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1. Introduction

In[5], Mahowald gave some examples of ring spectra obtained as Thom
spectra. One of them is X in [5], which is a Thom spectrum associated to @ :
025°- B0, where w is a mapping corresponding to the generator of m(BO). Let
BP denote the Brown-Peterson spectrum at the prime 2. Then the spectrum X is
also characterized by the BPsx-homology BPx(X:)=BP«/(2)[#] as a sub-
comodule algera of BP«(BP)/(2)=BPx«/(2)[t, t, -*:], where BPx=Zy|v1, vs,
---] over Hazewinkel’s generators v: (cf. [14]).

Relating to Xz, consider a spectrum X constructed as follows: Let C be a
cofiber of the Bousfield localization map X> — L X with respect to the Johnson-
Wilson spectrum E(1) with 74(E(1))=Zz[v1, vi']. Then C is an Xz-module
spectrum since X: is a ring spectrum. Consider the element %20& 75(Xz). Now the
spectrum X is a cofiber of a map /x: X°C— C. By this definition, the
BPy«-homology of X is BP«(X)=BP/(2, v7")[t:]®A(t.). Once we determined the
homotopy groups 7x(L2Xz) in [17], the homotopy groups 7x(L:X) can be
obtained from it. Here L2 denotes the Bousfield localization functor with respect
to the Johnson-Wilson spectrum E(2) with 7x(E(2))=Zy[v1, vs, v3'] as a subalge-
bra of v2'BPx«. But, in this paper, we compute, independently of [17], the
homotopy groups 7«(L2X) of the E(2)x-localized spectrum of X by using the
Adams-Novikov spectral sequence. The computation of the E>-term is done in the
same manner as that of [17], using the v:1-Bockstein spectral sequence. Different
from the odd prime case, there may involve non-trivial differentials of the Adams-
Novikov spectral sequence. On the other hand, different from the case for X, this
case may support at most one family of non-trivial differentials. In this sense, it is
a little easier to determine the homotopy groups of L. X than those of L2X>. By
using the results of [7], we show here that the differentials are all trivial, in a
different fashion from that of [17], and have the Ew-term of the spectral sequence.
In order to state the result, consider the integers A» defined by
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Aov=1, Asn1=1+2A:, and Azn+2=2A2n41
for =0, and use the notations :

Culx) is a Z/2[v1, v2, v2']-module isomorphic to
Z/[2[v1, vi, v, v2']/Z)2[ 01, v, V7]
generated by elements {x/v{};>0 such that vi(x/vf)=x/vi"".
Ci{x> is a cyclic Z/2[v1, vz, v2']-module isomorphic to
Z/2[v1, vs, v:']/(vd)
generated by an element x/vi.

Theorem. The Eo-term of the Adams-Novikov spectral sequence for
computing (LX) is a Z/2[v\, vs, v3']-module

M*@A(P)-
Here, the graded Z|2[ v, vs, v:')-module M« is given by :

Mo= Cek1>D D120 Canl 05,
Ml:C'Btzo(cl<v§t+1h30>®Cl<U§t+1h31>®C3<U:§“+2h30>)
@(‘Bn>o,t20CAn<Ugnmﬂ)ﬂhm)
DD k2o Cagari 03" HEHDT001 g5 PD Cppac3" CEHDTOR2 g1 3),
My=@>0CiK 3 hsohard
PP 120 Cagpur {03 AEFDTORH ) gy
(‘BCA2k<U§~(2t+l)+(bh“/2)+lh21h31>) and
Mn:() fOI' n>2.

Furthermore, the generators have the following degrees :
|Z)3|:14, |h20|:5, Ihz1|:11, 'h30|:13, and |h31|=27

In the theorem, an element x has a degree 7 if xE n-(L:X).

