THE SLICE DETERMINED BY MODULI EQUATION $x y=2 z$ IN THE DEFORMATION SPACE OF ONCE PUNCTURED TORI

Takehiko SASAKI

(Received February 9, 1995)

1. Introduction and statement of results

We recall some terminology and results in [2], [3] and [6]. Let A and B be loxodromic elements of $\operatorname{PSL}(2, C)$, that is, A and B are 2×2 complex matrices with determinant 1 and their traces do not lie on the closed interval [$-2,2$. By an obvious isomorphism we identify $\operatorname{PSL}(2, C)$ with the Möbius transformations group. Denote by $G=\langle A, B\rangle$ the Möbius subgroup generated by A and B. Let x, y and z be the traces of A, B and $A B$, respectively. The triple (x, y, z) is called a moduli triple of G. We restrict ourselves to the case in which triple (x, y, z) satisfies the moduli equation

$$
\begin{equation*}
x^{2}+y^{2}+z^{2}=x y z . \tag{*}
\end{equation*}
$$

Let $A_{0}=\left(\begin{array}{cc}\sqrt{2}+1 & 0 \\ 0 & \sqrt{2}-1\end{array}\right)$ and $B_{0}=\left(\begin{array}{cc}\sqrt{2} & 1 \\ 1 & \sqrt{2}\end{array}\right) . \quad$ Put $G_{0}=\left\langle A_{0}, B_{0}\right\rangle$. Then $(\sqrt{8}, \sqrt{8}, 4)$ is a moduli triple of G_{0} satisfying $(*), G_{0}$ is a Fuchsian group of the first kind and $\Omega\left(G_{0}\right) / G_{0}$ is a pair of once punctured tori, where $\Omega\left(G_{0}\right)$ denotes the region of discontinuity of G_{0}. For each quasi-Fuchsian group $G=\langle A, B\rangle$ such that $\Omega(G) / G$ is a pair of once punctured tori, there is a quasiconformal mapping f of the extended plane such that $A=f A_{0} f^{-1}$ and $B=f B_{0} f^{-1}$. Hence G is a quasiconformal deformation of G_{0}. The set of all such quasi-Fuchsian groups is called a deformation space of once punctured tori and denoted by $\boldsymbol{D}\left(G_{0}\right)$. Under a normalization each triple satisfying (*) determines A and B uniquely so that a group $G=\langle A, B\rangle$ of $\boldsymbol{D}\left(G_{0}\right)$, too. We identify $D\left(G_{0}\right)$ with the subset of C^{3} consisting of triples each of which satisfies $(*)$ and determines a quasiFuchsian group. We put

$$
\boldsymbol{T}^{*}=\left\{(x, y, z) \mid x^{2}+y^{2}+z^{2}=x y z\right\} \subset \boldsymbol{C}^{3} .
$$

Then, by stability of quasi-Fuchsian groups, $\boldsymbol{D}\left(G_{0}\right)$ is an open subset of \boldsymbol{T}^{*}. In [3] the following is shown.

Theorem 1 ([3]). Let $G=\langle A, B\rangle$ be a group generated by loxodromic elements A and B satisfying (*). If triple (x, y, z) of G also satisfies

$$
\begin{equation*}
x>2 \text { and } y>2 \text {, } \tag{1}
\end{equation*}
$$

then $G \in \boldsymbol{D}\left(G_{0}\right)$.
We put

$$
S=\{(x, y, z) \mid x>2, y>2\} \cap T^{*} .
$$

Then Theorem 1 implies $S \subset \boldsymbol{D}\left(G_{0}\right)$. We denote by \bar{S} the closure of S in T^{*}. Then $\bar{S} \backslash S$ consists of the following three sets:

$$
\begin{aligned}
& b_{1}=\left\{(2, y, z) \mid y^{2}+z^{2}+4=2 y z, y>2\right\} \\
& b_{2}=\left\{(x, 2, z) \mid x^{2}+z^{2}+4=2 x z, x>2\right\} \\
& b_{3}=\left\{(2,2, z) \mid z^{2}+8=4 z\right\} .
\end{aligned}
$$

For these sets the following are noted in [6].
Theorem 2 ([6]). Let G be a group whose moduli triple lies on $b_{1} \cup b_{2}$. Then G is a boundary group of $\boldsymbol{D}\left(G_{0}\right)$. More precisely, G is a regular b-group.

