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0. Introduction

For a closed curve 7(x) in a riemannian manifold M we define its energy E (7)
by [[0xy|>. The first variation (d/dt):=oE(y(t, %)) is given by —2{d:y, Vir>.
Therefore, its Euler-Lagrange equation is the equation of geodesics. We consider
a corresponding hyperbolic equation of y=1y(¢, x):

(H) Viy+ uoey=Viy,

where the coefficient u represents the resistance and is usually a positive constant.
This equation is locally expressed as

0ty + Ifu(y)0ey 0er® + 1dey = 0%y" + Iu(7) dxy 0x7",

which is a semi-linear wave equation.
Eells and Sampson [1] introduced a corresponding heat equation

(P) at‘)’ZVi’)’.

We know that if the manifold M is compact and real analytic, then the solution of
(P) exists for all time and converges to a geodesic [3].

Physically, equation (H) represents the equation of motion of a rubber band
in viscous liquid. Therefore, it is likely that results similar to (P) hold. In fact we
will prove the following result.

Theorem. Let M be a complete riemannian manifold and p a constant.
Then Cauchy problem ®) for closed curves has a unique solution y(t, x) on RX
S'. If M is compact and 11>0, then the solution almost converges to geodesics ;
that is, d:y—0 and Viy—0 when t—0,

However the convergence of 7 itself is still open, even on a manifold with
negative sectional curvature.
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REMARK. Gu [2, Theorem] proved that equation H) without resistance (i.e.,
£#=0) has an all time solution. He essentially used the equality (V:—Vx)(9: —8x) 7
=0, which fails when x£=+0. We will overcome this difficulty by systematic use of
covariant derivation.

1. Preliminaries

Throughout this paper, we use the following notation. Let M be a riemannian
manifold. We consider closed curves y=7(x) in M and families y=7y(¢, x) of
closed curves. The partial derivation is denoted by 0 and the riemannian covariant
derivation is denoted by V. The pointwise norm | % |, the L. norm || * | and the L.

inner product <, %> are defined by | * [P=g(%*, %), (*, *>=/Slg(*, * )dx and
[ [2=<*, *).

Let ¥ be a map: R: X Rx—M. A(p+¢q)-th covariant derivation V4V -+ Vi
with p V¢’s and ¢ Vx's is denoted by Ps,q, regardless of the order of derivations.
It is also denoted by P, (n=p+¢), when we do not specify the numbers p and ¢
separately.

Lemma 1.1. If we denote by Qp+q-2 the difference Pp,qy —ViViy for p+q
>2, then Qn has the following properties
a) @ can be expressed as a linear combination

Eai.(ka)(Rl Yttt IthV)(HkHY, ij+2y)ij+37-

b) In the above expression of @n, 2% jm=n+2 for each term.

¢) Qnis a polynomial with respect to P;y’'s (i<n). Moreover, each term of Qn
can contain at most one Ppy.

Proof. Property c) is a consequence of properties a) and b). Therefore we
have to check a) and b). They trivially hold for p+¢=2. In fact, @o=0. Suppose
that they hold for p+¢<#n+2. For induction, assuming p+g=#»n-+2, we have to
check the forms Ppi1,47 =ViPs,qy and Pp,q+17=VxPs,qy. For the first form, we
have

Vth,q7=Vt(V€’V§y+ Qn)=V§’“V§y+Vth,

and the term @n+1=V:Q» has the desired properties.
If the second form ViPp,q¢y only contains Vy, the claim holds. If it contains
V¢, we have

ViPp,qy= Vx(va;%?’ + Qn) = VthVf“Vf%y +VxQn
=V ViV 'Vir+R(0xy, 0:7)VE 'Vir+VQn
= vt(vf_IVZ“ 7+ Qn)+ {R(ax% at?’)v?_lv%’ + VXQn}
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=VIVI Y +{R(9xy, 0:7)VE'Voly + V2 Qn+V.Qn).
Q.E.D.

Lemma 1.2. Let y be a solution of (H) and ¢ a Pny. Then we have
10+ 1V —Vip=Qn+ Qn-y,

where Qn has properties a)—c) in Lemma 1.1.

Proof. let ¢ be a Pyqy (p+g=mn). Then,

V%¢=PP+Z.47:PP,<1V%7+ anPp,q(ﬂat7+v§7)+ Qnr
=—pPpi1,q7 + Pp,gs27+ @n
= —(#Vt§0+ Qn—l) +(v§c¢’+ Qn) + Qn-
Q.E.D.

2. All time existence

We start from a standard short time existence result in [4].

Theorem 2.1 [4, Theorem 7.5]. For any closed C*® curve y(x) and any C*
vector field y:(x) along yo, there is a positive constant T such that equation (H)
with initial data ¥(0, x)=y/(x) and 0:y(0, x)=(x) has a unique solution y(t, x)
on 0<t<T.

