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Mohamed and Miiller showed in [5] that continuous modules have the
exchange property. And, recently, they also showed in [6] that for nonsingular
quasi-continuous modules, the finite exchange property implies the exchange
property. However, it is still open whether this is true or not for any quasi-
continuous modules ([5, Problem 2]). The purpose of this paper is to answer this
problem in the affirmative. This, then also provides another instance of modules
for which the existence of the finite exchange property implies that of the exchange
property in reference to the longstanding open question posed in Crawley-Jonsson
[1].

Discrete (=semiperfect) modules and quasi-discrete (=quasi-semiperfect)
modules are dual to continuous modules and quasi-continuous modules, respec-
tively. We note that discrete modules have the exchange property and, for quasi-
discrete modules, the finite exchange property implies the exchange property. These
results follows by summarizing following results :

(1) (Oshiro [10]) Every quasi-discrete module M has an indecomposable
decomposition M=21(-BM1- such that M’'=3{M:|M;: completely indecomposa-

ble} satisfies the finite exchange property. So, if M is discrete then it satisfies the
finite exchange property since M =M".

(2) (Harada-Ishii [2], Yamagata [12], [13]) If a module has an in-
decomposable decomposition and satisfies the finite exchange property, then it
satisfies the exchange property in direct sums of completely indecomposable
modules.

(3) (Zimmermann-Huisgen and Zimmermann [11]) A module M satisfies the
exchange property if and only if for any P=M®X=$®Mi with each M;>~M,

there exists M;<@M; for each &1 such that P=M(—BZ!K-BM,~'.

The reader is referred to Mohamed and Miiller’Book [5] for the background
of these results.
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1. Preliminaries. Throughout this paper R will denote a ring with identity
and all R-modules will be unital right R-modules. For two R-modules X and Y,
we use XSV, XCV, XC.Y, X<®Y and X<@Y to mean that X is an
essential submodule of Y, X is isomorphic to a submodule of Y, X is isomorphic
to an essential submodule of Y, X is a direct summand and X is isomorphic to
a direct summand of Y, respectively. For a set /, |I| stands for the cardinal of /.

An R-module M is called an extending module (or a CS-module) if it satisfies

(C1): for any submodule X of M, there exists a direct summand X* of M
such that X €. X*

M is called continuous if it satisfies (C:) and

(C2) : Every submodule of M which is isomorphic to a direct summand of M
is a direct summand.

M is called a quasi-continuous module if it satisfies (C1) and

(Cs): If X and Y are direct summands of M with XN Y=0, then X®Y is
a direct summand.

For an R-module M with a decomposition MZEC—BMZ-, we use the following

condition :

(A) For any choice of x:€ M. (i€ /N, a; distinct) such that (0: x:)S(0: x2)
<..., the sequence becomes stationary, where (0 : x) denotes the annihilator right
ideal of x.

This condition appeared in [8] (cf.[5], [7]). One of interesting results on this
condition is (2) of the following

Proposition 1.1. Let M be a quasi-continuous module. Then the following
hold :
(1) for any decomposition M=;@Mz- and any J<1I, ;‘.(—BMI- is

1_z;@]MZ--I'njective

(2) any decomposition M ZZ@MI- satisfies the condition (A).

(3) for any decomposition MZZG-)M,- and any direct summand X of M,
there exists N;<@®M; such that MZXGB;(-BNI-.

Proof. (1) follows from [9, Proposition 1.5]. (2) follows from[5, Proposi-
tion2.13] or from (1) above and [5, Proposition 1.9]. And see[3] for (3).

A module M is called a square module if M =~ X®X for some module X, and
a module is called a square free if it does not contain non-zero square modules.

The following results are important and useful in the study of quasi-
continuous modules



EXCHANGE PROPERTY 219

Lemma 1.1 ([5, Theorem 2.37]). Any quasi-continuous module is a direct
sum of a quasi-injective module and a square free module.