Theorem 3 ([6]). Let G be a group whose moduli triple lies on b_{3}. Then G is a boundary group of $\boldsymbol{D}\left(G_{0}\right)$. More precisely, G is a web group.

A regular b-group is a Kleinian group G having only one simply connected invariant component Δ such that

$$
2 \operatorname{Area}(\Delta / G)=\operatorname{Area}(\Omega(G) / G)
$$

where Area implies the hyperbolic area. A web group is a Kleinian group such that each component subgroup is a quasi-Fuchsian group of the first kind. We remark that the web group in Theorem 3 is not quasi-Fuchsian, but it has an infinite number of components. By Theorems 2 and 3 we see that

$$
S=\{(x, y, z) \mid x>2, y>2\} \cap D\left(G_{0}\right),
$$

so we shall call S the slice determined by (1).
Comparing with Theorems 1,2 and 3 , we shall investigate another slice S^{\prime} of $D\left(G_{0}\right)$ determined by moduli equation

$$
\begin{equation*}
x y=2 z . \tag{2}
\end{equation*}
$$

Explicitely,

$$
S^{\prime}=\{(x, y, z) \mid x y=2 z\} \cap D\left(G_{0}\right) .
$$

In comparison with Theorem 1 we prove the following.

Theorem 4. Let

$$
E=\left\{(x, y, z)|x y=2 z,|x|>2,|y|>2\} \cap T^{*} .\right.
$$

Then $E \subset S^{\prime}$.
The set $\bar{E} \backslash E$ consists of the following three sets:

$$
\begin{aligned}
& e_{1}=\left\{(x, y, z)|x y=2 z,|x|=2,|y|>2\} \cap T^{*}\right. \\
& e_{2}=\left\{(x, y, z)|x y=2 z,|x|>2,|y|=2\} \cap T^{*}\right. \\
& e_{3}=\left\{(x, y, z)|x y=2 z,|x|=|y|=2\} \cap T^{*} .\right.
\end{aligned}
$$

In contrast to Theorem 2 the following holds.

Theorem 5. $e_{1} \cup e_{2} \subset S^{\prime}$.
We also prove the following.

Theorem 6. Let G be a group whose moduli triple lies on e_{3}. Then G is a boundary group of $\boldsymbol{D}\left(G_{0}\right)$.

In §2 we make a normalization of generators and then show as Theorems 7 and 8 that each group of the slice S^{\prime} has a symmetric region of discontinuity and a symmetirc fundamental domain with respect to the origin and that none of the boundary groups of S^{\prime} is a b-group. In $\S 3$ we modify a criterion for discontinuity of [4] and then prove Theorems 4 and 5. Lastly, we prove Theorem 6 in §4.

The author would like to thank the referee for careful reading and valuable suggestions.

2. Normalization and symmetry

Let A and B be loxodromic elements of $\operatorname{PSL}(2, C)$ and put $G=\langle A, B\rangle$. We assume that the moduli triple (x, y, z) of G satisfies (*) and (2). Firstly, we shall normalize A and B. Conjugating by a Möbius transformation, we normalize A such that

$$
A=\left(\begin{array}{ll}
\alpha & 0 \\
0 & \beta
\end{array}\right), \quad \alpha=r e^{i \theta}, \quad r>1 \quad \text { and } \quad-\frac{\pi}{2}<\theta \leq \frac{\pi}{2} .
$$

Note that $\alpha \beta=1$ and $\beta=1 / \alpha$. We write $B=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. Then $x=\alpha+\beta, y=a+d$ and $z=\alpha a+\beta d$.

Proposition. Equality (2) is equivalent to $a=d$.
Proof. By the substitution of $x=\alpha+\beta, y=a+d$ and $z=\alpha a+\beta d$ into (2), equality (2) reduces to $(\alpha-\beta)(a-d)=0$. Since $\alpha \neq \beta$, we have $a=d$.

Substituting $x=\alpha+\beta, y=2 a$ and $z=(\alpha+\beta) a$ into $(*)$, we have $(\alpha-\beta)^{2} a^{2}=(\alpha+\beta)^{2}$. We shall choose a sign of a such that $a=(\alpha+\beta) /(\alpha-\beta)$. Conjugating by a Möbius transformation having the same fixed points with that of A, which leaves A invariant, we normalize B such that $a=c$. Then we have

$$
B=\left(\begin{array}{ll}
a & b \tag{3}\\
a & a
\end{array}\right), \quad a=\frac{\alpha+\beta}{\alpha-\beta} \quad \text { and } \quad y=\frac{2(\alpha+\beta)}{\alpha-\beta} .
$$

Under this normalization we remark the following.

