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1. Introduction

Let Y(t) (teRN) be a real-valued, centered Gaussian random field with
y(0) = 0. We assume that Y(ή (ίeRN) has stationary increments and continuous
covariance function R(t,s) = EY(t)Y(s) given by

JR

(1.1)
JR"

where (x,y} is the ordinary scalar product in RN and Δ(dλ) is a nonnegative
symmetric measure on RN\{0} satisfying

μi2

[ N i+μi 2(1.2) I -J_L^Δ(<tt)<oo.

Then there exists a centered complex-valued Gaussian random measure lV(dλ)
such that

(1.3) Y(t)=

and for any Borel sets A, B ^ RN

E{ W{A) W(B)) = A(A nB) and W(-A)= W(A).

It follows from (1.3) that

(1.4) £[(?(/ + * ) - nθ) 2 ] = 2 (1 -cos</U»Δ(</Λ).

We assume that there exist constants (50>0, 0 < c 1 < c 2 < o o and a non-decreasing,
continuous function σ:[0,δo) -+ [0,oo) which is regularly varying at the origin with
index α (0<α<l) such that for any teRN and heRN with

(1.5)
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and for all teRN and any 0<r<min{|ί|,(50}

(1.6) Var(Y(t)\ Y(s):r<\s-t\<δo)>c2σ
2(r).

If (1.5) and (1.6) hold, we shall say that Y{t) (teRN) is strongly locally

σ-nondeterministic. We refer to Monrad and Pitt [14], Berman [4] [5] and

Cuzick and Du Peez [6] for more information on (strongly) locally nondeterminism.

We associate with Y(ή (t e RN) a Gaussian random field X(t) (ί e RN) in Rd by

(1.7) X(t) = (XM -,Ut)l

where Xu -,Xd are independent copies of Y. The most important example of

such Gaussian random fields is the fractional Brownian motion of index α (see

Example 4.1 below).

It is well known (see [1], Chapter 8) that with probability 1

/ Λ

dimX([O,l]N) = min </,-
V

The objective of this paper is to consider the exact Hausdorff measure of the

image set .¥([0,1]*). The main result is the following theorem, which generalizes

a theorem of Talagrand [22].

Theorem 1.1. If N<ocd, then with probability 1

(1.8) ; v

where φ(s) = φ(s)N\oglog7, φ is the inverse function of σ and φ-m(X([09\']N)) is the

φ-Hausdorff measure of X([0,1]*).

If N>otd, then by a result of Pitt [17], ^([0,1]*) a.s. has interior points and

hence has positive ^-dimensional Lebesgue measure. In the case of N = ad9 the

problem of finding 0-m(AΊ([O,l]N)) is still open even in the fractional Brownian

motion case.

The paper is organized as follows. In Section 2 we recall the definition and

some basic facts of Hausdorff measure, Gaussian processes and regularly varying

functions. In Section 3 we prove the upper bound and in Section 4, we prove

the lower bound for φ-nt(X([0,l~]N)). We also give some examples showing that

the hypotheses in Theorem 1.1 are satisfied by a large class of Gaussian random

fields including fractional Brownian motion.

Another important example of Gaussian random fields is the Brownian sheet

or TV-parameter Wiener process W{t) (ίei?+), see Orey and Pruitt [16]. Since

W(t) (teR1^) is not locally nondeterministic, Theorem 1.1 does not apply. The

problem of finding exact Hausdorff measure of W([0,l]*) was solved by Ehm [7].
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We will use K to denote an unspecified positive constant which may be

different in each appearance.

2. Preliminaries

Let Φ be the class of functions (/>:(0,<5)-»(0,l) which are right continuous,

monotone increasing with ψ(0 + ) = 0 and such that there exists a finite constant

Λ:>0 for which

K, for 0<s<U
φ(s) 2

For φ e Φ, the (/>-Hausdorff measure of E £ RN is defined by

hri)9 r,<et,
)

where B(x,r) denotes the open ball of radius r centered at x. It is known that φ-m is a

metric outer measure and every Borel set in RN is φ-m measurable. The Hausdorff

dimension of E is defined by

d i m £ = i n f { α > 0 : sa-m(E) = 0}

= sup{α>0: sa-m(E)= oo}.

