C?
and ¢, 1,(X,,Y0)=(X,,y,). The morphism =,:CZ — C? defined by n,(x,.¥,)
=¢,(x,,y,) are compatible with the identifications and define a proper birational
analytic map p: X — C2. A toric modification is a composition of finite blowing-ups
(see [18]). The exceptional divisor p~!(0) is the union of m rational curves
{E(T);i=1,---,m} and each one is covered by its left chart C?2 | and its right
chart C2 and defined by the equations {x, =0}, {y,,_,=0}. Thus only £(T) and
E(T,,,) intersect transversely at the origin of the chart C?. The non-compact
divisors E(E,):={x,,=0} and E(E,):={y, =0} map isomorphically onto the axis
x=0 and y=0.

b
d)’ the toric modification p: X — C? associated with

3.2. Admissible toric modifications. Let f(x,y)=ZXa,,x*y* be the Taylor
expansion of a germ of a holomorphic function f with f(0)=0. The Newton
polygon I .(f;(x,)) of f(x,y) is the convex hull in Ng of {(« +s,,B+t)eR2;aa,ﬁé0,
5>0, t>0} and the Newton boundary I'(f;(x,y)) is the union of the compact faces
of T ,(f;(x,y)) (see [26,27,29] for instance). The Newton boundary I'(f;(x,y))
contains only a finite number of faces of dimension one. Each positive weight
vector P="'(p,q)e N* defines a non-negative function on I' . (f;(x,y)), for which we
denote by d(P;f) its minimal value and by A(P;f) the face or the vertex where
this minimal value is taken. We consider on N* the equivalence relation: P~ Q
if and only if A(P;f)=A(Q;f). The dual Newton diagram T'*(f;(x,y)) of f(x,y) is
the conical subdivision of N * given by the equivalence classes. Let P;="(a;,b)eN ™,
i=1,---,m be the ordered list of primitive weight vectors such that A(P;;f) is the
list of the one-dimensional faces of I'*(f;(x,y)) and det(P,,;;,)=ab;s—a;+16;>0,
i=1,-,m—1. The face function fp(x,y): =2 pearpsrapX’y’ admits a product
decomposition fp,(x,y)=cx"y* 15 (y% —y, ;x*)* with distinct non-zero complex
numbers ; ,-*-,Yix,- Recall that f(x,y) is non-degenerate if and only if v; ;=1 for
any i, j. The partial sum A(f)x,y)=2"a, x*y* over all («,f)el(f;(x,y)) is the
Newton principal part A (f)(x,y).

A regular simplicial cone subdivision X* with vertices {To=E, Ty, -, T}, T+,
=E,} is called admissible for f(x,y) if * is a refinement of the dual Newton
diagram T*(f;(x,y)), meaning P;="a;,b)e{To, Ty, Ts,T;+,}, i=1,---,m. Note
that £* is admissible for f(x,y) if and only if A(T;;NNA(T ;1) #9,j=0,---,£. The
corresponding toric modification p: X — C? is called admissible for f(x,y).

Basic properties of admissible toric modifications are:

(3.2.A) The divisor E(Tj) meets the proper transform C if and only if 7} is a



TSCHIRNHAUSEN RESOLUTION TOWER 1007

primitive weight P;.

(3.2B) The divisor E(P;) intersects C at k; points. In the right toric chart
{C,,(x5,Y,)}, 0;=Cone(T},T;,,), P;=T;, the intersection CnEP) is {(0,y:,),
. 'a(O’Vi,k1)}'

(3.2.C) The divisor of the pull back p*f of the function f is given by

¢+1

(0*N=3 3 Cut ¥ dT;i NAT)

where C’,;, is the union of components of C which pass through ©0,7:.0)-

(3.2D) If f(x,y) is irreducible as a germ of a function at the origin, then m=1
and k,;=1.

(3.2.E) If fis non-degenerate, the curve C’,-, ;is smooth and C‘,-, j intersects transversely
with £(P). Thus, if f(x,y) is non-degenerate, the modification p is a good resolution

of f(x,y) (see [18]).

3.3. Intersection multiplicity with a reduced irreducible germ. Let C={f(x,y)
=0} be a reduced irreducible germ of a curve. The defining function admits for
a weight P,='(a,,b,) an initial expansion f(x,y)=("+&,x*")*2 4 (higher terms)
with &, #0 and gcd(a,,b,)=1, where “higher terms” collects the monomials of
P,-degree strictly greater than a,b;4,. Let C’' be another (not necessarily
irreducible) germ of a curve defined by C’'={(x,y)e U;g(x,y)=0}. Let p:X - C?
be a toric modification admissible both for C and C’, and let E, be the interesection
point of C and E(P,). Then

Proposition 3.3.1 (Lemma 7.12, [29]). The intersection multiplicity of C and
C’ at the origin is IC,C';0)=d(P,;8)A,+IC,C";Z,). The term IC,C';E,)
vanishes if and only if gp(x,y) is not divisible by (y*'+¢&xP). If g(x,y) has
for a primitive weight vector Py ="'(a},b}) the initial expansion g(x,y)=(y" + &, xb1)42
+ (higher terms), then d(P,;g)A,=min(a,b),a1b,)x A,A’, and moreover IC,C";E,)
=0 if and only if either P, #P| or P,=P| and &, #¢&,.

3.4. A resolution tower of toric modification for an irreducible germ. Let C
be an irreducible germ of a plane curve and let

Pk Pk-1 p1
g.={Xk—>Xk—'l g "'—"Xl'—)Xo}

be a sequence of non-trivial toric modifications where each p;,;:X;,+, — X; is the
toric modification associated with a regular simplicial cone subdivision X} of the
cone Ny in the space of weights for a local system of coordinates (u,v) of X;,
centered at the center E;e€ X; of the modification p;,,. Let E;,,---,E; be the
exceptional divisors of p;: X; = X;_,;. By abuse of the notation, we denote by the
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same E;;, the strict transform of E;; to X, for any £>i. Thus the exceptional
divisors of the modification @, :=p;o---op,: X, » X, are {E; ;}, 1<i<k, 1<j<s;.
Denote by E,eE,; ;,nC? the preimage of the singularity in the strict transform
C9 of Cto X;. We call 7 a resolution tower of admissible toric modifications if
the following conditions are satisfied ([29]).

(i) X, isan open neighborhood of the origin O of C?, (ug,v,)=(x,y) and E, = O.

(i) The modification p;,:X;,, = X; is non-trivial and admissible for ®F f(u;,0,),
i>0.

(ii)) The coordinate u; is simply the restriction u;=x,,| W; of the coordinate x,, of
the right toric chart of E; ;5 to a neighborhood W, of ;.

(iv) pE)=Ei-;.

(v) The composition @,: X, - X, is a good resolution of C.

The weight vectors P;="(a;,b;) corresponding to the exceptional divisors E, 4, for
i=1,---,k are the weight vectors of the tower ([29]). If the tower J is admissible
for C, there exist for i=0,---,k—1 non-zero complex numbers &€ C so that
CO={(u,v)e W;; (0¥ + &4 jubi*)*+2 4+ (higher terms)=0}, where C®=C and
Aj=a;--a, j<k and 4, ,,=1.

Let D={(x,y)e C?;g(x,y)=0} be an irreducible, not necessarily reduced, germ
of a plane curve at the origin of C>=X, and let D be the strict transform of
D to X;. If D has the same toric tangential direction of depth 6 with C with
respect to 7, ie. if ,eD? for i< and E,, ¢ DY, there exist a non-zero
complex number &,,,, a positive integer A,,,"” and a primitive weight vector
Py, :="ay+1,bp+ 1) such that

{u,v)€ Wi (031 4+ &, qubi* )4+ 2 4 (higher terms) =0}, i<0

(3.4.1) D‘“={ , e . .
{1, 09) € Wy ; (vgo+1 + &g 4 (ube+1)4e+2 4+ (higher terms) =0}, i=0

where Aj=a; - agay, 1 Ay2, j<O0+1. If Py, ='(1,0), the transform D is defined
by {v§212=0} since D is irreducible. The case Py,,='0,1) does not occur as
{1y, =0} is nothing but E(P,). Put

M ’ ’ : ’ !
min(@g+ 159+ 1,9+ 109+ 1), il agy 1Dg11,a541Dp4+1>0

1Py, Pyyq)= .
( 6+1 0+1) {b9+1, lfP;H.l:'(l,O)

By induction, using Proposition (3.3.1), we get

Lemma 3.4.2 ([29]). Assume that D has the same toric tangential direction of
depth 0 with C with respect to . Under the assumption (3.4.1) on D, the local
intersection multiplicity is

[)
I(C,D;0)= Z abiAi s 1 Aiv 1+ 1(Poy g, Pyy 1) X Agy2Ag s,

i=1
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Let D,,---,D, be the irreducible components of a reducible plane curve germ
D. We say that the reducible germ D has the same toric tangetial direction of
depth 0 with C with respect to 7 if 8,€ D forany j=1,---,rand i<fand Zy, , ¢ D+ "
for some jj,.