Theorem 7. If G lies on the slice S^{\prime} determined by (2), then, under the normalization above, $\Omega(G)$ is symmetric with respect to the origin. Furthermore, there is a fundamental domain for G which is symmetric with respect to the origin.

Proof. By (3) we have $B^{-1}(-z)=-B(z)$. This implies that $B^{-n}(-z)=-B^{n}(z)$ for any z and any integer n. We also have $A^{n}(-z)=-A^{n}(z)$. Let M be an element of G not being the identity. Then

$$
M=A^{m_{1}} B^{n_{1}} A^{m_{2}} B^{n_{2}} \cdots A^{m_{i}} B^{n_{i}}
$$

for some integers $m_{j}, n_{j}(j=1,2, \cdots, i)$. Set

$$
M^{-}=A^{m_{1}} B^{-n_{1}} A^{m_{2}} B^{-n_{2}} \cdots A^{m_{i}} B^{-n_{i}}
$$

By the successive use of the identities shown just above we obtain

$$
M^{-}(-z)=-M(z) .
$$

Let M be a loxodromic element of G and let z_{1} and z_{2} be the fixed points of M. Then M^{-}is also a loxodromic element of G and equation $M^{-}(-z)=-M(z)$ implies that $-z_{1}$ and $-z_{2}$ are the fixed points of M^{-}. Since the limit set, $\Lambda(G)$, of G is the closure of the fixed points of loxodromic elements of G, we obtain that $\Lambda(G)$ is symmetric with respect to the origin, so is the region of discontinuity, too. Since G is a quasi-Fuchsian group of the first kind, there is a fundamental domain consisting of two pieces. Let D^{+}be one of the two components of a
fundamental domain for G lying in a component of G. We put $D^{-}=\left\{z \mid-z \in D^{+}\right\}$. Now it is not difficult to see that $D^{+} \cup D^{-}$is a funamantal domain for G. By construction, it is symmetric with respect to the origin.

It is shown in [1] that each boundary group of any Bers slice has just one simply connected invariant component. Such a group is called a b-group. In contrast to the Bers slices we have the following.

Theorem 8. None of the boundary groups of S^{\prime} is a b-group.
Proof. Assume that G is a group of $\bar{S}^{\prime} \backslash S^{\prime}$ and is a b-group, that is, G has just one simply connected invariant component. Let Δ be the simply connected invariant component of G. Let D^{+}be the piece of a fundamental domain for G lying in Δ. By Theorem 7 we see that the set $D^{-}=\left\{z \mid-z \in D^{+}\right\}$is a subset of $\Omega(G)$. If D^{-}lies in Δ, then there is a curve $C \subset \Delta$ connecting a point $p \in D^{+}$to $-p \in D^{-}$. Then the curve symmetric to C with respect to the origin also lies in Δ and connects p to $-p$. Then the closed curve $C \cup C^{-} \subset \Delta$ separates 0 from ∞. Since 0 and ∞ lie on $\Lambda(G)$, this contradicts our assumption that Δ is simply connected. Hence D^{-}lies in another component, say Δ^{\prime}. By symmetry, Δ^{\prime} is also an invariant component of G, a contradiction.

3. Proof of Theorems $\mathbf{4}$ and $\mathbf{5}$

We recall a sufficient condition for $G=\langle A, B\rangle$ to be Kleinian.
Theorem 9 ([4]). Let $G=\langle A, B\rangle$ be a subgroup of $\operatorname{PSL}(2, C)$ generated by loxodromic elements $A=\left(\begin{array}{ll}\alpha & 0 \\ 0 & \beta\end{array}\right)$ and $B=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right), b c \neq 0$ and satisfying (*). If, for each integer n, the inequality

$$
\begin{equation*}
\frac{\left|\alpha^{n} a\right|+\left|\beta^{n} d\right|}{\left|\alpha^{n} a+\beta^{n} d\right|}<\frac{|\alpha|+|\beta|}{|\alpha-\beta|} \tag{4}
\end{equation*}
$$

holds, then G is quasi-Fuchsian and represents a pair of once punctured tori.
Remark. The moduli equation (*) is equvalent to the trace equation $\operatorname{tr}\left(A B A^{-1} B^{-1}\right)=-2$ (see, for example, [2] or Lemma 3 in [5]). Since (*) is symmetric with respect to x and y or since $\operatorname{tr}\left(A B A^{-1} B^{-1}\right)=\operatorname{tr}\left(B A B^{-1} A^{-1}\right)$, Theorem 9 is true even if we interchange the mormalizations of A and B.