Proposition 1.2. For an R-module X, the following conditions are equiva-
lent :

(1) X is quasi-continuous.
(2) Any decomposition E(X )=211@Mi implies X =ZED(MJWX), where

E(X) is the injective hull of X.
(3) for any R-module Y with X<.Y, any decomposition Y=$@Yi

implies X=§‘.@( Y:NX).

Proof. The equivalence of 1) and 2) is well known [5, Theorem 2.8]. We
may show the implication 2) = 3). Let Y be an R-module with X<.Y and
consider a decomposition YZZI}(-B Y:. Let x€X. Then there exists a finite subset

F={1, 2, ..., n} of I such that xEZF}@Yi. Let x=31+...+yn, where v.E Y.
Consider E(X)=ZFK-BE( K)@E(lg@ Y:). By 2), we have X=ZFK“9(E( Y:)N
X)EBE(,ZF@ Y:)N X. Express the element x as x =p1+ p2+...+ p»+ g where p.E
E(Y:)NX and qEE(Z}F@ Y:)NX. Since x=y1+...+ v, with y;EE(Y?), we see
pi=y:, 1=1, ..., n. Hence ».€Y:NX, i=1, ..., n; so xEZJ}@(YiﬁX).
Accordingly we see X=ZI:@( Y:NX).

For a cardial @, an R-module X has the a-exchange property if for any
R-module M and any two decompositions M =X@®N =3O M: with [[|<a, there

exists M/ <@®M for each i1 such that
M=X @(?@M 7

X has the exchange property if this holds for any cardinal @ and has the finite
exchange property if this holds whenever the index set [ is finite. We note that, in
these definitions, we may assume that M;~X for all /€] (by Zimmermann-
Huisgen and Zimmermann (11)).

2. A key lemma. In this section we show the following which is a key
lemma of this paper. We note that this lemma is also used for the study of direct
sums of relative continuous modules [3], [4].

Lemma 2.1. Let P be an R-module with a decomposition P=211@M,- such

that each M; is extending. We consider the index set I as an well ordered set :
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I={0, 1, ...w, w+1, ...}, and let X be a submodule oa M. Then there are
submodules T(i)S.T(i)*<@®M., decompositions M;=T({)*DN; and a sub-
module ZIf@X (1) S eX for which the following properties hold:

D X(0)=T(0)S.7(0)*,
2) XS TRSZTON:

for all kE1.
3) o X(R)=T(k)=.T(k)*, X(k)=a(X(k))(by o|X(k))
for all kE1, where o is the projection : P=$(—D T(z')*GBZIK-BNr»g(—B T(7)*.

4) X=o(X)(by 0|X).
For a proof of this result, we need two lemmas

Lemma 2.2. Let M be an R-module with a decomposition M =M, DB M, and
let X a submodule of M. If there is a decomposition M;=M*®M** such that
M:NXCSM¥ for i=1, 2., then X.2(M*NX)B(M:*NX)D(M¥XOMF*)NX.
So, in particular if MiNX=0, then X.2(M}NX)D(MPMF*)NX.

Proof. Let (0#)xE X and express x in M = M¥@M**DM>DM>* as x =xi*
+x* 4 xF +x5* where x¥FEMF and x}*eMF*. If xF+xe(MFNX)DMFN
X), then xf*+xf*e(MF*PMH*)NX and hence x=(MF¥NX)P(MFN
X)B(MF*DM+*)N X. In the case of xF+xF & (M¥NX)P(M+N X), we take »
E€R such that 0F(xf+xH)re(MNX)E(MFNX). Then 0Fxr=(MFN
X)OMNX)D(M¥*DM**)NX.

Lemma 23. Let M be an R-module with a decomposition M=
ADBDCDD and let X be a submodule of M. If Y is a submodule of X such
that YS(ADB)NX and Y a'/zyd( Y)S A, where o is the projection: M=
A@BOCO®D—A. Then YO(BEC)NX)SLADBDC)N X.

