A CONDITION ON LENGTHS OF CONJUGACY CLASSES AND CHARACTER DEGREES

Akihide HANAKI

(Received July 7, 1994)

1. Introduction

In E. Bannai [1], the following condition on finite groups is investigated.
Let G be a finite group, $\operatorname{Irr}(G)=\left\{\chi_{i}\right\}_{1 \leq i \leq k}$ be the set of all irreducible characters of G, and $\mathrm{Cl}(G)=\left\{C_{i}\right\}_{1 \leq i \leq k}$ be the set of all conjugacy classes of G.

Condition. By suitable renumbering i,

$$
\chi_{i}(1)^{2}=\left|C_{i}\right|, \text { for } i=1,2, \cdots, k
$$

We call this condition B -condition (" B " is due to E . Bannai). A few groups satisfying B -condition are known : abelian groups, Suzuki 2-groups $A(n, \theta)$ (See [3, VIII.6.7 Example and §7]), ϕ_{6}, ϕ_{11} in [4], and groups isoclinic to them (For isoclinism, see [2]). In any case, they are nilpotent and their derived lengths are at most 2 .

In this paper, we shall construct a family of groups satisfying B-condition. Our groups are, in a sense, generalizations of Suzuki 2-groups. By our examples, we can say that

Theorem. Derived lengths of groups satisfying B-condition are unbounded.

2. Construction of groups

Let $F=\mathrm{GF}\left(2^{n}\right)$ be the finite field of order 2^{n}, and let θ be an automorphism of F. We put, for a positive integer l and $a_{1}, a_{2}, \cdots, a_{l} \in F$,

$$
u\left(a_{1}, a_{2}, \cdots, a_{l}\right)=\left(\begin{array}{cccccc}
1 & & & & & \\
a_{1} & 1 & & & & \\
a_{2} & a_{1} \theta & 1 & & & \\
a_{3} & a_{2} \theta & a_{1} \theta^{2} & 1 & & \\
\cdots & \cdots & \cdots & \cdots & \cdots & \\
a_{l} & a_{l-1} \theta & a_{l-2} \theta^{2} & \cdots & a_{1} \theta^{l-1} & 1
\end{array}\right) \in M_{l+1}(F)
$$

and

$$
A_{l}(n, \theta)=\left\{u\left(a_{1}, a_{2}, \cdots, a_{l}\right) \mid a_{i} \in F\right\} .
$$

The multiplication is defined as a product of two matrices as follows:

$$
\begin{aligned}
& u\left(a_{1}, a_{2}, \cdots, a_{l}\right) u\left(b_{1}, b_{2}, \cdots, b_{l}\right) \\
& =u\left(a_{1}+b_{1}, a_{2}+\left(a_{1} \theta\right) b_{1}+b_{2}, a_{3}+\left(a_{2} \theta\right) b_{1}+\left(a_{1} \theta^{2}\right) b_{2}+b_{3},\right. \\
& \left.\quad \cdots, a_{l}+\left(a_{l-1} \theta\right) b_{1}+\cdots+\left(a_{1} \theta^{l-1}\right) b_{l-1}+b_{l}\right) .
\end{aligned}
$$

So $A_{l}(n, \theta)$ becomes a group of order $2^{n l}$. If $l=2$, this group is isomorphic to a Suzuki 2-group $A(n, \theta)$ in [3, VIII.6.7 Example and §7].

For $1 \leq i \leq l$, we put

$$
G_{i}=\left\{u\left(0, \cdots, 0, a_{i}, a_{i+1}, \cdots, a_{l}\right)\right\} .
$$

Define $\varphi_{l . i-1}: A_{l}(n, \theta) \longrightarrow A_{i-1}(n, \theta)$ by $\varphi_{l, i-1}\left(u\left(a_{1}, \cdots, a_{l}\right)\right)=u\left(a_{1}, \cdots, a_{i-1}\right)$. Then $\varphi_{l, i-1}$ is an epimorphism and $\operatorname{ker} \varphi_{l, i-1}=\mathrm{G}_{i}$. Thus G_{i} is a normal subgroup of $A_{l}(n, \theta), A_{l}(n, \theta) / G_{i} \cong A_{i-1}(n, \theta)$, and obviously G_{l} is in the center of $A_{l}(n$, $\theta)$ by the multiplication.
$A_{l}(n, \theta)$ has important automorphisms. Let $\lambda \in F^{\mathrm{x}}$. We define $\xi_{\lambda}: A_{l}(n, \theta)$ $\rightarrow A_{l}(n, \theta)$ by