Under the moduli equation (2), Theorem 9 reduces to the following.
Theorem 10. Let $G=\langle A, B\rangle$ be as in Theorem 9 and assume that G also
satisfies (2). If, for each positive integer n, the inequality

$$
\begin{equation*}
\frac{\left|\alpha^{n}\right|+\left|\beta^{n}\right|}{\left|\alpha^{n}+\beta^{n}\right|}<\frac{|\alpha|+|\beta|}{|\alpha-\beta|} \tag{5}
\end{equation*}
$$

holds, then G is quasi-Fuchsian.
Proof. By Proposition in §2 we see that (4) reduces to (5). We shall show that (5) holds for each integer n whenever (5) holds for each positive integer n. Since $\beta=1 / \alpha$, we have $\left|\alpha^{n}\right|+\left|\beta^{n}\right|=\left|\alpha^{-n}\right|+\left|\beta^{-n}\right|$ and $\left|\alpha^{n}+\beta^{n}\right|=\left|\alpha^{-n}+\beta^{-n}\right|$. Hence (5) holds for each negative integer n whenever it holds for each positive integer n. To show (5) holds for $n=0$ observe that, for $n=0$ and $n=1$, (5) is equivalent to $|\alpha-\beta|<|\alpha|+|\beta|$ and to $|\alpha-\beta|<|\alpha+\beta|$, respectively. Since $|\alpha+\beta| \leq|\alpha|+|\beta|$, we see that (5) holds for $n=0$ whenever it holds for $n=1$. Thus we have Theorem 10 by Theorem 9 .

Now, we shall check (5) of Theorem 10 for each positive integer n, that will give us proofs of Theorems 4 and 5. By Remark under Theorem 9 we may assume that $(x, y, z) \in E \cup e_{1}$, so $|x| \geq 2$ and $|y|>2$.

For $n=1$, (5) reduces to

$$
|\alpha-\beta|<|\alpha+\beta| .
$$

By (3) we see that $|y|=|2(\alpha+\beta) /(\alpha-\beta)|$ and so condition $|y|>2$ implies $|\alpha-\beta|<|\alpha+\beta|$. Hence (5) holds for $n=1$.

In order to treat the case $n \geq 2$, we shall put

$$
u=r^{2}+r^{-2} \quad \text { and } \quad v=\cos 2 \theta
$$

where $\alpha=r e^{i \theta}$. By the inequalities $|\alpha-\beta|<|\alpha+\beta|$, which is shown just above, and $|x|=|\alpha+\beta| \geq 2$ we have

$$
\begin{equation*}
0<v \leq 1 \quad \text { and } \quad u \geq 4-2 v . \tag{6}
\end{equation*}
$$

For $n=2$, in polar coordinate $\alpha=r e^{i \theta}$, (5) reduces to

$$
\frac{r^{4}+r^{-4}+2}{r^{4}+r^{-4}+2 \cos 4 \theta}<\frac{r^{2}+r^{-2}+2}{r^{2}+r^{-2}-2 \cos 2 \theta}
$$

Using the equalities $r^{4}+r^{-4}=u^{2}-2$ and $\cos 4 \theta=2 v^{2}-1$, one shows that it is equivalent to

$$
(u-1+v)^{2}-(1-v)^{2}-4(1-v)>0 .
$$

Inequalities (6) imply that the left hand side is not smaller than

$$
(3+v)^{2}-(1-v)^{2}-4(1-v)
$$

and that it is greater than 4 , so (5) holds for $n=2$.
For $n=3$, in polar coordinate, (5) reduces to

$$
\frac{r^{6}+r^{-6}+2}{r^{6}+r^{-6}+2 \cos 6 \theta}<\frac{r^{2}+r^{-2}+2}{r^{2}+r^{-2}-2 \cos 2 \theta} .
$$