Proof. Let (0£)x=a+b+cE(ADBDC)N X, where aE A, bEB and cE
C. Ifa=0, x=b+c=(BAC)NX. If a+0, then 0+ c(x»)E0(Y) for some »E
R ; so there exists y€ Y such that o(x7)=0(y). Since xr —yEKer cN(BDHC),
we see x7 € YO(BAC)N X). Hence wesee YO(BAC)NX)S(ADPBDC)N
X.

Proof of Lemma 2.1. We put X;=M;N Y forall i€1. Since M; is extending,
we have a decomposition
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M:=XFOXH*
such that X; S . X/ for all /€/. By Lemma 2.2,
(MoD M) N Xe 2 XD X D(X*DXTH*) N X.
We put
X(0)=X, X(1)=Xi®(X*DX*)N X.
Let m, m be the projections :
FRD X X XEHPD X X+
respectively. Since X7i**N X =0, we see that
(XF*DXF*)N X >~ m(XH*D X)) N X) = m(XH* DX )N X)....(%)
canonically. Put
T(0)=X(0), T(0)*=X(0)*=X¢, T(1)=Xi®m(XF*BXF*)N X).
Since M, is extending, we have a decomposition
Mi=TQ)*®&M
with T(1)S.T(1)*. Putting No=X¢**, we have
P=T(0®T(1)*ONONOZOM,

such that

X(0)=T7(0), X(1)<= T(1)DN,,
o(X(2))=T=(i), X(1)=T(7) by (01| X(7)) (cf. (*) above)

for =1, 2, where 0 is the projection :
P=T(0)*@T1)*ONe®MOZOM— T(0)* S T(1)*
Next consider (Mo@PMPM.)NX. Put A=T(0)*®T(1)*, B=NDN,, C=
M; and D=?§@Mi and Y=X(0)®X(1). Then XSP=ADBDCDD,
APBEC=MPBMPBM: and Y=01(Y)Z.A. So we see from Lemma 2.3 that
(M@®MPM)N X2 X(0)DX1)D(NBN:DN:) N X
Furthere, since (No@®N:)N X =0, we see from Lemma 2.2 that
(Ne®NDBM:) N Xe 2 Xo (NN B XF*) N X
Let 701, m be the projections :

No@Nl@Xz* *—’No@Nl, No@N1@X2* *-"Xz**
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respectively. Since (No@®N:) N X =0 and Xz** N X =0, we see
(NO@NI@XZ**) NX= ﬂ'm((No(‘BNl@Xz**) N X) = ﬂz((No@Nl@Xz**) N X)

canonically...(**)
Put

X(Z) =X2®(N0@N1@X2**) nx,
T(2)= XD m((NeDN:D Xz*) N X).

Then
(M@ M D M) N X2 X(0)DX(1)DX(2).
Since M: is extending, we have a decomposition
My=T(2)*DN;
with T(2)S.T(2)*. Here we see
P=TO)OT1)*®T2)* ONeDN:ON:DZ DM,
X(2)= T(2)DNDM,
and for the projection :
o:: P=T(0)*®T(1)*® T(2)*@N0®N1@Nz®§@Mi—>
TO*®TQ)*ST(2)*.
We see that
0 X(8))=T(?), X(i)= T (&)(by 02| X (7))

for =0, 1, 2(cf (**)).

Now we proceed our argument by transfinite induction on ¢& /. Let <1 and
put J={i€l|i<a}

Assume that there are submodules 7(7) S .7 (7)* <@ M;, decompositions M;
= T(7)*@®N: for which the following hold :

1) X(0)=10),
) XS THDZONVEET,

) (ZOMINX2TOX()VEET; so(ZOM)N X 2ZDX(),
4) X(k)=T(k) by (o] X(E)VEET
where 0y is the projection :
P:_;@ T(i)*@;@N(i)(—DIZJ@M(i)—’;@ T@)*

So



EXCHANGE PROPERTY 223
SOX()= @ T()by o|SOX()
Consider (Zj}@Mi@Ma)ﬂX. We note that

SOX()E(SOMINX=(SDT()*OTONIN X,
SIOX() =B T(0)(by ol SOX()