$$
\xi_{\lambda}\left(u\left(a_{1}, a_{2}, \cdots, a_{l}\right)\right)=u\left(\lambda_{1} a_{1}, \lambda_{2} a_{2}, \cdots, \lambda_{l} a_{l}\right)
$$

where

$$
\begin{aligned}
\lambda_{1} & =\lambda \\
\lambda_{2} & =\lambda(\lambda \theta) \\
\lambda_{3} & =\lambda(\lambda \theta)\left(\lambda \theta^{2}\right) \\
& \cdots \\
\lambda_{l} & =\prod_{i=0}^{l-1}\left(\lambda \theta^{i}\right) .
\end{aligned}
$$

Then this is an automorphism of $A_{l}(n, \theta)$.
For simplify our argument, throughout this paper, we assume that θ is the Frobenius automorphism of $F, \theta: x \rightarrow x^{2}$. Then $\lambda_{i}=\lambda^{2 i-1}$. We also assume that λ is a generator of F^{x} and is fixed. Then λ_{i} generates F^{x} if and only if $\left(2^{n}-1,2^{i}-1\right)$ $=1$. But it is easy to check that $\left(2^{n}-1,2^{i}-1\right)=1$ if and only if $(n, i)=1$. In this case, $\left\langle\xi_{\lambda}\right\rangle$ permutes $G_{i} / G_{i+1}-G_{i+1}$ transitively. If $l<n_{0}$, where n_{0} is the smallest prime divisor of n, then this holds for any i.

Our main result is
Theorem 2.1. Let θ be the Frobenius automorphism of $\mathrm{GF}\left(2^{n}\right)$. Assume that $l<n_{0}$, where n_{0} is the smallest prime divisor of n. Then $A_{l}(n, \theta)$ satisfies B-condition.

In particular, if n is a prime and $l<n$ then $A_{l}(n, \theta)$ satisfies B-condition.
The second part of this theorem is obviously holds by the first part, and the first part is proved by the next theorem.

We put

$$
\begin{aligned}
& q_{i}(G)=\#\left\{C \in \operatorname{Cl}(G)| | C \mid=2^{i}\right\} \\
& r_{i}(G)=\#\left\{\chi \in \operatorname{Irr}(G) \mid \chi(1)=2^{i}\right\} .
\end{aligned}
$$

Then B-condition holds for a 2 -group G if and only if

$$
q_{2 i}(G)=r_{i}(G), \text { for any } i \geq 0
$$

Theorem 2.2. Put $G=A_{l}(n, \theta)$. Assume that θ is the Frobenius automorphism, and $l<n_{0}$, where n_{0} is the smallest prime divisor of n. Then
(a) $q_{0}(G)=2^{n}, q_{m(n-1)}(G)=2^{m}\left(2^{n}-1\right)$ for $1 \leq m \leq l-1$, and $q_{i}(G)=0$ for the other $i>0$.
(b) $r_{0}(G)=2^{n}, r_{m(n-1) / 2}(G)=2^{m}\left(2^{n}-1\right)$ for $1 \leq m \leq l-1$, and $r_{i}(G)=0$ for the other $i>0$.

Remark. If $l \geq n_{0}$ there exist groups which does not satisfy B-condition. For example, $A_{2}(2, \theta), A_{3}(3, \theta)$, and $A_{4}(3, \theta), \theta$ the Frobenius automorphism, do not satisfy B -condition.

It is known that $A_{2}(n, \theta)$ satisfies B-condition when θ is an arbitrary odd order automorphism of $\mathrm{GF}\left(2^{n}\right)$. For odd characteristic finite fields, we can define groups similar to $A_{l}(n, \theta)$, and they satisfy B -condition if $l=2$ and the order of θ is odd (This is my work and unpublished). This is a general case of ϕ_{11} in [4].

3. Conjugacy classes

In this section, we shall prove Theorem 2.2 (a). In this and later sections, we assume that $l<n_{0}$, where n_{0} is the smallest prime divisor of n. If $l=1$ then $A_{l}(n$, $\theta)$ is abelian so we assume $l \geq 2$. Note that n is odd.