We refer to [F] for more properties of Hausdorff measure and Hausdorff dimension.

The following lemma can be easily derived from the results in [18] (see [23]),

which gives a way to get a lower bound for φ-m(E). For any Borel measure μ

on RN and φ e Φ, the upper 0-density of μ at xeRN is defined by

Lemma 2.1. For a given φeΦ there exists a positive constant K such that for

any Borel measure μ on RN and every Borel set E ^ RN, we have

ΦME)>Kμ(E)inf{Dμ

xeE

Now we summarize some basic facts about Gaussian processes. Let Z(t)

(teS) be a Gaussian process. We provide S with the following metric

d(s,t)=\\Z(s)-Z(t)\\2,

where \\Z\\2 = (E(Z2)γ. We denote by Nd(S,ε) the smallest number of open d-balls
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of radius ε needed to cover 5 and write D = sup {d(s,t):s, teS}.

The following lemma is well known. It is a consequence of the Gaussian

isopermetric inequality and Dudley's entropy bound ([11], see also [22]).

Lemma 2.2. There exists an absolute constant K>Q such that for any w>0,

we have

Ls,teS Jo )

Lemma 2.3. Consider a function Ψ such that Nd(S9 ε) < Ψ(ε)for all ε > 0. Assume

that for some constant C > 0 and all ε>0 we have

Ψ(ε)/C<ψQ<CΨ(ε).

Then

P{sup\Z(s)-Z(ή\<u}>exp(-KΨ(u)l
s, teS

where K>0 is a constant depending only on C.

This is proved in [21]. It gives an estimate for the lower bound of the small

ball probability of Gaussian processes. Similar problems have also been considered

be Monrad and Rootzen [15] and by Shao [20].

We end this section with some lemmas about regularly varying functions. Let

σ(s) be a regularly varying function with index α (0 < α < 1). Then σ can be written as

σ(s) = s"L(s),

where L(s): [0,<50) -> [0,oo) is slowly varying at the origin in the sense of Karamata

and hence can be represented by

(2.1) () p(η()

where η{s):[0,δo) -+R, ε(s):(0,A~] -+R are bounded measurable functions and

\imη(s) = c, \ c\ < oo limε(^) = 0.
s-»0 s->0

In the following, Lemma 2.4 is an easy consequence of (2.1) and Lemma 2.5 can be

deduced from Theorem 2.6 and 2.7 in Seneta [19] derectly.
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Lemma 2.4. Let L(s) be a slowly varying function at the origin and let

U= U(s): [0, oo) -> [0, oo) satisfying

lira U(s) = oo and lirm U(s) = 0.
s->0 s->0

Then for any ε > 0, as s small enough we have

U(sΓεL(s)<L(sU(s))< U(s)EL(s)

and

U(s)-EL(s)<L(sU(s)-1)< U(s)εL(s).

Lemma 2.5. Let σ be a regularly varying function at the origin with index

α>0. Then there is a constant K>0 such that for r>0 small enough, we have

(2.2) σ(re-u2)du<Kσ(rl

(2.3) σ(rs)ds<Kσ(r\
Jo

(2.4) σ(rs)sN-1ds<Kσ{r).

Let σ:[0,<50)-» [0,oo) be non-decreasing and let φ be the inverse function of

σ, that is

) = inϊ{t>O:σ(ή>s}.

then φ(s) = s1/<xf(s), where f(s) is also a slowly varying function and

(2.5) σ(ψ(s))~s and ψ(σ(s))~s as s->0.

3. Upper bound for 0-m(X([O,i;]"))

Let Y(t) (teRN) be a real-valued, centered Gaussian random field with stationary

increments and a continuous covariance function R(t,s) given by (1.1). We assume

that r(0) = 0 and (1.5) holds. Let X(t) (teRN) be the (N,d) Gaussian random field

defined by (1.7).

We start with the following lemma.