4. A Tschirnhausen resolution tower for an irreducible germ

Lemma 4.1. Let p: X — C? be a toric modification with respect to a regular
simplicial cone subdivision £* of N*. Let o=Cone(P,P’) be a cone in T* and
g(x,y)e C{x,y}, such that A(P;g) is a vertex. At each point EeEA(P)-UQ;e PE(Q)
the function p*g/x®9 is a unit.

Proof. Let {(v{,v,)}=A(P;g) and c#0 be the coefficient of x"'y** in
g(x,y). Then the pullback p*g factors x2®F:9ydP 9 ey 4 x o'(x,,y,)} for some analytic
function g'(x,,y,) and «a>0. Moreover, a=0 if and only if A(P';g) > A(P;g). In
conclusion, p*g/x4®9 is a unit at E since y, is. Q.E.D.

In particular, if P="%(a,b) and I'(g;(x,y)) < {(v{,v,); Vv, <a} or if g(x,y) e C{x}[v]
and degg <a, the face A(P;g) is a vertex, and the lemma applies.

A. Tschirnhausen resolution tower

4.2. Let f(x,y)e C{x}[y] be monic of degree n and irreducible with the initial
expansion

4.2.1) f(x,9) =" + &, xP)*2 4 (higher terms), a,>1

for the primitive weight vector P,='a,,b,) with n=a,4A,. The n/a-th
Tschirnhausen approximate polynomial H,(x,y) is a monic polynomial of degree
a in y and defines at the origin the germ of the curve D,:={H,(x,y)=0}.

4.3. First observation. Let p,:X, » C? be an admissible toric modification
with respect to a regular simplicial cone subdivision X} for f(x,y). The strict
transform C™ of C to X, intersects only with E(P,), say at the point Z,. In
the chart C%, where P\ =%(a},b}) and o,=(P,,P}) is the right cone of E(P,), we
have E,=(0,—¢,). Put hy(x,y):=H, , C;:=D, . For a multiple a of a, with
a|n, the A,-th (resp. n/a-th) Tschirnhausen approximate polynomial of (y* + &, x?1)4
is the face function h,p, (resp. H,p ), hence h, and H, can be written as:

@.3.1) {’M(X,J’) =y" +¢,xP* + (higher terms)

H(x,y) ="+ & xP")"/ 4 (higher terms),  ifa, |a

In particular, ,(x,y) is non-degenerate. As pf(y™ +¢&,x")=x2b1ylibiy, +¢&,), we
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can write p¥hy(x,,7,)=XePyal (1, + &)+ X0, R(Xs 500 R(Xg,sVa) € C{Xy sV e, )
The functions

ul =x01 ’ 01 =pikhl /lelbl =y:'llbl((yo'1 + él)+xa|R(xal’yal))

give a system of coordinates (u,,v,) in a neighbourhood W, of E,. The strict
transform C{" of C, to X, intersects only with E(P,) and p¥h,=uftv,,
C{"={v, =0}, so C, is irreducible and p, is a good resolution of C,.

If A,=1, we have f=h, and we have nothing to do further. If 4,>2, the pull
back p¥f(u,,v;) has an initial expansion

4.3.2) p¥f(uy,0) =uP D + &,u’2)* + (higher terms)

with primitive weight vector P,='(a,,b,) where the multiplicity of ®%f on E, is
my(f)=a,b,A, by (42.1). Note also 4,=a,A4; and I(C,,C;0)=a,b;A,+b,A; by
Lemma 3.4.2. The advantage of the “Tschirnhausen coordinates” is the inequality
a,>2. In fact, in the Tschirnhausen expansion f(x,y)=h,(x,y)*?+2f2,c(x,
Whi(x,p)*277 of f(x,y) with respect to h, we have cjx,y)eC{x}[y] and
deg,cx,y)<a,, j=2,---,A,, so the face A(P,,c)) is necessarily a vertex. Therefore
by the definition of the coordinate (#,,v,) and Lemma 4.1 in a smaller neighbourhood
W, of E, the pull-backs are: p}h,(u,,v,)=uT*v, with m,(h;)=a,b, and
p¥efuy,v)=uU;, where m;=d(P,,c;)) and U; is a unit for j>2 with ¢;#0. If
¢;j=0, we put U;=0 for simplicity. Thus we have

Az
(4.33) pH (g, 0) =@ )2 4+ Y WP Ufuy®dv, )42,

j=2

hence, with Q,=(m(h)4,,4;) and Q;=(m;+(A,—j)m,(h,), A,—j), the Newton
polygon I, (p}f;(uy,vy)) is the convex hull of the sets {Qy+R3%} and {Q;+R3%},
2<j<A,, ¢;#0. The Newton principal part A (p¥f)(u,,v,) contains (m(f)+b,,
A, —ay) by (4.3.2). It follows that (m(f)+b,,4;,—a,)=Q; for j=0 or for some
j=2, hence a,>2. Moreover, if ¢;#0, we have d(P,;pf¥ch{*~)>d(P,;ptf), with
equality if and only if a,|j.

Let a,|a and a|n. The following Tschirnhausen expansions start at j=2 by
Proposition 2.2:

{H,, =h{" +Z9sdhy™ e C{x}[y][h,], deg,d;<a,
f=H"+Zc;H" Ve C{x}[y][H,], degc;j<a

(4.3.4)

By (4.3.3), the principal part of p§ f(u,,v,) with respect to the weight vector P, is
(4.3.5) PHfp(ur,0) =uP PP+ Euip)t

With R,:=X7%,c;H}""J, we have that deg,R, <n—a and therefore the Tschirnhausen
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expansion of R, with respect to /i, can be written as R,=X725%*~'fh] for some
B,eC{x}[y] and degp,<a,. If B,#0, we can write pXBH,)=Uutv] by
Lemma 4.1 for a unit U, and a non-negative integer y,€N. Thus we have for
the Newton principal part

(4.3.6) deg, N (p¥R)uy,v,)<A,—a/a;—1.

So, comparing the pull-back p¥f(u,v,)=p¥H" + X}, Upiev] of (4.3.4) and (4.3.5),
we see that the monomials u™) x (A)v2)(Eul2)* " of wPD(v + &uf)y* for
i>A;—a/aja,—1/a, come from pfH}"“. The expansions (4.3.4) and (4.3.1) give
with some analytic functions g,, G,

{iﬁi“(uh vy)=uTHN Y +u, g (u,0,))

4.3.7
( ) FHY(uy,0,) = uT 02 + 1, Guy,0y))

Note that m,(H)n/a=m,(f). Applying the above argument to pEH (uy,v4), we
can conclude that the Newton boundary T'(p}H,;(u,,v,)) is situated in the region
{(vi,v;) e R*;0<v,<a/a,} and that B,:=(m,(H,),a/a,) is the vertex of the left end
of T(p¥/f ;(uy,vy)) by (43.7). Note also that (n/a)B,=(m(f),A4,) is the left end of
T(p¥f;(ug,v,) by (43.7). Let A, be the first face of I'(piH,) which contains B,
and let Q="(p,,q,) be the weight vector of A,.

Assertion 4.3.8. The inequality q,/p,>b,/a, holds.

Proof. Assuming by contradiction that q,/p,<b,/a,, we have p{fo(us,vy)
—umpz and we will prove the assertion by excluding the following three cases:
(@) d(Q;prH!)>d(Q;piR,), (b) d(Q;ptH)<dQ;ptRy), (©) d(Q;ptH)=dQ;
p¥R,). Figure (43.A) indicates the respective situations. In case (a), um Dy
=(p¥R,)olu1,v1) holds, which is impossible by (4.3.6). The case (b) is impossible
as (pFH,)o(uy,v,)" #u™Pvf? by the assumption. If case (c) holds, from (4.3.6) it
follows (p3H,)o(t1,01)"" +(PTRo)o(1,v1)#0, and then d(Q;ptH")=d(Q;pTR,)

Case (a) Case (b) Case (c)
Figure (4.3.A)
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=d(Q;pt/f) and finally the equality u™v{? = (pFH )o(u,v,)"* + (pFR,)o(uy,v,). But
this equality is impossible. In fact, let us write (p}H,)g(uy,v;) = uHHIpar 4 yysiphs
+S(uy,v,) where y #0,0< f, <a/a, and deg,, S(u,,v,) < B, if S#0. Then (p}H,)o(u,,
v =uP vtz +n/a yusivfi+ 8'(uy,v,) with deg, S'<p;, where o, =a,+(n/a
—1m(H,) and fy=A4,—a/a,+p,>A,—a/a,. On the other hand, the second
term of the right side of the equality has no monomial u}'v}> with
v,>A,—a/a,. Q.E.D.