Theorem 3.1. The following is a complete set of representatives of conjugacy classes of $A_{l}(n, \theta)$.
$\left\{\xi^{j} u\left(e_{1}, e_{2}, \cdots, e_{l}\right) \mid 0 \leq j<2^{n}-1, e_{i}=0\right.$ or 1 and at least one $\left.e_{i}=1\right\} \cup\{u(0, \cdots, 0)\}$

When $e_{1}=\cdots=e_{i-1}=0$ and $e_{i}=1$, the order of the centralizer of $\xi_{\lambda}^{j} u\left(e_{1}, e_{2}, \cdots\right.$, e_{l}) is $2^{n i+l-i}$.

To prove this, we need two lemmas.
Lemma 3.2. The order of the centralizer of $u\left(0, \cdots, 0, e_{i}, \cdots, e_{l}\right), e_{i}=1$ and $e_{j}=1$ or 0 for $j>i$, is $2^{n i+l-i}$.

Proof. Let $u\left(a_{1}, a_{2}, \cdots, a_{l}\right)$ centralize $u\left(0, \cdots, 0, e_{i}, \cdots, e_{l}\right)$. Then by direct calculation (note that θ acts trivially on e_{j}),

$$
\begin{aligned}
e_{i} a_{1}\left(a_{1}^{2 i-1}+1\right) & =0 \\
e_{i} a_{2}\left(a_{2}^{2 i-1}+1\right) & =e_{i+1} a_{1}\left(a_{1}^{2 i+1-1}+1\right) \\
\cdots & \cdots \\
e_{i} a_{l-i}\left(a_{l-i}^{2 i-1}+1\right) & =e_{l-1} a_{1}\left(a_{1}^{2 l-1-1}+1\right)+\cdots+e_{i+1} a_{l-i-1} \cdot\left(a_{l-i-1}^{2 i+1}+1\right)
\end{aligned}
$$

By our assumption, the map $x \rightarrow x^{2 i-1}$ is a bijection from F to F, so the first equation say that $a_{1}=0$ or 1 . Hence the right hand side of the second equation is 0 , and thus $a_{2}=0$ or 1 . We can continue this argument until a_{l-i}. Thus the order of the centralizer of $u\left(0, \cdots, 0, e_{i}, \cdots, e_{l}\right)$ is $2^{l-i} \cdot 2^{n i}=2^{n i+l-i}$. The proof is complete.

Let tr be the trace map from $\mathrm{GF}\left(2^{n}\right)$ to $\mathrm{GF}(2): \operatorname{tr}(x)=\sum_{i=0}^{n-1} x \theta^{i}$. The next holds.

Lemma 3.3. $\xi_{\lambda}^{j} u\left(e_{1}, e_{2}, \cdots, e_{l}\right), e_{i}=0$ or 1 , and $\xi_{\lambda}^{k} u\left(f_{1}, f_{2}, \cdots, f_{l}\right), f_{i}=0$ or 1 , are conjugate if and only if $j=k$ and $e_{i}=f_{i}$, for all i.

Proof. Assume $\xi_{\lambda}^{j} u\left(e_{1}, e_{2}, \cdots, e_{l}\right), e_{i}=0$ or 1 , and $\xi_{\lambda}^{k} u\left(f_{1}, f_{2}, \cdots, f_{l}\right), f_{i}=0$ or 1, are conjugate in $A_{l}(n, \theta)$. If $e_{1}=\cdots=e_{i-1}=0$ and $e_{i}=1$, then obviously $f_{1}=\cdots$ $=f_{i-1}=0$ and $f_{i}=1$, and $j=k$, since G_{i} / G_{i+1} is in the center of G_{1} / G_{i+1}. So we may assume that $j=k=0$. Then there exists $u\left(a_{1}, \cdots, a_{l}\right)$ such that $u\left(e_{1}, \cdots, e_{l}\right) u\left(a_{1}\right.$, $\left.\cdots, a_{l}\right)=u\left(a_{1}, \cdots, a_{l}\right) u\left(f_{1}, \cdots, f_{l}\right)$. Obviously $e_{1}=f_{1}$. Suppose that $e_{i}=f_{i}$, for $i<$ m. Then by direct calculation,