This paper is organized as follows: In the next section, we recall some facts
known about the vi-Bockstein spectral sequence. In §3, we define elements X,
which will play the main role in the computation of the Bockstein spectral
sequence. We compute E,-terms of the Adams-Novikov spectral sequence comput-
ing the homotopy groups m«x(L2X) in §4, by using the tools given in the previous
sections. In section 5, we prepare some lemmas to compute the Adams-Novikov
differentials in the last section using the results of [7].

2. The Bockstein spectral sequence

Let (A, I') denote a Hopf algebroid with I" A-flat. Then it is known (cf. [14,
Ch. A1]) that the category of I"-comodules has enough injectives and so we can
define the Ext groups as a cohomology of an injective resolution. Furthermore it
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is given by a cohomology of the cobar resolution. So we can define Ext? (A, M)
=H"(Q#M) for a I"-comodule M, where 2# M is a cobar complex (cf. [14]). The
cobar complex 2FM is a defferential graded module with

QM =MQsI'Qa4-@al" (s copies of I'),
and the differentials d-: QFM—QF ' M defined inductively by
do(m)=¢(m)—m®1 and d-(x®y)=ds(x)@y+(—1)°x®d:(y)

for x€E0Q2FM and yEQRLA. Here ¢ : M — M&@al” denotes the comodule structure

map of M. In the following, every comodule is induced from A and so we use 7z
for ¢.

Suppose that A=Z)[v1, ve, -] and I'=A[4, %, ---]. Consider a Hopf
algebroid @=A[#]®A(f) and a coalgebroid X =I"00A over A. Then X =A[#3,
fs, ---] and we have the change of rings theorem :

Lemma 2.1. For a comodule A, there is an isomorphism
Ext}(A, MR.0)=Ext¥(A, M).
Proof. Consider a relative injective I"-resolution of M &, :
MRs0 — I Q' — [ Qal —--,

which is split as A-modules. Then apply the cotensor product — JoA and we
obtain a relative injective 2-resolution of M :

M— [(QuE — [[RWE — -

s

since ¥ =I"0¢A. Thus the both Ext groups are obtained from the same complex
Ih— L — . q.e.d.

In this paper, we will compute Ext#(A, v:'A/(2, v¥)@a®D). By virtue of this
lemma, we will work in the category of X-comodules. In order to compute the Ext
groups Ext3(A, v:'A/(2, v7)), we adopt the v1-Bockstein spectral sequence with
Ei-term

Ext}(A4, v:'A/(2, n)).
To compute the Ei-term we recall [7] the structure
(2.2) Ext*(A, v:'A/(2, v)[t]))=K(2)x[vs, h20]@A(h21, hso, ka1, 02).
This is shown by using the change of rings theorems

Ext®(A, vitA/(2, v)[t])=Extke.xo(K(2)«, K(2)«[#])
=Extle2(Z/2, Z|2)Rk@.K(2)«[vs],

in which K(2)«=Z/2[vz, v7'], K(2)+K(2)=K(2)xQ@i'®@4K(2)x and S(2,2)=
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Z/2[ts, ts, =-]1/(tt—t:: i>1). Note here that the action of A on K(2)« is given by
sending v: to 0 for 72 and vz to vz, and (K(2)«, K(2)xK(2)) becomes a Hopf
algebroid induced from (A, I'). The second equation follows from the
K(2)+K(2)-comodule structure K(2)«[t]=K(2)«[t:]/ (vt + v31)Q k(2. K(2)x[v3]
which is obtained from Landweber’s formula 7z(vs)=uvs+ vati+v3t mod (2, v1).

Lemma 2.3. The E-term is given by
Ext$(A, v:'A/(2, 11)=K(2)«[vs]RA(h2, hso, ha1, 0),
where K(2)x=Z/(2)[vz, v2'] and ha1, hso, hsr and o are the homology classes
represented by 15, ts, ti and vits+1tf in the cobar complex, respectively.
Proof. Let H*M for a I'-comodule M denote the Ext group Ext#(A, M),
and E« and D« be I'-comodules
E«=0v:'A/(2, v)[t]® A(t:) and Dx=0v:'A/(2, v1)[4].