By Assertion 4.3.8, the face function (p}H,)p,(uy,v,) for the weight vector P,
is divisible by 7™, hence H)(u,v,):=(p}H,)p,(u1,0,)/uT** is a polynomial. By
a similar discussion as above, we conclude: d(P,;p¥*f(u;,v,))=d(P,;p*H (us,v,)"*
=d(P,;p ¥R Uy, 0 Np, = FH)Y; +(@FR,)p, and deg, (v7+&Eu5)* — H"*(uy,
v)<A,—a/a;,—1. In other words, H,u,,v,) is the n/a-th Tschirnhausen
approximate polynomial of (v{2+¢&,u5)*. In particular, if a,a, divides a,
A;/(n/a)=a/a,a, is an integer and we can see easily that H.(u,, v,)= (032 + &, b2/
if a,ayla and p}H (u,,v,)=uPH)5? 4 £,ub?)?/91%2 | (higher terms). Putting 4,
=H,,,, C,=D,,, and a=a,a,, we observe that p}h,(u,,v,)=uP*)(vP+&,ub?)
+ (higher terms) and therefore p}h,(u,,v,) is clearly non-degenerate.

pPj Pt
4.4. Inductive construction of a tower. Let 7 ,={X;,-> X;_; - > X, > X,

=C?} be a tower of toric modifications with the corresponding weight vectors
P;="(a;b;) such that a,---a;|n and ¢;>2, i=1,---j. Put A;y,==n/a,---a;, i<j
and for simplicity h,(x,y)=H,, . ,(x,y), C;=D,,..,, and ®;=p,o---op;: X; > X,. Let
DY and C{®, (i>/) be the strict transforms of D, and C; to X, respectively. The
map p;: X; = X;-, is an admissible toric modification for @} , f associated with a
regular simplicial cone subdivision £* ;. Let E;=C®nX; be the center of the
modification p; ., and let (u;,v;) be the chosen modification local coordinate system
with the center 5; so that {u;=0} is the defining equation of the exceptional divisor
E;:=FEP) for i=1,---,j. We assume the following properties (1-j), (2-j) and (3-j)
for the tower.

(14) (C;,0)is a germ of an irreducible curve at the origin for i=1,---,j and the
strict transform C{” to X; is smooth and is defined by {v;=0}. The pull backs
of fand h;, i<j equal:

Py, i=j and Aj,,=1

44.1) (I),?"f(ui,v,-)z{ ’

UMDt & ubir )4+ 4 (higher terms),  otherwise

umithdy, | i=l

442)  OFhu,v)= ‘
( ) t ’(u v ) {u}"“"')(v;'“ 1y €i+ lu?i+ !)Ai+2/Al+ 1 +(hlgh€l‘ terms), i<l
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The modification coordinates (u;,v;) are characterized by (4.4.2). We assume a;,,>2
in (44.1), if A;,,>2. More generally, for any positive integer a with a|n and
a,---a;,|a, we have

4.4.3) OXH (u;,v;) =ul"(pfi+t 4 &, jubi+1)¥/a-ai+1 4 (higher terms)

Here myh;), m(H,) and mJf) are the respective multiplicities of the pull backs
Dr*h;, ®*H, and @;* fon the exceptional divisor E; and they satisfy the equalities:

mih) x Aiyy=mH,)xn/a=m{f)
m(f)=a,b14,, m(f)=am;_,()+abA;,

(24) The local intersection multiplicities at the origin are given by

I(CCO) 2“li}lasbs +1/A|+1’
(C,C;0)=XLiab A2, [(Ais 1 Aivy), 1<i<I<)

More generally, I(D,,C;0)=X%i_,ab A2 ,/(n/a)+IDP,CY;E), if aln and a,
--aj|a.

(3§) For any non-zero polynomial «(x,y)e C{x}[y] with deg,a(x,y)<a,--a;,
the pull back ®*x can be written as ®a=Uxuj in a small neighbourhood W;
of &; for some integer s>0.

If A4;,,=1, then hj=f and (4.4.1) says that ®;: X; » X, is a good resolution
of C. If A;,,>2, we will add to the tower a toric modification p;,,:X;;, = X;
keeping the above properties. Let P;.;="'a;,,b;:,) be the weight vector of the
unique face of [(®@Ff ;(u;v)) characterlzed by (44.1) and (44.2): ®}ff(u;v)
=uM (Y1 + &, uli )42+ (higher terms). Choose a regular simplicial cone
subdivision X} of the I'(®}f ;(u;v;) and make the corresponding modification
Pj+1:Xjry = X; with center ;e E;.  Then ®}h;, ,(u),v;) is non-degenerate by (4.4.2),
so in the right toric chart ¢=(P;.,Pj,;) we can write ®F  h;, (x,¥,)
=XZ““"’*"yﬁ"9+“"’*"((ya+é,-+ 1)+x,G) where mj,(h;y,) and mj,(h;s,) are
multiplicities on E; =E(Pj+ ,) and E(P}+ 1) respectively. The functions u;,, :=x,
and v, :=yri ey, + &, ,)x,G) give a system of coordinates in a neighborhood
W, of the intersection point &;,, of C%" " and E;, ;. By the definition the strict

tralnsform CUHY is smooth and is deﬁned by {v;+,=0} in W,,,. We show
(3-G+1)) first. For a(x,y)e C{x}[y] with dega<a,---a;,,, its Tschirnhausen
expansion with respect to h;:oa(x,y)=Z{L 'a(x,y)h}* ' ~!(x,y) has coefficients with
deg,a;<a,---a;. Applying 1nduct1ve]y if o;#0 we get ®Xohs ™= Upjvf+t™*
with v,>0 and a unit U;. So by Lemma 4.1, (I)JHoc—pJH((I) fo)=Uxuj, for a
unit U on W;,, and 5s>0.

If aj,;=A;,, ie, Aj,,=1, the modification ®;,,:X;,, = X, is a good
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resolution of C, so clearly we have (1-(j+1)) and (2-G+1)). If 4;,,>2, we write
(4.4.4) O f (41,054 1) = U7y 1(f)(’-’;'jflz +&4 2ufj++12)AJ *2+(higher terms)

Note that m;, (f)=a;. m{f)+a;+1b;+14;+,. Using the 4;,,-th Tschirnhausen
expansions of f: f(x,y)=h{{{*+Zf4%c;,, Af41? 7", and repeating the argument in
4.3, we will prove a;,,>2. As above, if clH,,;éO write @ 1(cjy 1 MY TNy 01s
Vjp1)=Ujpy T 04y 7" for some integer m;, and a unit U;,,;. The Newton
principal part A(®% ,f)(u,,v,) contains the exponent (m;, (f)+b;i2 42
—a;,,) by (44.4) and we conclude that a;,,>2 as in 4.3.

Now we show (1-(j+1)). For a with a|n and a,---a;,|a, consider the

Tschirnhausen expansions:

nja .
SOay)=HP4 Y cHI™,  Hy=hlyy+ 2 dfi !
i=2
with deg,;<a and degd;<a,---a;,, where B;,,:=a/a,---a;,,. Applying the
same argument to the h;,,-expansion of R:=f—H*=X/lc,H!""!, we see:
deg,,, ®* (R)<A;;,—P;+1. But from (4.4.3) with g,G,€ C{u;,,v;,,} follows:

OF  H(1j 41,054 1) =Pjfs {(PFH )1 1,054 1)
= Ul N g 18a054 1054 1)
q)]+IH:/a(uj+1avj+1)=u;'"-{-+ll(f)((vj+z-l+uj+lGa(uj+l:Uj+l))
So B,:=(mj,,(H,),B;+1) is the left end vertex of (@}, H,), n/axB, is the left
end vertex of [(®} ,H,") and also of I'(®} ,f;(u;+,,0j4,). By the arguments

of 43 and (4.4.3), the first face A, of I'(®} H,;(u; ,v;+,)), Which contains B,,
has the weight vector P;,,="%a;,,bj.,), hence

{d(Pj'f'Z; }"+1f)=d(Pj+2;(D}k+1H"/")=d(Pj+2§q)f+1Ha)X”/“
degvj+1(((l)]+1f)Pj+2 ((D fH, )Pj+2)(uj+1’vj+ 1)<Aj+2_ﬂj+1
Note: deg,,,, @ f = d(P;+,;®ff). The polynomial H;(u;yy,0;41)

=@} H,p,,,/uii* ™ is monic in v;,, of degree f;,,=a/a,---a;,,, implying
with the inequality of (4.4.5) the

(4.4.5)

Assertion 4.4.6. If a,---a;,|a, then Hu;,,,;.,) is the n/a-th Tschirnhausen
approximate polynomial of (O 1 1007 )00 =07 8l
€ Clujy}[vj+,]. In particular, if a,---a;,,|a, then Hju;, v = (557
+ &I, OF (Ho(uy 1,050 )= ul T3 e + & )P 2 + (higher  terms),
with B;,,=aja;--a;j,,.

This proves (1-(j+1)). The assertion about the intersection multiplicities
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(2-(j+ 1)) follows immediately from Lemma 3.4.2.