$$
\begin{aligned}
e_{m}+f_{m}= & e_{m-1} a_{1}+e_{m-2} a_{2}+\cdots+e_{1} a_{m-1} \\
& +f_{m-1}\left(a_{1} \theta^{m-1}\right)+f_{m-2}\left(a_{2} \theta^{m-2}\right)+\cdots+f_{1}\left(a_{m-1} \theta\right) \\
= & e_{m-1}\left(a_{1}+a_{1} \theta^{m-1}\right)+e_{m-2}\left(a_{2}+a_{2} \theta^{m-2}\right)+\cdots+e_{1}\left(a_{m-1}+a_{m-1} \theta\right) .
\end{aligned}
$$

The right hand side of this equation is in the kernel of tr, since $e_{i}=0$ or 1 . But the left hand side is 0 or 1 . So $e_{m}=f_{m}$. Thus the proof is complete.

Now Theorem 3.1 is easily shown.

$$
\xi_{\lambda}^{j} u\left(e_{1}, e_{2}, \cdots, e_{l}\right), \text { for } 0 \leq j<2^{n}-1, e_{i}=0 \text { or } 1
$$

are in distinct conjugacy classes each other. Consider the lengths of these classes. The sum of their lengths is

$$
\begin{aligned}
1+1 & \cdot\left(2^{n}-1\right)+2^{n-1} \cdot 2\left(2^{n}-1\right)+2^{2(n-1)} \cdot 2^{2}\left(2^{n}-1\right) \\
& +\cdots+2^{(l-1)(n-1)} \cdot 2^{l-1}\left(2^{n}-1\right) \\
=2^{n l}= & \left|A_{l}(n, \theta)\right| .
\end{aligned}
$$

Thus they are representatives of conjugacy classes of $A_{l}(n, \theta)$. Theorem 3.1 and also Theorem 2.2 (a) are proved.

4. Irreducible characters

In this section, we shall prove Theorem 2.2 (b). We need many lemmas to prove this.

We put $G=A_{l}(n, \theta)$. Recall that

$$
G_{i}=\left\{u\left(0, \cdots, 0, a_{i}, a_{i+1}, \cdots, a_{l}\right)\right\}
$$

and $G / G_{i} \cong A_{i-1}(n, \theta)$.
Lemma 4.1. $C_{G}\left(G_{i}\right)=G_{l-i+1}$. Especially, G_{i} is abelian if and only if $i \geq(l$ $+1) / 2$.

Proof. This holds by direct calculations.
Lemma 4.2. Let G_{N} be abelian, and let $\varphi \in \operatorname{Irr}\left(G_{N}\right)$ such that $\operatorname{ker} \varphi \nsucceq G_{l}$. Then

$$
\left|I_{G}(\varphi)\right|=2^{n N+l-N},
$$

where $I_{G}(\varphi)$ is the stabilizer of φ in G.
To show this, we may assume that $\varphi_{G_{l}}$ is $u\left(0, \cdots, 0, a_{l}\right) \rightarrow(-1)^{\operatorname{tr}\left(a_{l}\right)}$ since $\operatorname{Irr}\left(G_{l}\right)$ $-\left\{1_{G_{l}}\right\}$ is transitively permuted by $\left\langle\xi_{\lambda}\right\rangle$, and note that any character of G_{l} is invariant in G since G_{l} is in the center of G. This lemma will be shown later.

Let G_{N} be abelian. Then $\varphi \in \operatorname{Irr}\left(G_{N}\right)$ can be regarded as a homomorphism from G_{N} to $F_{2}=\mathrm{GF}(2)$, since G_{N} is an elementary abelian 2-group. Thus φ can be regarded as a sum of homomorphisms from G_{i} / G_{i+1} to $F_{2}, i=N, N+1, \cdots, l$. Note that G_{i} / G_{i+1} is isomorphic to $F=\mathrm{GF}\left(2^{n}\right)$ as an additive group.

Lemma 4.3. Define $\Phi: F \longrightarrow \operatorname{Hom}_{F_{2}}\left(F, F_{2}\right)$ by $\phi(a)(x)=\operatorname{tr}(a x)$. Then ϕ is an isomorphism as abelian groups.

Proof. Put $K=$ ker tr. If $a K=b K$ implies $a=b$ then the proof is complete. Thus we shall show $a K=K$ implies $a=1$.