Lemma 3.1. Let Y(t) (teRN) be a Gaussian process with Y(0) = 0 satisfying

(1.5). Then
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(i) For any r > 0 small enough and u>Kσ(f), we have

(3.1)
J V Kσ\r)

(ii) Let

ωγ(h) = sup
t, t + se[O,l]N, \s\<h

be the uniform modulus of continuity of Y(t) on [0,1]N. Then

(3.2) lim sup γ < 1, a.s.

Proof. Let r<δ0 and 5={ί: \t\<r}. Since ^(^O^c^dί-jl), we have

and

D = sup{d(s,ή;s, teS}<Kσ(r).

By simple calculations

ΓD rκσ(r)

y/logNd(S,ε)dε<K\
Jo Jo

Jo

0<fe

<K\ J\og(Kr)/tdσ{t)
Jo

<A:( σ(r)+ —-i=σ(Mr)ί/M )
V Jo Uy/\ogK/u )/logAΓ/x

0

σ(r̂ ~M2)ί/w
JA

<*σ(r),

where the last inequality follows from (2.2). If u > Kσ(r\ then by Lemma 2.2 we have

<P<sup\Y(t)\>K(u +
l\t\<r
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<exp -
u2

\ Kσ\r)

This proves (3.1). The inequality (3.2) can be derived from Lemma 2.2 directly
in a standard way (see also [13]).

In order to get the necessary independence, we will make use of the spectral
representation (1.3). Given 0<α<fe<oo, we consider the process

Y(a,b,t) = I (*'<'•*>-

Then for any 0<a<b<a'<b'<oo, the processes Y(a,b,t) and Y(a\b\t) are
independent. The next lemma expresses how well Y(a9b,t) apporximates Y(t).

Lemma 3.2. Let Y(ή (t e RN) be defined by (1.3). 7/(1.5) holds, then there exists a
constant B>0 such that for any B<a<b we have

(3.3) \\Y(a,b,ή-

Proof. First we claim that for any w>0 and any heRN with \h\ — 1 ju we have

(3.4) I (KλγA{dλ)<κ\ (l-cos<Λ,A»Δ(rfA)
J\λ\<u JRN

(3.5) I A{dλ)<κ(-λ I dv\ (\-cos(υ,λy)A(dλ).
J\λ\>u \ 2 / J[-l/u, I/up JR*

For iV=l, (3.4) and (3.5) are the truncation inequalities in [12] p209. For N>\
a similar proof yields (3.4) and (3.5).

Now for any a>δo1 and any teRN\{0}, by (1.4), (1.5) and (3.4) we have

(3.6) ί (l-cos<α»Δ(</Λ)< ί <t9λ}2A(dλ)
J | λ | < Λ J\λ\<a

= \t\2a2 f (tl{a\t\\λ
J\λ\<a\λ\

For b>0 large enough, by (3.5), (1.4), (1.5) and (2.4) we have

(3.7) ί A(dλ)<j

<KbN{VN" σ2!
Jo

κ\ i \ σ2(\v\)dv

\2/ J[-l/b, ί/b]N
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Combining (3.6) and (3.7), we see that there exists a constant B>0 such that
B<a<b implies

E[(Y(a,b,ή- r(0)2] = 2 I (1 -cos<α»Δ(flW)

<2 I (1 -cos<U»Δ(Λl) + 2 I A(dλ)

This proves (3.3).

Lemma 3.3. There exists a constant B>0 such that for any B<a<b and

b<r<B~ι the following holds: let A = r2a2σ2{a~1)-{-σ2(b~ί) such that

then for any

u>KiAlog

we have

(3.8) phup\Y(ή-Y(a9b9ή\:
J V KΛJ

Proof. Let 5 = {ί: \t\ <r) and Z(0= Y(ή- Y(a9b,t). Then

φ,0=||Z(0-ZW||2<c1σ(μ-^|).

Hence

Nd(S,ε)<K[^— ) .
\^(ε)/

By Lemma 3.2 we have D<K^/A. AS in the proof of Lemma 3.1,

ΓD

 / Γ* "

Jo Jo

<AΓ| JlogK/tdσ(rt)
rKφWA)/r
\

Jo
Γ . _ ΓKψUA)/r i "I

JlogK/tσ{rt)\κ

0^
Λ^ + σ(rt)dt

L Jo tJϊogK/t J
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A log Kr I ψ(y/A) + K σ(Kre ~ "2)du

at least for r;>0 small enough, where the last step follows from (2.2). Hence

(3.8) follows immediately from Lemma 2.2.