As a;---a; divides n and a;>2 for each i=1,---,k, the above inductive
construction stops after a finite number of toric modifications. In fact, k (respectively
k—1) is the number of Puiseux pairs if b;>1 (resp. if b;=1) See [29] and
[18]. Thus we have proved the following.

Theorem4.5. Let f(x,y) € C{x}[v] be monic of degree n with the initial expansion
[, )) =" + & xP)2 + (heigher terms), n=a;4,, a;>1

and defining in a neighbourhood W, an irreducible curve C:={(x,y)e W; f(x,y)=0}
at the origin. There exits a resolution tower I, satisfying the following conditions

(1) and (2), of toric modifications: T ={X, A X o> X, p—; Xo=C?} having the
weight vectors {P;="(a;,b;);i=1,---k} where n=a,---a,, a;>2, i=1,---,k. With
A;i=aa;, - a, let h{x,y) be the A, -th Tschirnhausen approximate polynomial of
f(x,y) and let C;={(x,y)e C*; h{(x,y)=0},i=1,---.k. Note h,=fand C,=C. Denote
by E,eE;:=E(P) the center of p;,,, by (u,v;) the modification local coordinate
centered at E; so that {u;=0} is the defining equation of the divisor E;. Put
®;=pyo--opii X;i—> Xo.

(1) For each i=1,---k, C; is an irreducible curve at the origin having the good
resolution ®;, such that the strict transform C{” in X; is defined by {v;=0}. The
pull backs are

u;"i(hi)vi ’ i= [

w4 E byl (higher terms), i<t

®Fhu;,v)= {
In particular, putting £ =k,
my(f) =
@51 OFf.v)= {“" e =k

W DE 4 &y b )2 4 (higher terms), i<k

where the multiplicities mfh,) and m(f) of the pull backs ®}h, and ®} f on E; satisfy
the equalities: mh)=m;(f)/ Az+1, mi(f)=a,b14, and m(f)=am;_,(f)+abA;.,
for i=1,--- . More explicitly

(4 5 2) {mi(.f)=aibiAi+ 1+ +ai‘--a1b1A2=(Z}= 1a,b,A3+ 1)/Ai+ 1
myh,)=(Zj- lajbjA}gi- /(A 1Az 1) i</

(2) The local intersection multiplicities are
I(C,,Cj; O)=x3{lab Al [(Asi1Ajsy), £<j<k.

The equality (4.5.2) follows from (4.5.1). The other assertions are etablished
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in the inductive argument.

DerFiNITION 4.5.3. The toric tower of Theorem 4.5 is a Tschirnhausen
resolution tower of toric modifications of C, the coordinates (u,v;) of W, are
Tschirnhausen coordinates centered at Z;, and the curve C; is the A;,,-th
Tschirnhausen approximate curve of C.

The combinatorial choice of the admissible subdivisions T*s determines
completely the Tschirnhausen resolution tower of toric modifications. In Theorem
4.7, we will show that the length of the tower k and the sequence of the weight
vectors {P,---,P,} are independent of the choice of a certain resolution tower of
toric modifications.

REMARK 4.54. Let @, =min(a,,b,) and b, =max(a,,b,) and let n, =da,, m, =5,
and mj=a;, m;=b;+b,_,a;+ - +byay---a;+b,a,---a; for i>2. Then we have
shown in Corollary 6.8 of [29] that the Puiseux pairs of C; is given by
{(nymy);i=1,---j}, (by>1) or {(n,m);i=2,---j}, (by=1). The isotopy class
of the knot depends only on the set of Puiseux pairs. Thus the knot given by
C; at the origin can be considered as a compound torus knot along the knot given
by C;_, for j=2,---,k. There exist tori in the Milnor sphere for an ireeducible
plane curve singularity, which are transversal to the Milnor fibration of the
singularity, such that the tori give a decomposition of the complement of the knot
and of the monodromy difffomorphism of the singularity. For instance, on each
piece of this decomposition the monodromy can be realized by a monodromy
vector field having all its orbits closed and a surface of genus 0 as orbit space. In
particular, the monodromy is in this decomposition piecewise of finite order (see
[1]). More precisely, using the Tschirnhausen resolution and the modification
coordinates, this decomposition of [1] is given explicitly as follows. First, the
modifications ®;: X; > C? are isomorphisms above the spheres S, of radius >0
around 0e C% Let (u,v;), 1<i<k be the modification coordinates of Z;e X; as
in Theorem 4.5. The strict transforms C{%, j=i,---,k give germs of irreducible
curves at E; and C{? is given by {v;=0}. The sphere S, is isotopic to |u}=r" for
some r'>0 in a neighborhood of E;. For ¢>0, let T;,,={(u;v)€S,;|vi<e}. For
sufficiently small r and ¢, T;,, is diffeomorphic to the product K;x D, where
K;:=CP®nS, and D,={neC;|nl<e} and T,,, gives a canonical tubular
neighbourhood of K;. We can take positive numbers r,¢g;>0 for i=1,---,k so
that C{” intersect transversely with S, for any «<r, and j=i,---,k and
CPnS, =T, By the inductive argument, we can assume also that
TioanOT;_y . y2.=9. Now taking ro=min(r,,---,r,), we get

Theorem 4.5.5. Let f(x,y) be as in Theorem 4.5. Then for every 0<r<r,,
the following properties hold.
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() Tivy2r 2 Tivrpyy, for i=1,---k—1 where,
(2) the boundary of T,,,, is a torus transversal to the Milnor fibration of the
singularity of f,
(3) the restrictions of f/|f) to S,—T;,,, and T;, ,—T;\y e, \p i=1,--,k—1 are
locally trivial fibrations over the circle and
(4) the monodromy diffeomorphism of the restriction to the differences S,—T,,,,
and T, , ., —Tiry.e. 0 i=1,-,k—1 can be chosen to be of finite order.

B. Intersections of other Tschirnhausen approximate polynomials. Let, as
before, H,(x,y) be the n/a-th Tschirnhausen apporoximate polynomial and
D,={H,x,y)=0}.

Theorem 4.6. If a|n, a,---a,|a, a,---a,, Ya and a+#a,---a,, then D, and C
have the same toric tangential direction of depth s and I(D,,C;;0)=X3t1{ab;A},,
/(A;4n]a) where a=min(s,i).

Proof. Recall that ®@Xf(u,v,)=um(vs+ + &, ub=+1)4+2 4 (higher terms).
We consider the face function of the pull-back W*H, and put H(u,v,)
=(V*H,)p,, (uyv)/u*™2. We have seen in the inductive construction of the
Tschirnhausen tower that D, has the same toric tangential direction at least of
depth s with C. We have shown in Assertion 4.4.6 that H (u,v,) is the n/a-th
Tschirnhausen approximate polynomial of (v%+*!+ ¢, ub***)4+2, Now the main
step of the proof is the following,

Lemma 4.6.1. The constant term of the polynomial H(uy,v,)e C{uj[v,] is zero
and vis+ &, ublstt does not divide H)(ug,vy).

Proof. Put f;=a/a,---a; The point is that B . ,:=A4;,,/(n/a) is not an
integer. As H.(u,v,) is the n/a-th Tschirnhausen approximate polynomial of
(vgs+1+és+lugs+ l)As+2’ we have H‘;(us’vs) — vaTrunc‘w“‘”(l+£S+1u§’”vs“‘“‘)”’“
=l S V()& b+ vy %1y by Lemma 2.3. Thus H,(u,v,) does not have a
constant term as a polynomial of v, If v®+'+ &, ubs+t divides H)(u,v,), we will
get a contradiction. In fact, the polynomial

(4.6.4) H(up0)) = (0 + &g g™ )™ Holu v)

is the n/a-th Tschirnhausen approximate polynomial of (v2+!+ &, jubs+1)As+27ma,
By the generalized binomial formula again, we have

ﬁs+1_1

o

[Bs+1]—1
H(ugv)=vf" " Y
=0

Comparing the coefficients of vf37f=+11%+1 in (4.6.4), we get: (52: 1) =(f:14~"y), which
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is a contradiction as Py, #[fs4.] Q.E.D.