Considering
SOT()*OTON)OMD, 5 OU—ZOT()*
we infer from Lemma 2.3 that

(%‘,@M;-@Ma)ﬂXeQ%‘,@X(i)@(;@Ni@Ma)ﬂX.
Since ;@NzﬂX=0, we see by Lemma 2.2 that
(;@NzC'BMa) ﬂ Xe 2 Xa@(;@Nz@Xa**) ﬂ X

(WhCI'C Xa':Man XgeXa’rk, Ma=X:®X:*)
Let 7; and 7. be the projections :
;GBN{(-BX&“*—*Z]K-BM, ;(—BNZ-G-)X;"*—*X;**
respectively. We see that

(ZJ!@N&DX&"*) NX= m((%‘.@Nl@XJ‘*) NX)= ﬂa((;@Ni@X:* Nnx)

canonically. We put
X(a)=XaC-B(§‘.®Ni®X2‘*) NX,
T(2)= XD m(ZONDXI) N X).

Since M, is extending, we have a decomposition
M.=T(a)*®Na
with T(a@)S.T(@)*. Now we see
X(a)<s T(a)@Zle—)Ni,
o(X(2))=T(a), X(a)=T(a)(by 0| X(a))
where o is the projection :

P=2@T)*@ZANH)D 3 ®M)—>ZDT(H)*.
7 J/Ua I°JUa J

Ua
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Furthermore we see

(]%ﬂ@Mi) NXe QJ%IH@X(Z')

Thus 1)-5) above hold for JUe, and this completes the proof by transfinite
induction.

3. The exchange property. Using Lemma 2.1 we shall give a proof of the
exchange property of continuous modules from our point of view.

Proposition 3.1. Let P be an R-module and X a submodule of P. If X
is continuous and P has a decomposition PZZI‘.G-)M,- with each M;~X, then

there exists direct summand N;<@M; for each i< such that PZXGBZI}@NL

So, X is a direct summand of P.

Proof. By Lemma 2.1, we have
PZZI]GB T(i)*@?@]\/{, XeQZIIG-)X(i)

such that, for each /€1,

1) TG)ES.T3G)
3) o(X()=T(@), X(@)=T(3)(by 0/X())

where o is the projection :

P=2® T(z’)*@@@M—»ZI}@ T(3)*.
Since X is quasi-continuous and X = G(X)SeEEB T(7)*, we obtain, by Proposi-
tion 1.2,

o(X)=2D(T(1)* N a(X)).

Putting X(7)*=0"(T(})* N 0(X)), we see
X=20X(3)’,
X< .X()*Viel,
T()Ceo( X)) S . TG)*ViEL

Since X=M; and X({)*<®X, we see from the condition (C:) for X that
o(X(@)*)<@®T(:)*; whence o(X(7)*)=T(7)* for all ;€.

As a result
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Xzo(X)=ZI‘,G-) T(7) (by 0]X).

Hence it follows P=X(-B;@N,-.

As an immediate consequence we have

Theorem 3.1 ([5, Theorem 3.24]). Continuous module have the exchange
property.

REMARK. We note that, in the proof above, the exchange property of quasi-
injective modules is not used. (Compare our proof to the proof of [5, Theorem 3.
24])

Now, we are in a position to show our main result

Theorem 3.2. Any quasi-continuous module with the finite exchange prop-
erty has the exchange property.

Proof. Let X be a quasi-continuous module with the finite exchange prop-
erty. We may assume X to be a square free by Lemma 1.1. In order to show our
result by transfinite induction, let @ be an infinite cardinal and assume that X
satisfies S-exchange property for any cardinal 3<a. To show that X satisfies the
a-exchange property, consider the situation of R-modules :

PZ?@MI'=X® Y

where |I|=a and M;~X for all ;€1. We may consider / as a well ordered set ;
I={0, 1, ..., », ...}, whose ordinal is an initial ordinal; so, for any A€ I, the
cardinal of {{€7]i<p}<a@. By Lemma 2.1 and, as in the proof of Proposition 3.
1, we have decompositions :