If $a \neq 1$ then a induces a permutation on K. Obviously $C_{K}(a)=\{0\}$, and the lengths of $\langle a\rangle$-orbits are the order of a. But by our assumption, $(|K|-1, o(a))=$ 1. This is a contradiction. The proof is complete.

By this lemma, any $\varphi \in \operatorname{Irr}\left(G_{N}\right)$ has a form $\varphi: u\left(0, \cdots, 0, x_{N}, \cdots\right.$, $\left.x_{l}\right) \rightarrow(-1)^{\Sigma_{l-m t r(a, ~}^{\left.\alpha_{i}\right)}}$ for some $a_{1}, \cdots, a_{l} \in F$, and we can denote this by $\varphi\left(a_{N}, \cdots, a_{l}\right)$.

Lemma 4.4. Define $\rho_{i, j}: F \times F \longrightarrow F$ by $\rho_{i, j}(a, b)=\left(a \theta^{j}\right) b+a\left(b \theta^{i}\right)$. Then, for $i>0, j>0$, and $0<i+j \leq l$, there exits an integer m such that $\left(2^{i}-1\right) m \equiv 2^{i+j}$ $-1\left(\bmod 2^{n}-1\right)$, and

$$
\rho_{i, j}(a, F)=a^{m} \text { ker tr. }
$$

Especially, $\rho_{i, j}(a, F)=\rho_{i, j}(b, F)$ if and only if $a=b$.
Proof. Since $i \leq l<n_{0}, 2^{i}-1$ is coprime to $2^{n}-1$. Thus such m exits.
Obviously $\rho_{i, j}$ is bilinear. If $\left(a \theta^{j}\right) b+a\left(b \theta^{i}\right)=0$ then $a^{2 j} b+a b^{2 j}=0$, and so b $=0$ or $a^{\left(2^{j-1}\right) /\left(2^{i-1}\right)}$. Hence $\left|\rho_{i, j}(a, F)\right|=2^{n-1}$ for $a \neq 0$.

On the other hand,

$$
\begin{aligned}
\left(a \theta^{j}\right) b+a\left(b \theta^{i}\right) & =a^{m}\left(a^{2 j-m} b+\left(a^{2 j-m} b\right)^{2 i}\right) \\
& \in a^{m} \text { ker } \operatorname{tr} .
\end{aligned}
$$

Thus $\rho_{i, j}(a, F)=a^{m}$ kertr.
The last part of the lemma clearly holds by the same way as the proof of Lemma 4.3 and $\left(m, 2^{m}-1\right)=1$.

The proof is complete.
In general, conjugates of elements in $A_{l}(n, \theta)$ is very complicated. So we prepare the easy cases.

Lemma 4.5. (a)

$$
\begin{aligned}
& u\left(0, \cdots, 0, a_{i}, 0, \cdots, 0\right) u\left(0, \cdots, 0, x_{m}, 0, \cdots, 0\right) u\left(0, \cdots, 0, a_{i}, 0, \cdots, 0\right)^{-1} \\
= & u\left(0, \cdots, 0, x_{m}, 0, \cdots, 0,\left(x_{m} \theta^{i}+x_{m}\right)_{m+i}, 0, \cdots, 0,\left(x_{m} \theta^{2 i}+x_{m}\right)_{m+2 i}, \cdots\right) .
\end{aligned}
$$

(b) When $i+j=l$,

$$
\begin{aligned}
& u\left(0, \cdots, 0, g_{i}, 0, \cdots, 0\right) u\left(0, \cdots, 0, x_{j}, 0, \cdots, 0\right) u\left(0, \cdots, 0, g_{i}, 0, \cdots, 0\right)^{-1} \\
= & u\left(0, \cdots, 0, x_{j}, 0, \cdots, 0,\left(x_{j} \theta^{i}\right) g_{i}+x_{j}\left(g_{i} \theta^{j}\right)\right) .
\end{aligned}
$$

Proof. Note that

$$
u\left(0, \cdots, 0, g_{i}, 0, \cdots, 0\right)^{-1}
$$

$$
=u\left(0, \cdots, 0, g_{i}, 0, \cdots, 0,\left(\left(g_{i} \theta^{i}\right) g_{i}\right)_{2 i}, 0, \cdots, 0,\left(\left(g_{i} \theta^{2 i}\right)\left(g_{i} \theta^{i}\right) g_{i}\right)_{3 i}, \cdots\right)
$$

So the results follow by direct calculations.
We define a subgroup H of G by

$$
H=\left\{u\left(a_{1}, a_{2}, \cdots, a_{\imath}\right) \mid a_{i}=1 \text { or } 0\right\}
$$

Obviously this is a subgroup of G and abelian. H is generated by $u\left(0, \cdots, 0,1_{i}\right.$, $0, \cdots, 0), 1 \leq i \leq l$, and has the order 2^{l}.