Now by the Lemma the curve D, has the same toric tangential direction of
depth s but not of.depth s+1 with C. In particular, D¢*VACC*V =0, The
main problem in proving the assertion about the intersection multiplicity is that
D, may be neither irreducible nor reduced. See Example 49. Let D, y,---,D,,
be the irreducible components.  Let k,(u,v,) and k, {u,vy), j=1,---,, be the defining
functions of the strict transforms D and D$) for j=1,---,/. Then we can write
k(g v5) = 0"+ Zfz 1y (u ol ", yu)e Clu,} and

(vie* 19+ &, ubs+t9y4s+ 29 4 (higher terms), byyq ;#0

As+2, — —
vss+ jUj’ bs+1,j_0’ as+1,j"1

(4.6.5) k, fug,vg)= {

where ged(agyy j,b541,)=1 and U; is a unit. They satisfy:

¢

(4.6.6) Bs= Z A 1,jAs+ 2,

Jj=1

Recall that the weight vector of the unique face of I'(k, ;;(u,v,)) corresponds to
the weight vector of a face of I'(k, ; (u,v). By Assertion 4.4.6, the Newton boundary
I'(k,; (u,vy) starts with the face (possibly a vertex) of the weight vector P, , and
any other face has a milder slope. Therefore we have by, /a1 ;2>bs11 8544
if by, ;#0. Now we apply Lemma 3.4.2 to compute the intersection numbers.” For
i<s, we have ID,C)=XZitiabA}, /(A4 n/a), i<s and for i>s, with
Pyy1,i="+1,5b5+1,) We have

s

¢
ID,,C)= Z ajbjA}+1/(Ai+ln/a)+ Z I(Ps+laPt,s+l)As+2,tAs+2/Ai+1

j=1 t=1
2

= Z ajbjAJ?+1/(Ai+1n/a)+ Z by 1Bs,tAs+2,tAs+2/Ai+1 by (4.6.6)
j=1

t=1

s+1

=Y apbiAl. /(Aisn/a), i>s by (4.6.5).
j=1
where I(Pg,, P, .,) is defined as in Lemma 3.4.2.
C. Relations with other toric towers. Consider two toric resolution towers:
Pk p1
T ={Xi= Xi-1 > 2 X, - X,=C?}
qs q1
2={Y,> Y,_; > > Y > Y,=C?

where Z is a Tschirnhausen tower of resolution with the weight vectors P,="(a;,b;),
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i=1,---k and n=a,---a,, a;>2, i=1,---,k as in Theorem 4.5. Let A,=aa;,, -a,
and let A(x,y) be the 4;, {-th Tschirnhausen approximate polynomial of f(x,y) and
let C; be the corresponding Tschirnhausen curve for i=1,---,k as before. Let
Q,="a;p;), i=1,---,5 be the corresponding weight vectors of 2 withn=a,---a,. We
assume that o;>2, i=1,---,s and Q,=P;. We call such a toric tower 2 a
Tschirnhausen-good resolution tower. A Tschirnhausen resolution tower is a
Tschirnhausen-good resolution tower by Theorem 4.5. Now Theorem 4.5 can be
generalized as follows.

Theorem 4.7. Let f(x,y) be as in Theorem 4.5. Let J and 2 be as
above. Assume that q;.,: Y, — Y,is a toric modification centered at ®;€ E| := F(Q))
with the modification local coordinate system (wz;), so that {w;=0} defines the
divisor E{. Put W;=q0---0q;:Y;—> Y,. Then we have the following properties.
(1)) (Uniqueness of the weight vectors) s=k and Q;=P; for i=1,---,k.

(2) Foreach i=1,---,5, ¥;: Y; > Y, gives a good resolution of C; and the pull backs
of the polynomials are written (up to a non-zero constant factor) as

mi(h ai + bi+1\Ai+2/A,+ . .
4.7.1) ‘I’E*ha(wi,zi)_—_{Wi ot O Y higher terms) l.</
Wi : i)Z; ) i={
where z; is either z,U; with a unit U, or cf{(z;+nw!)+ (higher terms)) with c;, 1,€ C*
for some integer y;, y;>b;,/a;,,. In particular, putting £=s, we have

(z80+1 40,  Whi )42 (higher terms), i<s

wirsz, i=s

4.7.2) WY (wyz)= {

where the multiplicities m(h,) and m{(f) of the pull backs Y;*h, and ¥Y;*f on E]
satisfy the same inductive equalities:

m;(hs)=m:'(f)/As+la lSS

4.7.3) {
my(f)=ab A, mf)=am;_,(f)+abiA;,

Thus we have also the uniqueness of the multiplities: mi(h)) = myh,) and m{ f) = myf).

Proof. We consider the tower 2. Let &, =min(x;,,) and f, =max(x,,f;)
and let n,=&,, my=f, and ny=o;, my=P;+P;_ 10+ - + ooz o+ froy -+ for
i>2. Then we have shown in Corollary 6.8 of [29] that the Puiseux pairs of C
is given by {n,m); i=1,--s}, (B;>1) or {n,m;); i=2,---,s}, (By=1). The same
assertion is true for the Tschirnhausen tower 4. By the assumption @, =P, and
by the uniqueness of the Puiseux pairs, we conclude that s=k and Q;=P;. The
expression (4.7.1) for £>i follows easily by the induction on i. In fact, we know
that C, is irreducible and I(C,,C;0)=%!t1ab A2,/ A,+,. So by Lemma 3.4.2,
C, can not be separated from C on Y;, i</. Thus we have the expression
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4.7.1). As WX ,(h(w;z;) is non-degenerate, we can write

¥, 00,2 = {c,-((zi +nwl) +(h%gher terms), c¢;n;,€C* or
z;U;, U;:aunit
In the first case, with the formula of Theorem 4.5 we get I(C,CY;@)=b,, 14;,,.
So, y;=b;+(/a;+y. As b;yy/a;., is not an integer, we have y,>b,, /a;,,.
Q.ED.

ReMARK 4.8. Theorem 4.7 can be proved without using the uniqueness of
the Puiseux pairs by comparison stage by stage of the formulae for the intersections
for the two towers.

ExamMpLE 4.9. Put f(x,))=(*+x>°%+x'"y3. The first toric modification
p1:X; = X, can be defined by the subdivision

so= oo o ={(o)- (1) ) () () O

with weight vector Py=P; ;. Let o;=Cone(P, 3 P,4). On the chart CZ, we
take u, =x,, and v; =y,,+1. Then CV is defined by {(u;,v,)€ W, ;v$ +uj + (higher
terms)=0}. Thus we need one more toric modification p,: X, - X; and we choose

the modification with respect to

si=truri={(o) () G) G () () G O

with weight vector P,=P; s. The weight vectors of the tower are P, ='(4,3) and
P,=%6,5. By computation, we have n=24 and the various Tschirnhausen
approximate polynomials are: H,(x,y)=y?% Hj(x,y)=y3, Hy(x,y)=h,(x,y)=y*+x3,
Hy(x,y)=y%+3/2x%?% H(x,y)=0*+x%? and H,,(x,y)=0*+x>3 The inter-
section multiplicities are given by I(D,,C;0)=36,54,77,108, 154,231 respectively
for a=2,3,4,6,8,12. This example shows that D, which is different from C;,
1 <i<k is not necessarily irreducible or reduced. The zeta function and the Milnor
number are given by Theorem 5.1 in §5: {()=(1—1"?)(1 —*%?) /(1 — 241 —1'8)1
—t77) and u(f)=416.

5. The zeta function of the monodromy. Let f(x,y) be a monic polynomial in y

Pr ) 4
of degree n and irreducible at the origin. Let 7 ={X, > X,_, = --- = X| = X,}

be a Tschirnhausen-good toric resolution tower with the weight vectors
{P,="ayb); i=1,---,k}. We will read off the zeta function of the monodromy
and Milnor number from the data of the Tschirnhausen-good resolution tower.



TSCHIRNHAUSEN RESOLUTION TOWER 1021

Let X* be the regular simplicial cone subdivision which is used to
construct the modification p;,: X;,, — X; and let {P, o, P;,--, P;,, Pi, +1} b€ the
vertices of X* so that P,,='(1,0) and P;, .,='0,1). Let P,;="(a;;b;;). We
assume that P,,,=P,;, for i=0,---,k—1. Note that, as det(P,‘o, P )=det(P;,,
Pi,+1)=1, P,y and P, have the forms P;,=%a;,,1) and P;, =(,b;,)
respectively. This implies that n;<r;. The configuration of the exceptional divisors
{E(P, ))sj=1,---,r;} is a line configuration and E(P; ) is nothing but E(P;,_,, ).
Thus the exceptional divisors of the resolution ®@,:X, — X, is the union of the
strict transforms {E(P,., );0<i<k—1,1<j<r}. Let m;; be the multiplicity of the
pull-back ®% , f along E(P; ;) and let §; ; be the number of irreducible components
of the divisor (®*f) which intersect w1th E(P,,,. By Theorem 3 of [2], the zeta
function {(¢;O) of the monodromy of f(x,y) is determined by those E(Pi,j) with

0;;#2. As we have seen in §3, m; ;=d(P, ;;®}*f) and
3 Jj=n j 3 j=n,
0;j= I j=r, i21, 6o;= 1 j=1 or ry, i=0
2 otherwise I 2 otherwise

If ny=1, we subdivide Cone(P, 4, P, ) so that we can assume that n,>1. Note
that 8,_,, =3 as E(P,_,,_)=E(P,) and it intersects with C®. Recall that
the multiplicity m;, is given by m;, = dP;,;P*N)=m;,(f)=a;, m(f)
+a;41b;114;4, in the same notation as in §4. Thus we need determine my ;,

my, for i=1,---,k. To determine m;,, we consider the expression by (4.7.2):
®; f(u,,v,)—u:""f’(v;"“+€,~+1uf"“)""”+(higher terms) for i<k. As L}¥ is assumed
to be admissible for ®*f, we know that (m(f)+b;,14;1,,0€A(P;,,;D*f). This
observation and the expression P;, ='(1,b;,) implies that m;, =m(f)+b;s 4,
=m;41(f)/a;+,. Finally as (0,n)e A(Py ,;f), we have that m, =4, by a similar
argument as above. Thus applying Theorem 2 of [2], we obtain the first part of

Theorem 5.1. The zeta function and Milnor number of f(x,y) are:

1 k (1 _ t""(f))

[1

(=) = (1 — ey’

k
{(t;0)= :u(f;o)=1-A1+._21(Ai_1)biAi+l

Proof. By the equality — 1+ u(f; O)=deg{(t; O), we have

—1+uf;0)=—4, +Z<1—al) ()

t

=—A,+ i <1——)( Zl: a{b(A(-H)/A"H

a; =1
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k k 1
=—A;+ Z ab,A} Z (1__>/Ai+l
¢=1 i=¢ a;

2

k
=—A,+ Y (A—DbA,,,. Q.ED.