P=$@ T(l.)*@?@Ni,
X=30X(i)'2TOX:
such that, for all k€1,
My=T(k)*®Nr, T(k)S.T(k)*, X(k)S X(k)*
X(H)<S TS ON,,
X(k)* < T(k)*@g@Nk,

o(X(k)=T (k) S o(X(k)")< T (k)
X(k)=T(k) (by 0|X(k)),
X(k)*=o(X(k)*) (by ol X(&)")
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where o is the projection :
P=SI®T()*®SON—ZD T ()",

Since Nk<@Mk2X=$@Xi“, by Proposition 1.1, we have a decomposition
Nk=i€21@Nk(i) for each k€1 with Nk(7)<®X(7)*.
We note that ;‘.@ T(7)* is square free, since Xg@@ T(7)*. Now, using the
finite exchange property of X(0)* for
X0)'<® T(O)*C‘BZI:@Ni

we have decompositions

T(0)*=T0)*® T(0)*,
SION.=TON.OTBN;

such that
P=X(0)' @ TOF OZOT()* SO,
We denote, by 7, the projection :
P=X(0)' @ T O ZOT() @SN X(0)".

Then

T(O)*GBZI}EBN,"—“X(O)" (by m| TZOi*G—)@@Ni).

Assume 0#21369Ni and take Oqf:n”EZ@N,-. We exprese #” in P=
X0)*® TZO5*@§)@T(Z’)*C-BZI‘.@N,~ as n’=a+b+n, where a=X(0)* b<&

T(0)* @IZO@ TG)* we g@Ni

Since 0F m(#”)=a<=X(0)*.2X(0), there exists » <R such that 0Far<
X(0). Since X(0)=T(0) and »’r=ar+br+n'r, we see from n’r—n'r=ar
+br€$@T(i)*ﬂZI‘.@Ni=0 that #”7»—#n'»=0; whence #»”»=0, so ar=0, a

contradiction. Accordingly, $@Ni=0 and hence
P=X(0)'®TOI*®ZOT()*OZON;

SO
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X(0)*® T(0)* = T(0)*.

Since X(0)*@® T(0)* is square free and X(0)* S.T(0)*, we also see that 7(0)* =
0. Therefore

P=X(0)'®ZDT()*OION,,
Next using the finite exchange property of X(1)* in

P=X(0)'ST*®, T ST ONDOTSN()O T SN:
~ WO T ONDD ZON:

where W=X(0)”(—B~_%}”@ T(i)*@g}@No(i), we have decompositions

wW=wew
T)*=TQO*® T,
No(1)=N0213®Noilj,

IZOEDNi = IZO@Ni @ IZO@Ni

such that

P=TW& TSNS BN,

Since ZI‘,(-D T(i)* is square free, we see from WgX(l)lg T(1)* that W=0. So
P=X00)*®X1)*®d TQ)* @1_§1}@ T(z')*(-BNoZ15@§@No(i)@lz_fo@Ni.

In order to show Z_‘:@TVT=O, consider the projection m: P=
XOoxXO)'©TO @, 3 OTH)*OMDSZON()® ZON: — X(1)".
Assuming 2ON:+0 we take 0+n"€XBN..  We express n” in P=
X(O)*@X(l)”@T(IV@I_%{I)@T(ﬂ*@W@QEBNo(i)@g@Wf as n'=a
+b+n’, where a=X(0)*®X(1)*, beW@I_%zl}@T(i)*@m

@gl@No(i), ne %@Ni. Since X(0)®X(1)<.X(0)*PX(1)*, we can take »<
R, such that 0+ar=X(0)®X(1). Note that 0+#n"r=ar+br+n'r. Since
X0)DX1)S . TO)*AT(1)*®N,, this implies ar+br=0 and #’r=n'r;
whence 7”7 =0, a contradiction.Thus we get

P=X0)*®X1)*® TQ)* GBI_%‘,‘”@ T (2)*® N 15(—912_169No(i)6912_1®Ni,

We proceed with the same argument for X (2)*. We consider
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P=X(0@X1)'@TO*OTQ’®, 3, OT()*
SNDON(2)D, 32 ONi()