Let Xγ(a,b,t\~',Xd(μ>>b,t) be independent copies of Y(a,b,t) and let

X{a,bj) = (XMbj\..ΊXJ,aAt)) (teRN).

Then we have the following corollary of Lemma 3.3.

Corollary 3.1. Consider B<a<b and 0<r<B~l. Let A = r2a2σ2(a~ί)

+ σ2(b~ι) with φ(y/A) <\r. Then for any

we have

(3.9) p\sup\X(ή-X(aAή\ >w[<exp( - — ) .
l|ί|<r J \ KAJ

Lemma 3.4. Given 0<r<δo and ε<σ(r). Then for any 0 <a<b we have

ί 1 / rN

(3.10) P<sup\X(a,b,t)\ <ε>>exp(
l\t\<r J \ Kφ{ε)N

Proof. It is sufficient to prove (3.10) for Y{a,b,t). Let S={t:\t\<r) and

define a distance rf on S by

Φ,o=ιιn«Λo-n^Mii2.

Then d{s,t)<c^{\t-s\) and

By Lemma 2.3 we have
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This proves lemma 3.4.

Proposition 3.1. There exists a constant δ1>0 such that for any 0<ro<δl9

we have

(3.11) pllretrlro] such t h a t sup\X(t)\ < t f ( ( l l )

Proof. We follow the line of Talagrand [22]. Let U=U(ro)>l, where U(r)

satisfying

(3.12) l/(r)-> oo as r - 0

and for any ε>0

(3.13) rεU(r)->0 as r - 0 ,

will be chosen later. For &>0, let rk = r0U~2k. Let k0 be the largest integer

such that

v~21ogC/7

then for any 0<k<ko we have rl<rk<r0. In order to prove (3.11), it suffices

to show that

(3.14) P\3k < k0 such that sup \X(ή \ < Kσ(r k(\og\og-)-*)

>l-expf-(logV).

Let ak = rό1U2k~i and we define for λ: = 0,l,

then X0,XU'" are independent. By Lemma 3.4 we can take a constant Kx such

that for r o > 0 small enough

(3.15) P\sup 1^(0
l\t\<ru

>exp( --loglog—
\ 4 rfc
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Thus, by independence we have

(3.16) p\3k < k0, sup \Xk(t)\ KK
I |r|<rk

°

Let

= U~2 + 2xr2*L2(rkU)+U~2xrl"L2(rk/ U).

Let jβ = 2min{l —α, α} and fix an ε<jβ. Then by Lemma 2.4, we see that as r0

small enough

Notice that r0 for small enough we have

the last inequality follows from (2.5). It follows from Corollary 3.1 that for

we have

f 1 ( u2Uβ-ε\
(3.17) P< sup \X{t)-Xk(t)I >M><exp( — ).

l|ί|<rk J \ Kσ (rk)
Hence, if we take

C/=(logl/r0)^,
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then as r0 small enough

Hence by taking

I r0

in (3.17), we obtain

(3.18) p\Snp\X(ή-Xk(ή\ A ^ g g V ^ U e p f ^
l\t\<rk 2 r0 J . V Kσ\rk)

Combining (3.16) and (3.18) we have

(3.19) P \ 3k < k0 such that sup |X(t) \ < IK^ σ(rt(log log-)" 1/N)\
I l'|sr t rk J

>l-exp( -

We recall that

41ogC/-

and hence for r 0 small enough, (3.11) follows from (3.19).

Now we are in a pposition to prove the uppper bound for </>-m(AΊ([0,l]N)).

Theorem 3.1. Let φ(s) = \l/{s)N\og\og^. Then with probability 1

Proof. For k>l9 consider the set

Λ4 = j f e [ 0 4 ] " : 3 r e [ 2 - 2 k , 2 - * ] such that

sup \X(s) - X{i)\ < Kσ{r{\og log -)
\s-t\<r V

By Proposition 3.1 we have
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Denote the Lebesgue measure in RN by LN. It follows from Fubini's theorem

that P(Ω O )=1, where

Ω o = {ω:LN(Rk)> 1 -exp(-y/ϊcj4) infinitely often}.