=1

6. Conditions implying equi-singularity. Let f(x,y)=/(x,y,f)e C{x,t}[y] be an
analytic family of monic polynomial in C{x}[y] of degree » in y defined for ¢ in
an open connected neighborhood U of the origin in C. Let C(f):={f{(x,y)=0},
te U, be the corresponding family of germs of curves at the origin. We assume
that C(0) is irreducible and reduced at the origin and that f(x,y) has an initial
expansion

(6.1.1) fi,) =™ + £, x*)42 + (higher terms)

with £, #0 independent of ¢ and a; >2. Let X,‘T» Xioy1— > Xy il»X(,=C2 be
the Tschirnhausen approximate resolution tower of (C(0),0) with the weight vectors
{P,="(a,b)); i=1,---,k}. We assume further that the A4,,,-th Tschirnhausen
approximate polynomials Ay(x,y,f) of f(x,y) for i=1,--,k—1 are independent of
the parameter 2. Note that this is the case if the coefficients of )’ do not depend
on ¢t for any j>n—a;---a,_,. Consider the germs of curves C;:={h(x,y):=h(x,,?)
=0}, i=1,---,k—1. Finally we assume that the local intersection multiplicities
satisfy the inegualities:

6.1.2) aI(C,_,C(1); 0O)<(C(0),C(s5); O)< + 0, for any t,s5, with s#0.

Theorem 6.2. Under the above assumptions for the family f(x,y), the
germs C(t), te U, are irreducible at the origin and have the same toric tangential
direction of depth k', k' >k —1. The family of germs of plane curves {C(t), O);te U}
is an equi-singular family and ®,: X, - X, gives a simultaneous resolution for the
Samily {C(f);te U} where @ =p,o---op,. In particular, the Milnor number p(f; O)
is constant and coincides with u(fy; O). Moreover, if equality holds in a, I(C, _ ,C(f); O)
<I(C(0),C(s); O) for any ts, with s#0, the germs C(t), te U do not have the same
toric tangential direction of depth k.

Proof. We fix t#0, te U. We first assume that C(z) is irreducible. The
irreducibility will be proved later. Assume that C(z) has the same toric tangential
direction with C(0) of depth 0, <k. Then we can write CY(t) as

5(})(1) ={(u;v)e W;; fP(u;,v,)=0}

6.2.1 i , , . .
(6.2.1) Nupv) =35+ + &4 yubi+1)*i+2 4 (higher terms)
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where A}, :=aj,,---ap, Ayy, for j<0. Let Py, :="ap,,05+1). Poyy Is a
primitive weight vector and if Py,,=P,,,, we must have &, #&., by the
assumption. Comparing (6.1.1) and (6.2.1) and by the assumption, we have &;=¢;,
aj=aj, bj=b; and A}, ,=A4;,, for j<O. Assume first that 6<k—1. By Lemma
3.4.2, the local intersection multiplicity is given by

[}

(6.2.2) I(C(x),C(0); 0)= }, ab;A} 1+ K(Pyy 1, Py 1) Ags 2 Aps s
i=1
0 0+1
<Y bidi 1 Ai+bgy AgsaAyy = Y baAl
i=1 i=1

where equality holds if and only if ay, bg, <ag4 105+, OF by, =0. On the other
hand, by Theorem 4.5 we have the equality: a,/(C,_,,C(0); 0)=Zk_,a,b;4%,,. Thus
(6.2.2) and the assumption (6.1.2) implies that we must have 0=k —1 and ab, <a,b;
or b;=0 and I(C(x),((0); 0)=Xt_,a,b;A%,,. We assert furthermore

(6.2.3) b #0, ab,=ab,

In fact, assume first that by =0. Then C(1)=q,C,_; and C(z) is not reduced. This
is a contradiction to the assumption dimcC{x,y} /(f;, b 1)<o00. Assume that bj #0
and a;b,<ab,. Then we get a contradiction:

k—1

a l(C(1),C,-;0)= Z aibiAi2+ 1+ akl(qck—_ll)’ c*- 1)("-'); 0)

i=1

k-1

=Y abAl +abidii,
i=1

k-1 k
> Z aibiAi2+1+a;cbkA;c+1 = Z aibiAi2+l =I(C(z),0); O).
i=1

i i=1

Thus we have proved (6.2.3). As gcd(a,,b,) =ged(ay,b,)=1, (6.2.3) implies P, =P,
and A}, ,;=1. This also shows that C®)(t) is smooth. Thus under the assumption
that (1) is irreducible at the origin, we have proved that C(r) is reduced and
0>k—1, P,=P,. This implies that u(f; O)=u(f,; O) by applying Theorem 4.5 to
C(r). Note that @,:X, — X, gives a simultaneous resolution of the family
{C(x);te U}. If 0=k, the assertion is obvious and C™(r) intersects with C*(0)
at Z, and therefore I(C(0),C(t); 0)>X¥_,ab;A%. . This implies that the strict
inequality in (6.1.2) must hold.

Irreducibility of C(r). Now we prove that C(1) is irreducible for any . Fix
a 7 and assume that C(z) has s irreducible components at the origin s>2. Let
C(t;1),-++, C(r;s) be the irreducible components and let CYt;1),---,CY(t;s) be
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their strict transforms on X;. We assume that ((t;i) has the same toric tangential
direction of depth 0; with C(0). Then we can write

{/C‘f)(r s1)={(u;,0,) € W;; D u;v;) =0}

Rwj0) =5 + & jo 52 ) 4172 + (higher terms), j<0;

where A4;;=a;; - a;9,414;9,+, for j<0O,. By the assumption, we have q;;=a;,
b, j=b;, & ;=¢; for j<0;,. Put 0,=min(0,,---,0). Then C(7) has the same toric
tangential direction of depth 0, with C(0) and we can write CY(1) as:

{/Cw(r) ={(uyv)) € W;;f9u,0,)=0}

(6.2.4) 0 » ARV . .
ujyv) =5+ + &4 qupi+1y+2 4 (higher terms), j<0,

where A}, :=dj, --ay, 149+, and by the assumption, we have a;=a; b;=b;,
E=¢;, Aiy=A;4, for i<f,. Comparing the defining equations of C(t;1),-,
C%t;s) and C(1), we must have

S

f;(i)(xsy)= l_[ t(,ii)(x9y)a Al,i+ +A8,i=Ai’ lSoo

i=1
As A;=a;, -a;9,Aig,+1 and s>2, this implies that
(6.2.5) 0;<k—1 and A, <Ag+1-

We use the following notations for simplicity. A;;:=A;, for i<6;,+1 and 4;;:=0
for i>0;+1. Then by (6.2.4) and (6.2.5) we get

(6.2.6) Y A4;,=A4;, i<0,+1 and Y A;;<A;, i>0,+1
j=1 j=1
By Lemma 3.4.2, we have with P;q  :=(ajg,+1,Dj4,+1) that
7]

I(C(z;), C(0); O)= Z aibiAi+1Aj,i+1+I(Pa,+1’Pj,o,+1)Ao,+2Aj.o,+2
i=1

0, k _
< Z aibiAi+1Aj,i+1+bo,+x,Ao,+2Aj,o,+1= Z biAi+1Aj,i
i=1 i=1

Adding these inequalities for j=1,---,s and using (6.2.5), we get

k

Q00 Y. bidir S, A<
i=1 j=1 i

biAH-lAia
1

where the right side is equal to aJ(C,_,,C(0); O) by Theorem 4.5. With the
assumption (6.1.2), we get I(C(x),C(0); O)=X¥_ b;A;,,A;, which is equivalent to
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the following two equalities:

k
6.2.7) KC:),C0);0)= Y b Ao j=1,0ms
i=1

Mu

(6.2.8) ,IN=AE, i=1,---k

1

i

By (6.2.6) and (6.2.5), (6.2.8) is equivalent to O,=k—1. Therefore (6.2.) and (6.2.8)
holds if only if 0;=k—1 for i=1,---,s and @b, >a;,b,. But, assuming that

aybj, v=a;, b, for some j,, we obtain the inequality:

k-1 s
al(C,-,C(1); 0)= Y bA;s 1 Ai+a, Yy, bjuAjpsy

i=1 =1
k—1 K} k
> Z biA; 1A+ Z a; iA1= Y, bidi s 1 A;i=1(C(0),C(x); 0),
i j i=1

i=1 j=1

which contradicts @, /(Cy_,((7); 0)>1(C(0),((1); 0). So, we must have ab;,
=a;yby, j=1,---,5. As ged(ay,b)=ged(a;,,b;,)=1, this is possible if and only if
aj,=a, and b;,=a,. Again this gives a contradiction: 4, =A, ,+ - + A, =54;.
This proves the irreducibility of C(r) and the proof of Theorem 6.2 is now

completed.

