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1. Introduction and statement of results

We recall some terminology and results in [2], [3] and [6]. Let A and B
be loxodromic elements of PSL(2,C), that is, 4 and B are 2 x 2 complex matrices
with determinant 1 and their traces do not lie on the closed interval [—2,2]. By
an obvious isomorphism we identify PSL(2,C) with the Mobius transformations
group. Denote by G=<A4,B) the Mobius subgroup generated by A4 and
B. Let x, y and z be the traces of A4, B and 4B, respectively. The triple (x,y,z)
is called a moduli triple of G. We restrict ourselves to the case in which triple
(x,y,z) satisfies the moduli equation

(*) x24y* 4zt =xyz.

Let A0=<\/§+1 0 >and BO=<\/E ! >
0 \/5 -1 1 \[2

(\/g, \/5, 4) is a moduli triple of G, satisfying (*), G, is a Fuchsian group of the
first kind and Q(G,)/ G, is a pair of once punctured tori, where Q(G,) denotes
the region of discontinuity of G,. For each quasi-Fuchsian group G={A4,B) such
that Q(G)/ G is a pair of once punctured tori, there is a quasiconformal mapping
f of the extended plane such that A=fA,f"! and B=fB,f~!. Hence G is a
quasiconformal deformation of G,. The set of all such quasi-Fuchsian groups is
called a deformation space of once punctured tori and denoted by D(G,). Under
a normalization each triple satisfying (x) determines A and B uniquely
so that a group G=<{4,B) of D(G,), too. We identify D(G,) with the subset
of C? consisting of triples each of which satisfies () and determines a quasi-
Fuchsian group. We put

Put Gy={4,,B,>. Then

T*={(xy,2)x*+y*+22=xpyz} = C*.

Then, by stability of quasi-Fuchsian groups, D(G,) is an open subset of T*. In [3]
the following is shown.
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Theorem 1 ([3]). Let G=<A,B) be a group generated by loxodromic elements
A and B satisfying (»). If triple (x,y,z) of G also satisfies

) x>2 and y>2,
then Ge D(G,).

We put
S={(xy2)x>2, y>2} nT*.

Then Theorem 1 implies S = D(G,). We denote by § the closure of Sin T*. Then
S\S consists of the following three sets:

b, ={Qy.2)y* +z2+4=2yz, y>2}
by={(x,2,2)|x* + 2> +4=2xz, x>2}
by={(2,2,2)|z*> +8=4z}.

For these sets the following are noted in [6].

Theorem 2 ([6]). Let G be a group whose moduli triple lies on b, ub,. Then
G is a boundary group of D(G,). More precisely, G is a regular b-group.

Theorem 3 ([6]). Let G be a group whose moduli triple lies on b;. Then G
is a boundary group of D(G,). More precisely, G is a web group.

A regular b-group is a Kleinian group G having only one simply connected
invariant component A such that

2Area(A/ G)=Area(Q(G)/G),

where Area implies the hyperbolic area. A web group is a Kleinian group such
that each component subgroup is a quasi-Fuchsian group of the first kind. We
remark that the web group in Theorem 3 is not quasi-Fuchsian, but it has an
infinite number of components. By Theorems 2 and 3 we see that

S= {(x’yaz)lx > 2: y > 2} N D(Go)a

so we shall call S the slice determined by (1).
Comparing with Theorems 1, 2 and 3, we shall investigate another slice S’ of
D(G,) determined by moduli equation

2 xy=2z.

Explicitely,
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S’ ={(xy,2)lxy =2z} " D(G,).

In comparison with Theorem 1 we prove the following,

Theorem 4. Let
E={(xy,2)lxy=2z, |x|>2, |y|>2}nT*

Then Ec S'.

The set E\E consists of the following three sets:
e ={(xy,2)lxy=2z, |x|=2, |y|>2}nT*
e,={(xy2)|xy=2z, |x|>2, |y|=2}nT*
ey={(xy,2)lxy =2z, |x|=|y|=2}nT*

In contrast to Theorem 2 the following holds.
Theorem 5. e, ue, = S
We also prove the following.