On the other hand, by Lemma 3.1 ii), there exists an event Ωx such that P(Ωί)=l

and for all ωeQί, there exists nι=nι(ω) large enough such that for all n>n1 and

any dyadic cube C of order n in RN

9 we have

(3.20) sup\X(ή-X(s)\<Kσ(2-n)y/n.
s,teC

Now fix an ω e Ωo n Ωί, we show that φ-m(X([091]N)) < oo. Consider k > 1 such that

For any xeRk we can find n with k<n<2k + k0 (where k0 depends on N only)

such that

(3.21) sup \X(t)-X(s)\<Kσ(2-"(loglog2TιlN),
s,teCn{x)

where Cn(x) is the unique dyadic cube of order n containing x. Thus we have

RkczV=u2

n

kJk

k°Vn

and each Vn is a union of dyadic cubes Cn of order n for which (3.21) holds. Clearly

X(Cn) can be covered by a ball of radius

pn = Kσ(2-n(log\og2nyi/N).

Since φ{2pn)<K2~nN=KLN(Cn\ we have

(3.22) Σ Σ ΦVPnHΣ Σ^N(Cn)
n CeVn n CeVn

= KLN(V)<oo.

On the other hand, [ 0 , l ] N \ F is contained in a union of dyadic cubes of order

Oi none of which meets Rk. There can be at most

-y/ϊc/4)

of such cubes. For each of these cubes, X(C) is contained in a ball of radius

ρ = Kσ(2~q)y/q. Thus for any ε > 0

(3.23)
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for k large enough. Since k can be arbitrarily large, Theorem 3.1 follows from

(3.22) and (3.23).

4. Lower bound for φ-m{X{\Q,Yf))

Let Y(t) (teRN) be a real-valued, centered Gaussian random field with stationary

increments and a continuous covariance function R(t,s) given by (1.1). We assume

that 7(0) = 0 and (1.6) holds. Let X(t) (teRN) be the (N,d) Gaussian random field

defined by (1.7). In this section, we prove that if N<(xd9 then

φ-rn(X([0,iy))>0 a.s.

For simplicity we assume <50 = l and let / = [ 0 , l ] N n 2?(0,l) (otherwise we

consider a smaller cube). For any 0 < r < 1 and y e Rd. Let

)—

be the sojourn time of X(t) (tel) in the open ball B(y,r)> If .y=0, we write T(r)

for T0(r).

Proposition 4.1. There exist δ2>0 and b>0 such that for any 0<r<δ2

(4.1) E(exp(bψ(ryNT(r)))<K< oo.

Proof. We first prove that there exists a constant 0<K<oo such that for

any n > 1

(4.2) E{T\r))n < KHnlψ(r)Nn.

For Λ = 1, by (2.4) and (2.5) we have

(4.3) ET(r)={p{X(t)eB(0,r)}dt={

<K\
Jo

C1 Krd

\ min{l,—jK-
Jo σ(Pr

1 f dt
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<Kφ(rf.

For «>2

"ί.(4.4) E(TXr)n)= P{\Wi)\<r, '',\ΆQ\<r}dt1 dtn.
J

Consider tu -,tnel satisfying

tjφO for j=l-"9n, tjϊtk for jφk.

Let ί/ = min{m \tn-t^ / = 1 , , Λ - 1 } . Then by (1.6) we have

(4.5) Var(X(tn)\X(tι), -,*(*„-1)) > ̂ 2σ
2(f/).

Since conditional distributions in Gaussian processes are still Gaussian, it follows

from (4.5) that

(4.6)

SΛ J-fJ-J*.)*.
J\u\<MiY \ Kσ2(η)J

Similar to (4.3), we have

(4.7)

f min{l, K(^

<K [ "Σ min{l, K( r Y}dtn (t0 = 0)

<Knφ(r)N.