Then the short exact sequence 0 = DxC Ex — X %Dy — 0 of I'-comodules yields
the long exact sequence

e Hs,tD* ’Hs’tE* Hs,t—eD* s Hs+l,tD* > eee
with 5(x):hzox. By 2.2),
H*Dy=K(2)x[v3, h20] ® A(h21, Do, hz1, 02).

This shows that /2o : H°*Ds— H°*' Dy is a monomorphism and we have the lemma.
g.ed.

3. The elements x,
In this section we will define elements x» such that
xn=v% mod(2, v1) and do(xn)=0v{"gn,

in which g» repesents a generator of Ext} (A4, v2'A/(2, v1)) and ex to be taken as
greate as possible. These elements play a central role in the Bockstein spectral
sequence.

Hereafter we use the following abbreviation :

Ext*(N)=Ext¥(A, N) for a comodule N,
MG) =05 AJ(2, o) and M=lim MG) =i A/(2,07).

]
Then note that
BPy«(L:X)=M®4® and Ext*(M)=Ext} (A, BP«(L.X)).
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In v3'BPx/(2), we define elements x,, which will be used to define elements
of Ext*(M). From here on, we compute everything with setting v2=1 for the sake
of simplicity. We also write

x=y mod(v{)

for x, yEQFM if x=y in the cobar complex Q¥ M(;).
We first introduce elements c¢s3: (=0, 1) and Ts in X =A[#2, ts, ---] defined
by

vicso=do(vi+ vivs)+ 15+ 13,
(3.1 nics=do(vs)+ t5 and
531= C31 + 7)1(’032031 + Usfzz).

Lemma 3.2. The cochains cs and cs1 are cocycles of the cobar complex
QiM(j) for any j>0. Furthermore,

c0=t:+ vstd mod(v1) and cu=t;+ vivstZ mod(vi).

Proof. Since dido=0, di(£2)=0 and do(v1)=0, the first part of the lemma
follows immediately from the definition, since the multiplication by v: on 2:M(5)
is monomorphic. The latter half is shown by the direct computation using

(v =102, pr(ve)=vs+ vatd + 0112+ v?0st? mod(v}),
(3.3) nr(vi) = vi+ v3td+ V385 + vitd + vivi mod(vi®), and
7e(vs) = vs+ vstd + v2t + v3ts mod(vy)

in X, noticing that do(x)=7n(x)—x. 1In fact, do(vi+vivs)=8+E+vits
+v?vstf mod(v?), by setting v2=1, which gives cso. For ca1, follows from 7z(vs).
q.ed.

Lemma 3.4. Put ¢1=uv0¥vs+v), and we have
do(¢1)Evl(C§o+ 531) mOd(U?)
in v:'Y=v'Al#, t, -]

Proof. Since do(x)=7&(x)—x and 7z is a map of algebras, this is verified by
Lemma 3.2 and the following facts on 7z :

nr(v1) =01, 7r(02)= V2,
7e(v3)=v5 mod(v}),
ne(ve)=vs+ ti+ vica and 7x(v8)=vi+ %+ ¢ mod(vi)

in v7'2. In fact, by Lemma 3.2, we see that
ot Ca=vit*+vivicar.

On the other hand, we compute
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do( @)= v103do(va+ v8) = 103 (v1ca + 13°).
q.ed.

Note that v;'2 is not a Hopf algebroid and so (3.1) does not imply the above
lemma. In fact, do(vi)=do(vs)?+t5. This with (3.1) yields the following

Lemma 3.5. In v;'Y,
do( ’Ufl)s) = U?( C321 + 6'30)-

Lemma 3.6. There exist elements x; of v:'A with x;=v3 mod(2, v1) such
that

a’o(XO)Z U1 tzz,

do(x1)= v?Ce.l,

do(Xz) Ul C30,
do(xzn+1)= 01203 (Vi ca + vstf) mod(vit?e) and
dO(XZrHZ) van+1 bnncso mod(vl+an+1)

for n>0. Here the integers a, and b, are given by

a=1 and ar=4anr1+2 (n>0)
bo=0, b1=0 and bn=4by-1+4 (%>1).