Theorem 6. Let G be a group whose moduli triple lies on e5. Then G is a
boundary group of D(G,).

In §2 we make a normalization of generators and then show as Theorems 7
and 8 that each group of the slice S’ has a symmetric region of discontinuity and
a symmetirc fundamental domain with respect to the origin and that none of the
boundary groups of S’ is a b-group. In §3 we modify a criterion for discontinuity
of [4] and then prove Theorems 4 and 5. Lastly, we prove Theorem 6 in §4.

The author would like to thank the referee for careful reading and valuable
suggestions.

2. Normalization and symmetry

Let A and B be loxodromic elements of PSL(2,C) and put G={A4,B). We
assume that the moduli triple (x,y,z) of G satisfies (x) and (2). Firstly, we shall
normalize 4 and B. Conjugating by a Mobius transformation, we normalize A4
such that

A=(* 0), a=re'®, r>1 and _Too<l,
0 B 202



478 T. SAsAk1

Note that aff=1 and f=1/a. We write B=<a

b
). Then x=a+f, y=a+d
c d

and z=aa+ pd.
Proposition. Equality (2) is equivalent to a=d.

Proof. By the substitution of x=a+f, y=a+d and z=aa+ fd into (2),
equality (2) reduces to (x—pf)a—d)=0. Since a##pf, we have a=d. O

Substituting x =0+ f, y =2a and z=(x+ f)a into (*), we have (a — f)*a* = (a+ f)>.
We shall choose a sign of a such that a=(x+f)/(x—f). Conjugating by a Mobius
transformation having the same fixed points with that of 4, which leaves A
invariant, we normalize B such that a=c. Then we have

3) B:(“ b), 0=t ana 2P

a a a—p a—p

Under this normalization we remark the following.

Theorem 7. If G lies on the slice S' determined by (2), then, under the
normalization above, SNG) is symmetric with respect to the origin. Furthermore,
there is a fundamental domain for G which is symmetric with respect to the origin.

Proof. By (3) we have B~ !(—z) = —B(z). This implies that B~"(—z)= — B"(z)
for any z and any integer n. We also have A"(—z)= — A"(z). Let M be an element
of G not being the identity. Then

M=A™B"A™B" ... A™B"
for some integers m;, n; (j=1,2,---,i). Set
M~ =A™B MA™B ™" ... AMBT™,
By the successive use of the identities shown just above we obtain
M~ (—2)=—M(2).

Let M be a loxodromic element of G and let z, and z, be the fixed points of
M. Then M~ is also a loxodromic element of G and equation M ~(—z)= — M(z2)
implies that —z, and —z, are the fixed points of M ~. Since the limit set, A(G),
of G is the closure of the fixed points of loxodromic elements of G, we obtain
that A(G) is symmetric with respect to the origin, so is the region of discontinuity,
too. Since G is a quasi-Fuchsian group of the first kind, there is a fundamental
domain consisting of two pieces. Let D* be one of the two components of a
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fundamental domain for G lying in a component of G. We put D™ ={z|—zeD*}.
Now it is not difficult to see that D* UD~ is a funamantal domain for G. By
construction, it is symmetric with respect to the origin. O

It is shown in [1] that each boundary group of any Bers slice has just one
simply connected invariant component. Such a group is called a b-group. In
contrast to the Bers slices we have the following. '

Theorem 8. None of the boundary groups of S’ is a b-group.

Proof. Assume that G is a group of $'\S’ and is a b-group, that is, G has
just one simply connected invariant component. Let A be the simply connected
invariant component of G. Let D* be the piece of a fundamental domain for G
lying in A. By Theorem 7 we see that the set D™ ={z|—zeD"} is a subset of
(G). If D™ lies in A, then there is a curve C < A connecting a point pe D™ to
—peD~. Then the curve symmetric to C with respect to the origin also lies in
A and connects p to —p. Then the closed curve CuC™ < A separates 0 from
o0. Since 0 and oo lie on A(G), this contradicts our assumption that A is simply
connected. Hence D~ lies in another component, say A’. By symmetry, A’ is
also an invariant component of G, a contradiction. O

3. Proof of Theorems 4 and 5

We recall a sufficient condition for G={A4,B) to be Kleinian.