Lemma 4.6. Assume that G_{N} is abelian. For $\varphi=\varphi\left(a_{N}, \cdots, a_{\imath}\right), a_{i}=1$ or 0 ,

$$
I_{G}(\varphi)=H G_{l-N+1} .
$$

Proof. $\quad I_{G}(\varphi) \geq G_{l-N+1}$ since $C_{G}\left(G_{N}\right)=G_{l-N+1}$ holds by Lemma 4.1, and $I_{G}(\varphi)$ $\geq H$ by Lemma 4.5 (a). So $I_{G}(\varphi) \geq H G_{l-N+1}$.

If $N=l$ the result holds obviously. Assume the result holds for $\varphi_{G_{N+1}}=$ $\varphi\left(a_{N+1}, \cdots, a_{l}\right)$. Then $I_{G}(\varphi) \leq G_{G}\left(\varphi_{G_{N+1}}\right)=H G_{l-N}$. Let $g \in I_{G}(\varphi)$. We can write g $=h g^{\prime}, h \in H, g^{\prime} \in G_{l-N}$. Then $g^{\prime} \in I_{G}(\varphi)$. Since $G_{l-N+1} \leq I_{G}(\varphi)$, we may assume that $g^{\prime}=u\left(0, \cdots, 0, g_{l-N}, 0, \cdots, 0\right)$. Consider the action of g^{\prime} on $u\left(0, \cdots, 0, x_{N}, 0\right.$, $\cdots, 0)$. By Lemma 4.5 (b), $\left(x_{N} \theta^{l-N}\right) g_{l-N}+x_{N}\left(g_{l-N} \theta^{N}\right)$ must be in ker tr for any x_{N} $\in F$. But by Lemma 4.4,

$$
\left\{\left(x_{N} \theta^{l-N}\right) g_{l-N}+x_{N}\left(g_{l-N} \theta^{N}\right) \mid x_{N} \in F\right\}=\rho_{l-N, N}\left(g_{l-N}, F\right)=g_{l-N}^{m} \text { ker tr },
$$

where $\left(2^{N}-1\right) m \equiv 2^{l}-1\left(\bmod 2^{n}-1\right)$. Thus if $g_{l-N} \neq 0, g_{l-N}$ must be 1 by Lemma 4.4 and $\rho_{l-N, N}(1, F)=$ kertr. So $g_{l-N}=1$ or 0 . Now $I_{G}(\varphi) \leq H G_{l-N+1}$ and the result follows.

Lemma 4.7. Assume that G_{N} is abelian. If $\varphi\left(a_{N}, \cdots, a_{l}\right)^{g}=\varphi\left(b_{N}, \cdots, b_{l}\right), a_{i}$ $=1$ or $0, b_{i}=1$ or 0 , then $a_{i}=b_{i}$ for all i.

Proof. Suppose that $a_{m} \neq b_{m}$ and $a_{i}=b_{i}$ for all $i>m$. We may assume that $a_{m}=1$ and $b_{m}=0 . g=u\left(g_{1}, \cdots, g_{l}\right)$ fixes $\varphi\left(a_{m+1}, \cdots, a_{l}\right)$ so $g \in H G_{l-m}$ by Lemma 4 . 6. Consider the action of g on $\varphi\left(a_{m}, \cdots, a_{l}\right)$. Since $H G_{l-m+1}$ stabilizes $\varphi\left(a_{m}, \cdots\right.$, a_{l}), we may assume that $g=u\left(0, \cdots, 0, g_{l-m}, 0, \cdots, 0\right)$. Then