228

ON(2)D T DN()
@1_%1’”@Ni.
= W@ T(2)*@N0(2)@N1(2)®1_%1}@]\]1‘
where
W=X0®X1)'OTN*®, 3} ST ON(D)

@1§2)®No(i)@E@Nl(i)-

And using the finite exchange property of X(2)* in this decomposition, we
have decompositions
W=WaeWw,
T@)*=TQ)*® TQ)*,
N0(2)=N0z25@N0Z25,
Ni(2)=N(2)®M(2),
2 ONi= X )@Ni@ 2 ®N;

15001} 1-7001 15001}

such that

P=X(2' WS TR NSNS 3 ON:.

But, as WQX(Z)'Q T(2)* and asg‘_,(—B T(7)* is square free, we obtain W =0. So

P=WOTQONQON(2)®, 3 ON:
~ X0 OX)OXC) ST S TEF®, T BTG
@W@W@I_%)@No( i)
@W@Z}Z@Nl(i)

D > DM

I-{0,1}
We denote by m the projection :

P=X(0®X1)'@XQ@'@ T "®TR @, 3 ST()*
SNDOM(2)D, 37, BNo()
OMDOZOM()D 33 BN— X (2)".

Then note that
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TQ2)* @NKZ)G—)M(Z)@,_%{”@M =~ X(2)*...(%)

(by 72'2| T(Z)* @NO(Z)@NI(Z)®1_(2Q”®N;' )

We shall show I_%ﬂ@Ni:O. Assume not, and take 0=/=n”€1_%}”@Ni. We
express #” as n'=a+b+n

where 2€X(0)*®X(1)*'®X(2)*, b€ TO*STR*® DT E)*®N(1)

1-{0,1,2}

@Noi25(-DI_%'.Z}EBNo(i)@lz_:z@Nl(i)@le25, n’61_§”@Ni. Note that a+0 by

(*). Since X(0)®X(1)PBX(2)<.X(0)*BX(1)*PX(2)*, we can take » R such
that 0Far<EX(0)PXQ1)DBX(2); so 0+n"7r. As X(0)PBX(1)PX(2)<
TO*BTQ)*P TQR)*BNBN,, we see that ar +br=0 and »”» —#»'»=0. But

n”v —n'r =0 implies #»”» =0, a contradiction. Hence T%.‘.:)ED_N:=0. As a result,
we have
P=X(0)'®X(1)*'OXQ)' @ T O TS, 3 ST()*
ONDOND®, 3, ON(i)
ONDDZON()
@ > DN.

I1-{0,1}

We transfinitely proceed with this argument. For the sake of convenience, for any
k in I, we put

I(R)={icI|i<k}.
Now, let S&] and assume that we have obtained decompositions :

TO*=TG*DTH)*Viel(B),
No(2)=No(2) D No(?) V i€ I(8) -0,
Nl(l)=N1Zl)@N1ZZ)\V/l 1< B,

Nk(i)=Nkzi5(‘BNhZi5Vi D kR<i<pB,

...............

such that, fo any 2EI(B),
P=0§k@X(i)#0§k@W@§i@ T(0)*
@NO(O)@MZQ@W@;{@N&Z')
@NI(O)GBNI(I)@I<§k®m®,§i@Nl(i)
ON()ON(NON:(2)D T DN(D)D T BNi(i)
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...............

For k€ I(f), we put
Q(k)= T?kj*@osgk@NikS
= 3> D).

1#1-0
Since Q(k)= X(k)*C T(k)* for all kE1(B8)—0 and ZI‘.@ T (k)* satisfies the condi-
tion A, Q———I(g_oC-BQ(k) satisfies the condition A. We note that, for any g:E Q»
and ¢:.€Q:, (0: gx)*(0: q.), since Q is square free.