Theorem 9 ([4]). Let G=<A,B) be a subgroup of PSL(2,C) generated by
loxodromic elements A =<g Z) and B=<a Z), bc#0 and satisfying (»). If, for

c
each integer n, the inequality

lo"al +18"d) _ el +1B|

4
@ [c"a+B"d]  |o—p

holds, then G is quasi-Fuchsian and represents a pair of once punctured tori.

ReEMARK. The moduli equation (¥) is equvalent to the trace equation
t{ABA™'B~ %)= —2 (see, for example, [2] or Lemma 3 in [5]). Since (%) is
symmetric with respect to x and y or since t{(ABA~'B~')=t(BAB~'A~"), Theorem
9 is true even if we interchange the mormalizations of 4 and B.

Under the moduli equation (2), Theorem 9 reduces to the following.

Theorem 10. Let G={A,B) be as in Theorem 9 and assume that G also
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satisfies (2). If, for each positive integer n, the inequality

|l 418" _ Il + 1Bl
"+ loe— Bl

©)

holds, then G is quasi-Fuchsian.

Proof. By Proposition in §2 we see that (4) reduces to (5). We shall show
that (5) holds for each integer n whenever (5) holds for each positive integer
n. Since f=1/a, we have |o"|+|f"|=|e""|+|B7" and |o"+ f"|=|a""+B~". Hence
(5) holds for each negative integer » whenever it holds for each positive integer n.
To show (5) holds for n=0 observe that, for n=0 and n=1, (5) is equivalent to
le—pl<]a|+1p] and to |a—B|<|x+ B, respectively. Since |a+ | <|«|+|B|, we see
that (5) holds for n=0 whenever it holds for n=1. Thus we have Theorem 10
by Theorem 9. O

Now, we shall check (5) of Theorem 10 for each positive integer n, that will
give us proofs of Theorems 4 and 5. By Remark under Theorem 9 we may assume
that (x,y,z)e Eue,, so |x|=2 and |y|>2.

For n=1, (5) reduces to

loc— Bl <|ot+ Bl

By (3) we see that |y|=|2(x+p)/(x—p) and so condition |y|>2 implies
lc—Bl<|a+pB|l. Hence (5) holds for n=1.
In order to treat the case n>2, we shall put

u=r’+r~% and v=cos20,

where a=re®. By the inequalities |x— f| <|x+ f|, which is shown just above, and
[x|=]o+ B|=2 we have

6) O<v<l and wu=>4-2v.
For n=2, in polar coordinate a=re", (5) reduces to

P42 rPP4r 242
< )
rr+r 44+2cosd4 r?+r 2—2cos20

Using the equalities r*+r *=u?>—2 and cos40=2v*>—1, one shows that it is
equivalent to

(u—1+40v)>—(1—-0)>—4(1 —v)>0.

Inequalities (6) imply that the left hand side is not smaller than
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(3+v)>—(1—v)>—4(1 —v)

and that it is greater than 4, so (5) holds for n=2.
For n=3, in polar coordinate, (5) reduces to
re+r7%42 rP4ro242
< .
r®+r %42cos60 r*+r 2—2cos20

Making use of the equalities r®+r~%=u>—3u and cos 60 =4v*—3v, we have

u?—3u+2 u+2
< .
w—3u+803—6v u—2w

A calculation shows that this is equivalent to
@) Swp)=(140v)u —22+3v—20%u+ 80> —4v>0.
Since

af(up)

=31 +v)u? -2+ 3v—2v%)>3u2—10>0,

Sf(u,p) is an increasing function of u. Hence by (6), in order to show (7), it suffices
to show that f(4—2v,0)>0. A calculation shows that

f(4—20,0)=42+ (1 —v)(10— 30— 120% + 403)).