$$
\begin{aligned}
& \varphi\left(a_{m}, \cdots, a_{l}\right)^{g}\left(u\left(0, \cdots, 0, a_{m}, 0, \cdots, 0\right)\right) \\
= & \varphi\left(a_{m}, \cdots, a_{l}\right)\left(u\left(0, \cdots, 0, a_{m}, 0, \cdots, 0\right)^{g-1}\right) \\
= & \varphi\left(a_{m}, \cdots, a_{l}\right)\left(u\left(0, \cdots, 0, a_{m}, 0, \cdots, 0, g_{l-m} \theta^{m}+g_{l-m}\right)\right) \\
= & 1
\end{aligned}
$$

by Lemma 4.5 (b). But $\varphi\left(b_{m}, \cdots, b_{l}\right)\left(u\left(0, \cdots, 0,1_{m}, 0, \cdots, 0\right)\right)=0$. This is a contradiction, and the proof is complete.

Now we can prove Lemma 4.2.

Proof of Lemma 4.2. Let G_{N} be abelian. Then the number of irreducible characters of G_{N} whose kernels do not contain G_{l} is $2^{(l-N) n}\left(2^{n}-1\right)$. Lemma 4.6 says that $\varphi\left(a_{N}, \cdots, a_{l}\right), a_{i}=1$ or 0 , are in distinct G-orbits, and Lemma 4.6 says that their orbits have lengths $2^{(l-N)(n-1)}$. Also $\varphi\left(a_{N}, \cdots, a_{l}\right)^{\xi i}$ are in distinct G-orbits. Thus they are complete representatives of G-orbits. Now the result follows from Lemma 4.6.

Using Lemma 4.2, we can prove Theorem 2.2 (b) by induction on l. We separate the cases l as odd from l as even.

Lemma 4.8. Assume that Theorem 2.2 holds for $A_{l-1}(n, \theta)$ and l is odd. Then Theorem 2.2 holds for $A_{l}(n, \theta)$.

Proof. Put $N=(l+1) / 2$, then G_{N} is abelian. Let χ be an irreducible character of G such that $\operatorname{ker} \chi \nsucceq G_{l}$. Let φ be an irreducible character of G_{N} such that $\left(\chi_{G_{N}}, \varphi\right) \neq 0$ and $\operatorname{ker} \varphi \neq G_{l}$. By Lemma 4.2, $\left|G: I_{G}(\varphi)\right|=2^{(n-1)(l-1) / 2}$. So $\chi(1)$ $\geq 2^{(n-1)(l-1) / 2}$. The number of such χ is $2^{l-1}\left(2^{n}-1\right)$ by the number of conjugacy classes. Conider that

$$
\begin{aligned}
|G| & =\sum_{x \in \operatorname{rrr}(G)} \chi(1)^{2}=\sum_{\operatorname{ker} x \mathcal{G}_{l}} \chi(1)^{2}+\sum_{\operatorname{ker} x \neq G_{l}} \chi(1)^{2}=2^{n(l-1)}+\sum_{\operatorname{ker} x \neq G_{l}} \chi(1)^{2} \\
& \geq 2^{n(l-1)}+2^{(n-1)(l-1)} \cdot 2^{l-1}\left(2^{n}-1\right)=2^{n l}=|G| .
\end{aligned}
$$

Thus $\chi(1)=2^{(n-1)(l-1) / 2}$. The proof is complete.
Lemma 4.9. Assume that Theorem 2.2 holds for $A_{l-1}(n, \theta)$ and l is even. Then Theorem 2.2 holds for $A_{l}(n, \theta)$.

Proof. Put $N=l / 2$. Note that G_{N} is not abelian. Let χ be an irreducible character of G such that $\operatorname{ker} \chi \nexists G_{l}$. Let φ be an irreducible character of G_{N} such that $\left(\chi_{G_{N}}, \varphi\right) \neq 0$ and $\operatorname{ker} \varphi \nsupseteq G_{l} . \quad G_{N+1}$ is in the center of G_{N}. So $\varphi_{G_{N+1}}$ is homogeneous. Let ψ be the homogeneous constituent of $\varphi_{G_{N+1}}$. Then

$$
\left|I_{G}(\varphi)\right| \leq\left|I_{G}(\psi)\right|=2^{(l / 2-1)+n(l / 2+1)} .
$$