By (4.4), (4.6) and (4.7), we obtain

E{Ί\r))n<κ\ P^X^t^Kr. ' ΛXit^^Kήdti

Ml)/
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<Knψ(r)NE(T(ή)n-K

Hence, the inequality (4.2) follows from (4.3) and induction. Let 0<b<l/K9

then by (4.2) we have

Eexp(bψ(ryN7χr))= £ (Kb)n< oo.
n = O

This proves (4.1)

Proposition 4.2. With probability 1

(4.8) ^ lm s U p ^ < ,

where φ(r) = φ(r)N\og log 1 / r.

Proof. For any ε>0, it follows from (4.1) that

(4.9) W ) > ( 1 /b + ε)ψ(r)N\og\og 1 /r}
"(logl/r)

Take rπ = exp( — n/logri), then by (4.9) we have

K
P{Ί\rn)>{\ /b +

J (n/\ogn)1+bε'

Hence by Borel-Cantelli lemma we have

(4.10) limsup — < - + ε.
»-oo Φ{rn) b

It is easy to verify that

(4.11) lim — = 1 .

Hence by (4.10) and (4.11) we have

T\r) 1

r->o φ{r)~Ί>

Since ε>0 is arbitrary, we obtain (4.8).

Since X(t) (teRN) has stationary increments, we derive the following
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Corollary 4.1. Fix toel9 then with probability 1

m s u p .
r^o φ{r) b

Theorem 4.1. If N<ad, then with probability 1

(4.12) <MOTU]"))>0,

where φ(r) = ψ(r)Nlog log 1 / r.

Proof. We define a random Borel measure μ on X(I) as follows. For any
Borel set B £ R\ let

) = LN{teI, X(ήeB}.

Then μ(Rd) = μ{X(I)) = LN(I). By Corollary 4.1, for each fixed t0 e /, with probatility 1

( 4 , 3 ) U m s u p

r-.o φ(r)

o φ(r) b

Let E(ω)={X(t0): toel and (4.13) holds}. Then E(ω) c χ(l). A Fubini argument
shows μ(2s(ω))=l, a.s.. Hence by Lemma 2.1, we have

This proves (4.12).

Proof of Theorem 1.1. It follows from Theorems 3.1 and 4.1 immediately.

EXAMPLE 4.1. Let Y(t) (teRN) be a real-valued fractional Brownian motion
of index α (0<α<l) (see [10], Chapter 18). Its covariance function has the
representation

RN

where c(α) is a normalizing constant. Then (1.5) is verified and by a result of Pitt
[17], (1.6) is also verified. In this case, Theorem 1.1 is proved by Goldman [9]
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for α = 1/2 and by Talagrand [22] for 0 < α < l .

EXAMPLE 4.2 Let Z(t) (teRN) be a real-valued mean zero stationary random

field with covariance function

R(s,t) = exp(-c\s-t\2a) with c>0 and 0 < α < l .

Then Y(ή = Z(ή — Z(0) verifies the conditions (1.5) and (1.6). We can apply Theorem

1.1 to obtain the Hausdorff measure of ^([0,1]^), where

and Xu-"9Xd are independent copies of Z. Other examples with absolutely

continuous spectral measure can be found in Berman [2] p289, and Berman [4].

EXAMPLE 4.3. Now we give an example with discrete spectral measure. Let

Xn («>0) and Yn (n>0) be independent standard normal random variables and

an (n>0) real numbers such that Σna
2<oo. Then for each t, the random series

(4.14) Z(t) = Σ an(Xncosnt+ Ynsinnή
« = o

converges with probability 1 (see [10]), and Z(t) (teR) represents a stationary

Gaussian process with mean 0 and covariance function

00

R(s9 ή= Σancos n(t - s).
« = 0

By a result of Berman [4], there are many choices of an (n>0) such that the

process Y(ή = Z(ή — Z(0) satisfies the hypotheses of Theorem 1.1 with

00

σ2(s) = 2 ]Γ al(\ — cosns).
n = 0

Let X(t) (teR) be the Gaussian process in Rd associated with Z(t) or Y(t) (teR)

by (1.7). If l«xd, then

where ^(5 ) = ̂ (^)loglog7 and φ is the inverse function of σ. A special case of

(4.14) is Example 3.5 in Monrad and Rootzen [15].
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