We put g(v)=10—3v—12v2+4v>. If g(v)>0, then f(4—2v,0)>0. If g(v)<0, then
we have

24+(1—0)g(v)>2+g(v)=3(1 —v?)4—0v)+03>>0.

Thus, in both cases we have f(4—2v,0)>0 so that (7) holds. Therefore we have
shown that (5) holds for n=3.
For n>4, in polar coodinate, (5) reduces to

P prT2n 42 - PHr?42 0 u+2
P pr=2" 4 2cos2n0 r*+r 2—2cos20 u—2v

Since
P2y 2 <r"+r’8-l»2_u4—4uz+4
P24 2cos2n0 KB 4r8 =2  ut—4u?

b

to show (5) it suffices to show

ut—4P+4  u+2
<
ut—d4u?  u—2
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or, equivalently,

®) h(u,v)=(1+v)u* —4(1 + v)u* —2u+4v>0.
Making use of inequalities #>2 and v>0, one obtains

ORI _ 401 4 o) —2u—2> 14,

Hence h(u,v) is an increasing function of u. There are two cases to consider.
Case I: v<1. By (6) we see that, in order to show (8), it suffices to show
h(4—2v,0)>0. A calculation shows that

h(4—2v,0)=8(1 —v)(2(1 + v)2—v)3—1v)—1)>0.
Case II: v=1. Since r>1, we have u>2. Hence
h(u,1)=2(u—2)u> + 2u*>—1)>0.

Thus we have shown (8). Hence (5) holds for n>4.
Therefore we have shown that (5) holds for all positive integer n. Then
Theorem 10 implies Theorems 4 and 5. |

4. Proof of Theorem 6

We shall prove the theorem in a sequence of lemmas. Let (x,y,z)ees.

Lemma 1. x=)7=\/§ii.

Proof. By(3)and |x|=|y|=2 we have |[x—f|=2. Hence we have |+ f|=|x—f]|
=2 or, in polar coordinate o=re®,
r24+r 242cos20=r24+r"2—2cos20=4.
It follows that cos20=0 and r*+r~?=4. We obtain 06=+n/4 and r=(\ﬁ
+1)//2. Hence

a—l[%il(l +i) and ﬁ=~\/—§i_—l(1 Fi).

Therefore we have x=a+f=./3+i and, by (3), y= J3Fi O

We choose the sign such that x= }7=\/§ +i. The proof for the case
x=)7=\/§—i is similar. By (3) we see that a=(\/§—i)/2 and b= —i. Hence we
have
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/3+ D1 +i) 0 J3-i ,

A= 2 and B= 2 B
0 (/3—1)X1—i) J3-i J3—i

2 2 2

Lemma 2. Let F=(AB,BAY and C={ze Qlz—(/3+3i)/2|=/2}). Then F
is a Fuchsian group of the first kind with C as the invariant circle.

Proof. Since

243+i (3+10)(1-))
2 2

AB=
2—/3-i  2—/3-i
2 2
and
243+ (V3-1)1+0)
2 2
BA= :
243+ 2—/3~i
2 2
putting

ro [ &3+0-9 ~3+i
4 20-Q+/3)0) |

we calculate and obtain

TABT“=<1 1) and TBAT“=<1 O).
0 1 4 1

It is well known and is also easy to see that the group TFT~' generated by

11 1
(0 1) and (4 (1)> is a Fuchsian group of the first kind with the extended real

axis as the invariant circle. A calculation shows that 7{C) is identical with the
extended real axis. O

Lemma 3. G is not quasi-Fuchsian.
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Proof. Since F is a subgroup of G so that C < A(G), since 0 is a fixed point

of the loxodromic element A so that 0e A(G), and since 0 does not lie on C, it
is clear that G is not quasi-Fuchsian. O

This lemma tells us that G does not liec in D(G,). Theorem 4 tells us that

GeE c §' <« D(G,) so that G lies on D(G,). These two facts imply Theorem 6.

REMARK. An argument similar to one in [6] will show that G is a web

group with two symmetric non-equvalent components; one is bounded by C and
the other is symmetric to it with respect to the origin.
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