Consider the structure of G_{N}. Put

$$
\begin{aligned}
& A=\left\{u\left(0, \cdots, 0, a_{N+1}, a_{N+2}, \cdots, a_{l-1}, 0\right)\right\} \\
& B=\left\{u\left(0, \cdots, 0, a_{N}, 0, \cdots, 0, a_{l}\right)\right\} .
\end{aligned}
$$

Then obviously $G_{N}=A \times B$ and A is in the center of G_{N}. Since $\varphi_{G_{l}}$ is homogeneous, $\left|G_{l} \cap \operatorname{ker} \varphi\right|=2^{n-1}$. Put $K=G_{l} \cap \operatorname{ker} \varphi$. The commutator map $B / G_{l} \times$ $B / G_{l} \longrightarrow G_{l}$ can be regarded as $\rho_{N, N}$ in Lemma 4.4:

$$
\left[u\left(0, \cdots, a_{N}, 0, \cdot, 0\right), u\left(0, \cdots, b_{N}, 0, \cdot, 0\right)\right]=u\left(0, \cdots, 0, a_{N}\left(b_{N} \theta^{N}\right)+\left(a_{N} \theta^{N}\right) b_{N}\right)
$$

Thus Lemma 4.4 says that there exists the unique non zero a_{N} such that $u(0, \cdots$, $\left.a_{N}, 0, \cdots, 0\right)$ is in the center of B / K. Clearly $\mathrm{D}(B / K)=\Phi(B / K)=G_{l} / K$ and its order is 2 . Thus B / K is isomorphic to a central product of an extraspecial group of order 2^{n} and an abelian group of order 4 (it is not so hard to check that the center of B / K is cyclic of order 4 but this is not necessary for our argument). It is well known that an irreducible character degree of an extraspecial group of order $p^{2 r+1}$ is 1 or p^{r}. So $\varphi(1)=2^{(n-1) / 2}$. Now

$$
\begin{aligned}
\chi(1) & \geq\left|G: I_{G}(\varphi)\right| \cdot \varphi(1) \\
& \geq 2^{n l-(l / 2-1)-n(l / 2+1)} \cdot 2^{(n-1) / 2} \\
& =2^{(n-1) l-1) / 2}
\end{aligned}
$$

By the same argument as Lemma 4.8, the result follows.
Now Theorem $2.2(\mathrm{~b})$ is proved and $A_{l}(n, \theta), l<n_{0}$, satisfies B-condition.

5. Derived lengths

In this section, we consider the derived length of $A_{l}(n, \theta)$. The next holds.
Theomem 5.1. If $2^{d-1} \leq l<2^{d}$, then the derivd length of $A_{l}(n, \theta)$ is d.
This theorem is an easy consequence from the following lemma.
Lemma 5.2. $\left[G_{i}, G_{j}\right]=G_{i+j}$, where $G_{m}=1$ if $m>l$.
Proof. Obviously [G_{i}, G_{j}] $\leq G_{i+j}$. Suppose that $i+j \leq l$, otherwise [G_{i}, G_{j}] $\geq G_{i+j}=1$ holds. Then $\left[G_{i}, G_{j}\right] \geq G_{l}$ holds since $G_{l}-1$ is transitively permuted by $\left\langle\xi_{\lambda}\right\rangle$. Inductively $\left[G_{i}, G_{j}\right] / G_{m} \geq G_{m-1} / G_{m}$ for $i+j \leq m \leq l$. Thus [$\left.G_{i}, G_{j}\right] \geq G_{i+j}$ and so $\left[G_{i}, G_{j}\right]=G_{i+j}$.

Theorem 5.1 holds obviously from this lemma. We can also see that the nilpotency class of $A_{l}(n, \theta)$ is l.

Now Theorem in introduction holds from Theorem 2.1 and Theorem 5.1.

References

[1] E. Bannai : Association schemes and fusion algebras (an introduction), J. Alg. Comb. 2 (1993) 327 -344.
[2] P. Hall: The classification of prime-power groups, J. Reine Angew. Math. 182 (1940), 130-141.
[3] B. Huppert and N. Blackburn : Finite Groups II, Berlin-Heidelberg-New York 1982.
[4] R. James: The groups of order p^{6} (p an odd prime), Math. Computation 43 (1980) 613-637.

> Faculty of Engineering, Yamanashi University
> Takeda 4, Kofu, 400, Japan