7. An example of an equi-singular family. We study a typical equi-singular
family fi(x,y):=f(x,y)+tx™, where f(x,y) is a monic polynomial whose Newton
diagram A(f;(x,y)) is a triangle with the vertices 4=(0,n), B=(b,4,,0), C=(m,0)
with m>b,A4,, having the initial expansion f(x,y)=(* + &,;x*")*2+ (higher terms),
a,>2, and defining an irreducible germ of a plane curve C={f(x,y)=0} at the
origin. Then the a-th Tschirnhausen approximate polynomial of f(x,y) does not
depend on ¢ for any a|n with 1<a, so we can apply the previous consideration
to the family of germs C(f):={(x,y)e C?;f{x,y)=0}. A similar family is studied
by Ephreim [7] using polar invariants. Let {P;='(a;b,); i=1,---,k} be the weight
vectors of the Tschirnhausen resolution tower. Let 4; be the A4, , ,-th Tschirnhausen
approximate polynomial of f(x,y) for i=1,--.k—1 and let C;={(x,y)eC?;

hi(xay)}‘

Propositon 7.1. With the above assumptions and notations, we have I(C(f),
C(s); O)=nm for t+#s and a l(C,_,,C(t); O)<nm for any teC.

Proof. For the proof of the equality, note: I(C(f), C(s); O)=dimcC{x,y} / (f./2)
and therefore it is equal to dim¢C{x,y} /(f;,(t —s)x™)=nm. To prove the inequality,
we first observe the Newton diagram A(h,_,) is a subset of the triangle A" whose
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vertices are A'=(0,n/a,), B'=(b,4,/a,,0), C'=(m/a,,0). Here the Newton diagram
A(h) of a polynomial h(x,y)=X, _(, »,“Mx"y* is the convex hull of the lattice point
M with ¢, #0. In the case of m=n, the assertion follows from the Bezout theorem
in P% al(C._,,01);0)<a,C,_, - C(t)=n*=nm, where C is the projective
compactification of C = C? and the right side is the intersection number in P2, In
the case m#n, we need another argument. Choose a small ball B centered at
the origin B containing no other intersection than the origin O. Let
L p)=f(xy)+¢&; and h_(x,y)=h_((x,y)+¢&, and let C(s) ={(x,y)e C?;f;(x,y)
=0} and Cj_,={(x,y)e C*;h;_,(x,y)=0}. For sufficiently small ¢,, ¢, the
intersection C(s) N Cy_, is a subset of the torus C*?* and the number of the points
of C(s) nC;_, in B counted with multiplicity is equal to I(C,_,C(t); 0). The
Newton diagram A:=A(f];(x,y)) is the triangle with vertices 0, 4 and C. The
number of intersection points C(s)-C;_,; in C*? is bounded by the theorem of
Bernshtein ([6,30]):

Q) - Cum 1 =2V5(A(), Al 1)) <2V (A, A/ @) =2 VOl(A) / ay=nm | a,

Here V,(A,,A,) is Minkowski’s mixed volume and we have used the monotone
increasing property of Minkowski’s mixed volume to the inclusion A(h;_,)
cA/a,. See [630]. As C(s) Ci_,=LC,_,,C(s)), the inequality of the pro-
position follows. Q.E.D.

8. The equi-singularity at infinity and the Abhyankar-Moh-Suzuki theorem. Let
F:C? - C be a polynomial mapping of degree n. We say that te C is a regular
value at infinity if there exits a large number R and a positive number é so that
the restriction F:E _(R,0) - D; is a trivial fibration where

Dy={neC;ln—1<d8}, E (R={(xy);FAxy)eD;, /IX>+y*>R}

Let C,=F '(t) and let C, be the projective compactification. The set
C,—C,={py,"*»p¢} = L,, does not depend on 7. We recall the following result:

Proposition 8.1 ([11]). A complex number t is a regular value at infinity if
and only if the family of germs of plane curves {(C,p;);te C} is topologically stable
at t=1 for any i=1,---,/.

We consider hereafter the simplest case that C, has one place at infinity, say
at p=(1;0;0). Namely assume that /=1 and the germ (C,,p) is irreducible. Then
F(x,y) is written as

8.1.1) Fx,p) ="+ & x)*2 + (lower terms), c¢,<a;, n=a,4,.

for some positive integers a,, ¢, and A, with a;<2. As ConL,={p} and C,
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is assumed to be locally irreducible at p, the polynomial F(x,y) has only one
outside face and its outside face function has only one factor. See [19] or [30]. The
standard affine coordinates u=Z/X, v=Y/X are centered at p and the curve C,
is defined by {f|(u,v)=0} where fi(u,v)=f(u,v)—tu" and flu,v)=F1/u,v/u)xu". In
this simplest case, we have the initial expansion

8.1.2) Sflu,v)= ™ + &,u®*)*2 + higher terms)

here by =a,—c,. Let C*={(u,v)e C*;flu,v,0):=fu,v)—tu"=0}. We can apply
Theorem 6.2 using Proposition 7.1 to this family and we obtain:

Theorem 8.2. For the mapping F and the family {(C*,0);te C} the following
holds:
(1) The family of germs of germs of plane curves {(C;*,0);te C} is an equi-singular
Sfamily of irreducible curves and the Tschirnhausen approximate resolution tower of
(C,0) resolves simultaneously each curve of the family {(C*,0);te C}.
(2) The mapping F:C? — C has no critical point at infinity.

Ephraim has also obtained a similar result about the equi-singularity using
a different method [7]. See also Moh [21].

Before giving applications, we will need the following facts. Let D = P2 be a
projective curve of degree n and let g,,---,q, be the singular points of D. Then
by Pliicker’s formula and by Mayer-Vietoris argument, the topological Euler
number of D—{g,,---,q,} is given by

WD—{q1,-q)=2—v—(n—1)n—2)+ .Zvjlu(D;qi).

13

From this equality follow two equivalences. First, u(D;q,)=(n—1)n—2) if and
only if the curve D—{q,} is smooth and homeomorphic to the line C. Second,
wD;q)=m—1)n—2)—2¢g and v=1 if and only if the curve D—{q,} is smooth
and homeomorphic to a punctured Riemann surface of genus g. As a first
application, we will give an elementary proof of:

Theorem 8.3 (Abhyankar-Moh [5], Suzuki [31]). Let F(x,y) be a polynomial
of two variables of degree n and assume that the plane curve C={(x,y)e C*; F(x,y)=0}
is smooth and homeomorphic to the complex line C. Then there exists another
polynomial G(x,y) so that (F,G) is an automorphism of C>.

Proof. The polynomial F(x,y) has one place at infinity, say at p=(1;0;0). To
prove the theorem by the induction on n=degree F(x,y), it is enough to show that
¢, =1in(8.1.1). Infact,if c, =1, we apply the coordinate change (X, Y)=(" +¢,x,y)
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and achieve deg F{(X—Y“) /¢, Y)<n. Therefore the assertion is proved by the
induction on degF.

Let C® and C, be as above. We have u(Ce;0)=(n—1)n—2) since the
smooth part of the curve C, is homeomorphic to the line C. Let us consider the

Pk
Tschirnhausen approximate resolution tower of (Cg%,0): T ={X, > X;_;—> -
p1
— X, > X,=C?} and let P,="ay,b), i=1,---,k be the weight vectors of the

tower. Then by Theorem 5.1 and n=A4,, we have

k
(A =14, =) =p(C5; O)=1—A, + } (A= Dbid;sy,
i=1

1]

which leads to
k
(@) Y (Ai—1)bA;  =(4,— 1)
i=1
From Theorem 4.5 and Bezout theorem, we deduce
‘ k
(b) Y (A;i—Vab AL, <A}
i=1

since a,J(C,_,C0); &) =2k 1ab;42, , <a,C,_,- C(0)=A%?. Now we are ready to
show ¢;=1. We follow the proof of Abhyankar-Moh, Lemma 3.1, [5]. Recall
that ¢, =a,;—b,. For the case k>2, the equality (a) reads (a; —1)b, =(a, — 1)
Thus we get ¢;=a,—b,=1. For the case k>2, we rewrite (a) and (b) as

k
(© Z(Ai—l)biAi+1=(alA2‘“1)(C1A2_l)
i=2
k
(d) Y abA}, <c,a,4}
i=2

Thus taking the sum: (c) x 4, +(d) x (1—4,), we obtain

k
_Z,ZbiAH 1(Ai_A2)2A§((a1 —1)c;—1)—1)+4,.