Making use of the equalities $r^{6}+r^{-6}=u^{3}-3 u$ and $\cos 6 \theta=4 v^{3}-3 v$, we have

$$
\frac{u^{3}-3 u+2}{u^{3}-3 u+8 v^{3}-6 v}<\frac{u+2}{u-2 v} .
$$

A calculation shows that this is equivalent to

$$
\begin{equation*}
f(u, v)=(1+v) u^{3}-2\left(2+3 v-2 v^{3}\right) u+8 v^{3}-4 v>0 . \tag{7}
\end{equation*}
$$

Since

$$
\frac{\partial f(u, v)}{\partial u}=3(1+v) u^{2}-2\left(2+3 v-2 v^{3}\right)>3 u^{2}-10>0
$$

$f(u, v)$ is an increasing function of u. Hence by (6), in order to show (7), it suffices to show that $f(4-2 v, v)>0$. A calculation shows that

$$
f(4-2 v, v)=4\left(2+(1-v)\left(10-3 v-12 v^{2}+4 v^{3}\right)\right)
$$

We put $g(v)=10-3 v-12 v^{2}+4 v^{3}$. If $g(v) \geq 0$, then $f(4-2 v, v)>0$. If $g(v)<0$, then we have

$$
2+(1-v) g(v) \geq 2+g(v)=3\left(1-v^{2}\right)(4-v)+v^{3}>0
$$

Thus, in both cases we have $f(4-2 v, v)>0$ so that (7) holds. Therefore we have shown that (5) holds for $n=3$.
For $n \geq 4$, in polar coodinate, (5) reduces to

$$
\frac{r^{2 n}+r^{-2 n}+2}{r^{2 n}+r^{-2 n}+2 \cos 2 n \theta}<\frac{r^{2}+r^{-2}+2}{r^{2}+r^{-2}-2 \cos 2 \theta}=\frac{u+2}{u-2 v} .
$$

Since

$$
\frac{r^{2 n}+r^{-2 n}+2}{r^{2 n}+r^{-2 n}+2 \cos 2 n \theta} \leq \frac{r^{8}+r^{-8}+2}{r^{8}+r^{-8}-2}=\frac{u^{4}-4 u^{2}+4}{u^{4}-4 u^{2}},
$$

to show (5) it suffices to show

$$
\frac{u^{4}-4 u^{2}+4}{u^{4}-4 u^{2}}<\frac{u+2}{u-2 v}
$$

or, equivalently,

$$
\begin{equation*}
h(u, v)=(1+v) u^{4}-4(1+v) u^{2}-2 u+4 v>0 . \tag{8}
\end{equation*}
$$

Making use of inequalities $u>2$ and $v>0$, one obtains

$$
\frac{\partial h(u, v)}{\partial u}=4(1+v)\left(u^{2}-2\right) u-2>14 .
$$

Hence $h(u, v)$ is an increasing function of u. There are two cases to consider.
Case I: $v<1$. By (6) we see that, in order to show (8), it suffices to show $h(4-2 v, v)>0$. A calculation shows that

$$
h(4-2 v, v)=8(1-v)(2(1+v)(2-v)(3-v)-1)>0 .
$$

Case II: $v=1$. Since $r>1$, we have $u>2$. Hence

$$
h(u, 1)=2(u-2)\left(u^{3}+2 u^{2}-1\right)>0 .
$$

Thus we have shown (8). Hence (5) holds for $n \geq 4$.
Therefore we have shown that (5) holds for all positive integer n. Then Theorem 10 implies Theorems 4 and 5.

4. Proof of Theorem 6

We shall prove the theorem in a sequence of lemmas. Let $(x, y, z) \in e_{3}$.
Lemma 1. $x=\bar{y}=\sqrt{3} \pm i$.
Proof. By (3) and $|x|=|y|=2$ we have $|\alpha-\beta|=2$. Hence we have $|\alpha+\beta|=|\alpha-\beta|$ $=2$ or, in polar coordinate $\alpha=r e^{i \theta}$,

$$
r^{2}+r^{-2}+2 \cos 2 \theta=r^{2}+r^{-2}-2 \cos 2 \theta=4
$$

It follows that $\cos 2 \theta=0$ and $r^{2}+r^{-2}=4$. We obtain $\theta= \pm \pi / 4$ and $r=(\sqrt{3}$ $+1) / \sqrt{2}$. Hence

$$
\alpha=\frac{\sqrt{3}+1}{2}(1 \pm i) \quad \text { and } \quad \beta=\frac{\sqrt{3}-1}{2}(1 \mp i) .
$$