Putting

NO:NO(O)@0<zZ<ﬁ(—BNO( le @Ei@No( i) S Mo,
Nk:Nk(O)(‘BNk(l)@...@Nk(k)@kgkﬂ@]vk( Z;@El@Nk(Z) C N,

for 0+ k< I(B), we claim that
P=28X0)'0 % 6TH)"OZS TO)*®@ZONHS ZON;
To show this we may show that  is contained in
Z=2®X (i)"@k%ﬂ@W@Ei@ T(i)*@%@ﬁ ( z’)@gi@Ni.
Assume Q#Z. Since Q= X DQ(k) satisfies the condition A, we can take Qs
and ¢x€ Qx such that ¢x¥Z and, for any £#</ and ¢.€@Q,,
(0: g)(0: g)=aq.€Z. ...(%)
We express gx in
P= 2 ®X (i)“@o;sk@W@E@ T(0)*
@No(O)@M%k@m@g@No(i)

@Nl(o)@Nl(l)@l<%k@le 7) ®1§i®Nl(i)
@NZ(O)@Nz(l)@Nz(z)@K%k@Nz(i)@gi@Nz( 7)

...............

as qzr=a~+ b, where

aeos%k®X(Z)#®0<§k@T Z *@kﬁﬂ@y‘ Z *C_BEIC_B T(Z)*
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ONOS, 3 SN S, T NS ZBNi(i)
ONOBNDD, 3 BN()D, T ONHOTON()
DNOSNDONA2)D, 3 BB, 3 SN TDN:(i)

and

...............

Then a=Z and (*) shows bEZ, so gr=a+bEZ, a contradiction. Thus we get
P= I%EDX( i)”@oglp@W@Ei@ T(i)*@%@ﬁi@%}i@Ni
=0<§3@X(i)#@0<§<ﬂ@wgiT(i)*
@NO(O)@OQZ(B@W@E@NO(D
@Nx(O)@Nl(l)EDI;(BEBWQZSII_@NI(i)
@Nz(o)@Nz(1)@]\’2(2)@2%}@%@5’,@]\]2(i)

...............

We put
W=30X()'® 3 8T O T()*
ONO®, 3 O N(DD T DNi(i)
@Nl(O)@Nl(l)EDIQZLBEBW@B%@NI(i)
DNON(DON2)D, T BN D T DNu(i)

...............

@%@Nﬁ( 7)

And we consider the decomposition: P=W® T(B8)*® %@NKB)@E,@NZ- Here

using the |7(53)|-exchange property of X(£) in this decomposition, we get decompo-
sitions :

W=wew
T(R)*=TRB*®T(R)*
Ni(B)=NiZBS@Nz-(B5
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for 1<

E@Ni: Z@Ni®ﬁzsi@Ni

g<i B<i

such that
P=X(B)”@W@O<§ﬂ@ T( i5*@/§®Ni(35€D§i@Nz’

But, by the same argument above, we can that

W=0, Z BN =0
so, we have
P=3 @XGY
®0<12SH@T Z. ’
DZOT()*

BNO)D, 3 SN(ND T BNu1)
ENOBMDB, T ONHSZOM(i)
D N=(0)D No( 1)@Nz(2)@2<§B@N2( 7) @Ef@Nz(i )

Thus, by transfinite induction, we have decompositions

TO*=TGH*®TQ)*Viel
No(Z)ZNOZZs@NoZ Z.i\VIZ.EI'—O,
NG@O=NGHONGHViel-I1(2),

such that, for any A€,
P=3 By
® % BT OZOT()*
ON(0)D 3 DN() D Z DNo(7)
BNOBNDD. % SNDOZON()
ONODNDDN(2)D T DNo()) D Z DNo(i)
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So, by the quite similar argument above for X(1)* or X(2)*, we have
PZZI‘.EDX(Z')“@EO@W
@No(o)@go@m
ONOBNWS, 3 BN
@Nz(o)@Nz(l)@Nz(Z)@l;{3)@7@5

...............

BN:(0)DN(1)PNu(2)- - DN:(B)D 3 DNy

I-1I(k)

...............

This completes the proof, as X=$(—BX(Z')”.
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