The left side is obviously negative. The right side is negative only if ¢, =1, which
completes the proof.

Theorem 8.4. The weight vectors of a good toric resolution of the singularity
at infinity of a smooth acyclic curve in C? satisfy b;=a;_,a;—1 for each i=1,---k,
where ay=1.
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Proof. Substituting ¢, =1 in (c) and (d), we get

k
(e) Z(Ai'—l)biAi+1=(a2A3—1)(CZA3_1)
i=3
k
® Y ab Al <c,a,A43
i=3

where ¢;=a;_,a;—b; for i=2,---.k. Thus again taking the sum: (e)x A;+(f)
X (1—A4,), we obtain

k
Y bidiy (A — A3) = A5{((@— 1Ne, — 1) — )45+ 1}
i=3
The left side is obviously negative. The right side is negative only if c,=1. The

assertion for i>2 can be proved by an easy induction. Q.E.D.

The following example shows that all weight vectors having the property of
Theorem 8.4 occur.

ExAMPLE 8.5. Let a;>2, i=1,---,k be given integers, and let n=a,---a,. Let
us consider the sequence of automorphisms:

Xi Xi+1 .
<P.-:(x >H<x s Xipa=Xi+xi,  i=0,-k—1
i+1 i+2

where x,=x and x;=y. Let F(x,y)=x,,,(x,y). Then F(x,y) obviously satisfies
the assumption of Theorem 8.3. Let

ho =0
hy(u,v)=v" +u™ !
hy(u,v) = hy(u,0)"2 + ho(u, )2~ 1

hu,v)=het |+ h_y(uo)ur 2@ <<k

(*)

and let f(u,v)=hy(u,v). Then (C§;O) is defined by C& ={(u,v)eC?; f(u,v)=0}. It
is easy to see that A; is the A,,,-th Tschirnhausen approximate polynomial of f.
By an inductive argument we can prove that the weight vectors of the Tschirnhausen
approximate resolution tower are given by

P1=( a; ),P2=( a, ),""Pk=< a >’
a,—1 aa,—1 a,_a,—1

and the pull-backs of the Tschirnhausen approximate polynomials to X are given by
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S D hyfu,v) =uf My,
(*#i40) | D4 4 (0 = N1 4 &y ™Y

@ *hu;v) = “;m(h’)(ﬁ}”— 1+&is 1};1— Qi -2 -am )

where Aju,v,):=®}fu,v)/u* and &, is a unit in a neighbourhood W, of
Z,. The Milnor number is equal to (n— 1)(n—2) by Theorem 5.1. It is convenient
to introduce the notation ay=1 and myh)=0 to understand (¥#,) as a

special cases of (¥;, ).

REMARK (8.6). Let F(x,y) be a polynomial of degree n and coefficients in a
subfield k of C, such that the curve C={F(x,y)=0} < C? is smooth and
contractible. Then the completion of C requires one extra point p at infinity
having its coordinates in k. So, after a linear change of coordinates defined over
k, the pencil L,={y =t}.c passes through p. Let (B(?),) be the barycenter, computed
in the affine line L,, of the points of the intersection L,nC, weighted
by the multiplicity. The automorphism (x,y) — (x — B(y),y), which is defined over
k, moves the curve C to a curve C’ of lower degree and having at infinity one
Puiseux pair less. In the notation of Theorem 8.3, we can write B(y)= —y* /&,
+(lower terms). The iteration of this procedure constructs an automorphism
defined over k, which moves the curve C to a line. Of course, we can apply this
procedure to any curve D={G(x,y)=0}, as long as the completion of the curve
D has only one irreducible singularity at infinity and c¢,=1. After at most
log,(degree(G)) automorphism applied to the curve D, either the curve D becomes
a line and the equation linear, in which case the curve D was smooth and
contractible, or the curve D becomes a curve for which ¢, >2. This provides a
test for the contractibility and smoothness of the curve D. It is straightforward
to make a fast testing procedure with the help of Maple or Mathematica.

We can apply the above remark and argument to get:

Theorem 8.7. Let C = C? be a smooth curve homeomorphic to a Riemann
surface with one puncture of genus g, g=1 or 2. Then there exists an automorphism
of C? moving the curve C to a smooth cubic curve which is tangent to the line at
infinity with the intersection multiplicity 3 if g=1, and to a curve of degree S with
a cusp singularity at infinity, which is homeomorphic to v°+u*=0, if g=2.

Proof. Let 7 ={X, -T» Xy 22 X, f-l» X,=C?} be a Tschirnhausen tower
of resolution of the singularity at infinity with the corresponding weight vectors
{P,=Yayb));i=1,---,k} as before. Applying barycentric automorphisms if necessary,
we can assume that ¢, >2 (see Remark 8.6). The equalities (a) and (c) take the
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following form.

k
(a) .;(Ai_l)biAi+l=(A1_1)2_2g

(cp) .ZZ(A,-—1)b,~Ai+1=(a1A2—l)(c,A2—1)—2g

The inequality (b) and (d) are valid as before. Then taking the sum:
(cg) x Ay +(d) x (1—A,), we obtain

k
(eg) 0> -Z‘zbiAH 1(Ai_A2)2A§((a1 —c,—1)—-1)—(2g—1)4,.

Note also that a, >3 by the assumption ¢, >2.

(1) Assume first k=1. Then we have (a; —1)(c;, —1)=2g. So, for the natural
number ¢, :=a,—b, we have a;>c;=1+2g/(a,—1). We conclude that a, =3, if
g=1 and that a, =5, if g=2.
So, for g=1, we have a, =3, ¢;,=2. As b, =1, the curve C has no singularity at
infinity but C is tangent to the line at infinity with the tangent multiplicity 3. An
example of such curve is given by C={y*+x*+1=0}. For g=2 we have a,=35
and ¢, =2. An example of such curve is given by C={y>+x>+1=0}. The curve
C has a non-degenerate cusp singularity at infinity.

(2) Now we show the case k>2 does not occur.
With a,>c, >2, we deduce from the inequalities (e,):

2g —

SRS PR T )

(*)

If g=1, we get, from (x), A,=1, and hence k=1.

If g=2, we reduce from (*): 4,<3 that 4,=1,2 or 3. We first rule out the case
A,=3: indeed, from (x) we conclude k=2, a;=3, ¢;,=2, b,=1. So, a,=4,=3,
n=9 and b,=18 by (a,). This is not possible since we have assumed gcd(a,,b,)
=1.

Next, we rule out the case A,=2: from (x), we conclude k=2, a,=3, ¢,=2,
by=1. So,a,=A4,=2,n=6, b;=1 and b,=11 by (a,). Thus the tower has the
weight vectors P, ='(3,1) and P,='(2,11). No easy contradiction yet. However
we assert that there is no polynomial f(u,v) of degree 6, irreducible at the origin,
whose weight vectors are as above. Indeed, let f(u,v)=(v>+u)? + Z,c,u"'v"* where
6<3v,+v,, v,+v,<6. Consider an admissible toric modification p: X, — C2.
We may assume that ¢ =Cone(E,, P,) is the left toric cone of the divisor F(P,) and let
(s,7) be the toric coordinates. Then we have u=st> and v=t. The pull backs
can be written as nX(v® +u)? =15(1+5) and nXu’'v*2=5"¢3"1*"2, So, in t~Sn}f(s,1)
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the monomial '! does not occur and hence P, is not the second weight vector
for f(u,v). Thus this case does not occur. So A,=1 proving k=1. Q.E.D.

REMARK (8.9). Using () and the inequality: ¢~V < 4,, we get the following
estimate for the length of the tower:

k<log,2g—1)+1, for g>1, ¢, >2.

The classification for g>3 is more complicated, as the model is not unique. For
example, in the case of g=3, we can move C by an automorphism to one of the
following.

(@ k=1, P,='4,1) and n=4. The curve is smooth at infinity and tangent to
the line at infinity at a single point. An example is given by y*+x3+1=0.

(b) k=1, P,='(7,5) and n=7. The curve has a non-degenerate cusp singularity
at infinity. An example is given by y”+x%+1=0.

() k=2, P,='(3,1), P,="2,9) and n=6. An example is given by (3> +x2)®+x.

We thank Professor Walter Neumann for communicating to us the reference
of his earlier work [23], in which he obtained the classification of smooth affine
curves with one place at infinity for g<4. Professor M. Miyanishi recently
communicated to us that he gave a new proof of Theorem 8.3 using the classification
of surfaces [9]. Also, the paper [34] contains interesting results about contractible
affine curves with one isolated singularity.
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