Let T be the largest number such that a solution (¢, x) with C* initial data
yo(x) exists on 0<¢< T. If we can prove that the solution y(#, x) is uniformly
bounded on [0, 7)X S! in C"-norm for each #, then we can extend the solution
beyond the time 7. This implies that the maximal existence time is infinite. To
consider negative time interval (— 7", 0], we change the time variable # to —r, and
get the same equation with resistance — ¢. Therefore, the proof of all time existence
is reduced to the following

Proposition 2.2. Let yo(x) be a C* closed curve on M and y\(x) a C™ vector
field along vo. Let y(t, x) be a solution of (H) with initial data y(0, x)= yo(x)
and 0:y(0, x)=71(x) on 0<¢t < T, where T is a finite positive number. Then, any
| Puy| is uniformly bounded on [0,T)XS".

Proof. To prove this, we change the coordinate system {t, x}to {E=t+x, 7
=t—x}. Then we have 0;=0d:+ 0, and 0x=0:— ;. Therefore, for o= Py,

%¢:V69+6ﬂ(vé¢+V77¢):V§¢+Vévﬂ¢+vﬂvé¢+v%¢
:V%¢+2V$V7¢+V%¢+ @n,
§§0=V%§0—2V5V7,¢+V%;¢+ Qn.
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Hence, by Lemma 1.2,
4V Vrp=Vig—Vip+ Qu=—1(Vep+V,0)+ Qs
where @ denotes a form §»+ §Q»-1. Note that @;=0. From this equation, we have
20¢|V10P=4(V10, VeVi0)

=—u(Vap, Ve +V,0)+ Va0, Qn)
<Vl + Vel Vel Va0l Q4.

Fix a time ¢ and take a maximal point (¢, x) of |[V,¢[>. Then, at that point,

atlvfiqplz:(at + ax)lvﬂ¢|2:286|vn¢|2
<|u|IVa0l +1 Vel Vool + Va0l Q.

Therefore, we have

d
—jF max Va0
<|y| max |V,@*+|x| max |Vep| max |Vy0|+ max |V,¢| max [Q'x|.

Adding a symmetric formula for [Vegl| to this, we get

2 {max [Vegl+ max [Vogf)

<|ul{max |[V¢p| + max |V,0[}*+ max |Q;[{max |Vep|+ max |V,¢l}
<2(| | +1){max |V.¢|*+ max |V,¢[?} + max |Q?

Here, the derivation (d/dt)u(¢) means

lim Supﬂﬁz(tk_h).
h-+o
Now we can prove our claim by induction. Noting that =0 in the above
inequality, we see that the C' norm of 7 is bounded by the initial data. In
particular, the norm of any covariant derivatives of curvature tensor of M is
bounded on the image of y. Thus the claim holds for #=1. Suppose that the claim
holds up to #. Then, ¢ and @7 in the above inequality are uniformly bounded on
[0, T)x S'. Therefore, the above inequality implies that max |V¢p|*+ max |V,¢|?
is bounded on [0, 7°), hence Vo= Py.17 is uniformly bounded on [0, 7T) X S™.
Q.E.D.

3. Convergence

Now, we suppose that £>0 and show the convergence. Let 7 be the solution
of (H) and put ¢=F,y. We use an energy inequality for wave equations. Using
Lemma 1.2, we have
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L9 gl + IV agl?) + 209l

=2V, Vip>+2{Vxp, ViV2p>+2ul|V.0|?

=2V, Vap— Vo + Q> +2(Vxp, V:V20>+ 24|V 0|
= —2UVV, Vx> +2{V0, ViV20>+2{Qh V:p>

= 2< Qn, Vx¢> + 2< Q;l, Vt§0>

< @IVl +V.0l),

where @7 denotes a form @+ @»-1. Note that Q;=0.
We show the following proposition by induction.

Proposition 3.1.
1) Any |Pay| is bounded on [0, ).
2)  Any 3| Puy|?dt is finite except Pny=oxy (and Poy).

Proof. Nothing that =0 in the above inequality, we have
L (|ocp P +13:71) =~ 21y 0.

Intergrating both hand sides by t, we see that the claim holds for #=1. Suppose
that the claim holds up to #. In the above inequality, if the factor Vxp=V P,y
contains V., then

Vx¢=VtPn7+ Qn—l-
And if not,
Vxo=V3y=Vi (Viy+ 1dey) =V Py + Qu-r+ pPny.

In both cases, we have

L1V I+ IV 0l?) + 21V
< ClQUIT Pt +1@url+ 1 Par ).

Summing up this inequality for all ¢= Py, we have

LSV P+ IV:Par ) + 2SI Par P
< C(ZNQH+ 2N QulP+ B Par )+ eZUV Pur

where € can be taken arbitrarily small. Here, 2p, means summation 2, with
respect to all ¢ of form P.y. Take e=p. Then we see that

SV PP+ IV arl) + 1TV Par?

is dominated by a bounded L function, because at least one Py is not dxy in each



98

N. Koiso

term of @7 Thus, integrating by £, we see that any | Pu+17]? is uniformly bounded
and that any |V:Pay| is L.. Then, also any [VxP.y| is L2, because it can be
expressed by a [[V:P.7| and @7’s. Therefore, the claim holds for #+1. Q.E.D.

End of the proof of Theorem. Finally, we remark that the derivative

(d/dt)|| Pay|? is expressed by Pn+17, and hence is uniformly bounded on [0, ) by
Lemma 3.1. Therefore, any [ Payl? (except dxy) converges to 0 when #—co,
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