Therefore we have $x=\alpha+\beta=\sqrt{3} \pm i$ and, by (3), $y=\sqrt{3} \mp i$.
We choose the sign such that $x=\bar{y}=\sqrt{3}+i$. The proof for the case $x=\bar{y}=\sqrt{3}-i$ is similar. By (3) we see that $a=(\sqrt{3}-i) / 2$ and $b=-i$. Hence we have

$$
A=\left(\begin{array}{cc}
\frac{(\sqrt{3}+1)(1+i)}{2} & 0 \\
0 & \frac{(\sqrt{3}-1)(1-i)}{2}
\end{array}\right) \text { and } \quad B=\left(\begin{array}{cc}
\frac{\sqrt{3}-i}{2} & -i \\
\frac{\sqrt{3}-i}{2} & \frac{\sqrt{3}-i}{2}
\end{array}\right)
$$

Lemma 2. Let $F=\langle A B, B A\rangle$ and $C=\{z \in C| | z-(\sqrt{3}+3 i) / 2 \mid=\sqrt{2}\}$. Then F is a Fuchsian group of the first kind with C as the invariant circle.

Proof. Since

$$
A B=\left(\begin{array}{cc}
\frac{2+\sqrt{3}+i}{2} & \frac{(\sqrt{3}+1)(1-i)}{2} \\
\frac{2-\sqrt{3}-i}{2} & \frac{2-\sqrt{3}-i}{2}
\end{array}\right)
$$

and

$$
B A=\left(\begin{array}{cc}
\frac{2+\sqrt{3}+i}{2} & \frac{(\sqrt{3}-1)(1+i)}{2} \\
\frac{2+\sqrt{3}+i}{2} & \frac{2-\sqrt{3}-i}{2}
\end{array}\right)
$$

putting

$$
T=\left(\begin{array}{cc}
(\sqrt{3}+1)(1-i) & -\sqrt{3}+i \\
4 & 2(1-(2+\sqrt{3}) i)
\end{array}\right)
$$

we calculate and obtain

$$
T A B T^{-1}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \text { and } T B A T^{-1}=\left(\begin{array}{ll}
1 & 0 \\
4 & 1
\end{array}\right)
$$

It is well known and is also easy to see that the group $T F T^{-1}$ generated by $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ and $\left(\begin{array}{ll}1 & 0 \\ 4 & 1\end{array}\right)$ is a Fuchsian group of the first kind with the extended real axis as the invariant circle. A calculation shows that $T(C)$ is identical with the extended real axis.

Lemma 3. G is not quasi-Fuchsian.

Proof. Since F is a subgroup of G so that $C \subset \Lambda(G)$, since 0 is a fixed point of the loxodromic element A so that $0 \in \Lambda(G)$, and since 0 does not lie on C, it is clear that G is not quasi-Fuchsian.

This lemma tells us that G does not lie in $\boldsymbol{D}\left(G_{0}\right)$. Theorem 4 tells us that $G \in \bar{E} \subset \bar{S}^{\prime} \subset \overline{\boldsymbol{D}}\left(G_{0}\right)$ so that G lies on $\overline{\boldsymbol{D}}\left(G_{0}\right)$. These two facts imply Theorem 6 .

Remark. An argument similar to one in [6] will show that G is a web group with two symmetric non-equvalent components; one is bounded by C and the other is symmetric to it with respect to the origin.

References

[1] L. Bers: On boundaries of Teichmüller spaces and on Kleinian groups, I, Ann. of Math. (2) 91 (1970), 570-600.
[2] L. Keen: Teichmïller spaces of punctured tori, I, Complex Variable 2 (1983), 199-211.
[3] L. Keen and C. Series: Pleating coordinates for the Maskit embedding of the Teichmüller space of punctured tori, Topology 32 (1993), 719-749.
[4] T. Sasaki: A fundamental domain for some quasi-Fuchsian groups, Osaka J. Math. 27 (1990), 67-80.
[5] T. Sasaki: On Keen's moduli inequality in two generator Möbius groups, J. Math. Soc. Japan 46 (1994), 663-680.
[6] T. Sasaki: A note on the boundary of a slice in deformation space of once punctured tori, Bull. Yamagata Univ. (Nat. Sci.) 13 (1994), 193-198.

Department of Mathematics Faculty of Education Yamagata University Kojirakawa-machi 1-4-12
Yamagata 990, Japan