Proof. Define the elements x: inductively as follows :

Xo= U3,
— 22 2
X1= 03+ Vi 0y,
3.7 xe=x2+ vivs,
Xan=12Xan-1+ vf"v$"vs and
x2n+1—x2n+ UZan 1 2bn¢1+,1}20n——3 Zb"xl.

Then the lemma will be proved by induction. The first equation follows immedi-

ately from the Landweber formula : 7z(vs)=uvs+v:1#f. The second and the third

are verified by (3.1). The others are inductively shown by Lemmas 3.4 and 3.5.
q.e.d.

4, The E:-term

Put L=v;'BP«/(2, v1) and M =v;'BP«/(2, vy). Then we have the short
exact sequence

0 L M M 0,

which yields the long exact sequence

@ 0— Ext(L) LN Ext'(¥) U, Ext(M) —2
: e 2 Ext?(L) 25 Ext™(M) —25 Ext™(M) — -
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Here f is a X-comodule map given by f(x)=x/v1,
Ext"(N)=Ext% (A, N)

for a X-comodule N, and note that the Ext group Ext*(L) is determined in
Lemma 2.3.
We here introduce some notations :

K2)«=2Z/2[vs, v:'], K=KQ2)«[vi]=Z/2[v1, vs, v5!].

For an element xEExt*(L),

Cn<{x> denotes a cyclic K-module isomorphic to K/(v{)
generated by {x/vf+z/vf " }EExt*(M) for some
2E 2% v  BPy/(2).

Ca{x> denotes a K-module isomorphic to vi'K/K with
basis {x/vi+z/vi};50CExt*(M) for some zE
2 Z)z—lBP*/(z).

Note that these C«{x> are sub-K-module of Ext*(M).
We compute Ext*(M)=Ext¥(A, vi'A/(2, v7)) from Ext*(L)=Ext}(A,
v:'A/(2, v1)) by using the following

Lemma 4.2. ([8, Remark 3.11]) Let {xi}ica be a set of generators of
K(2)«-module Ext'(L), and {E:}ica, and {Ei s} aca, subsets of Ext'(M) such that
A= /N 11A,,

1) there exists a positive integer a(A) for each AE /Ao such that

V1 = fu(x2) and
8:(&x)#+0,

2) Ein=ra(xa), i€rs=Ers1 and 8:(€15)=0 for AE AL
Suppose that the set {0:(&:)}icao is linearly independent over K(2)x. Then
EXti(M)=@AerCau)<xl>@@AeA1Coo<x/1>.

In this section, we will use Lemma 4.2 to compute Ext*(M), which is the
Es-term of the Adams-Novikov spectral sequence for computing mx(L:X). Let p
denote the homology class of Ext'(L) given in Lemma 2.3.

Lemma 4.3. There exist elements 0:€ Qiv;'A/(2) such that

Oi=p mod(2, Ul)
up to homology and
di(0:)=0 mod(2, v}).
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Proof. In [9], Moreira constructed an element #<.£2%L such that

do(u)=(0+5)+(p+ ()’
=(p+8)+ o +#+#

in the cobar complex £2%L. Here { is represented by a cochain £+ # in 2+L, and

0 denotes a cocycle which represents the cohomology class p. Since # is

homologous to 0, so is 0 to o°. Hence define p:= 0% and we have the lemma.
q.ed.

For each j, there is an integer 7 such that p:/vf is a cocycle. In this case, we
write

xp[vi=x0:/vi.
Such an abbreviation would not cause any confusion.
The main lemma of the last section implies

Lemma 4.4. For the connecting homomorphism & in (4.1),

30(7)32t+1/l)1)= U:%chI,
80(%1“2/1)?): Z)gth:-xl,
(5\0(U§t+4/11?): l)gthso,
Oo(vf" 4t +D [yl +2any— amit+26n( 12 oy + vsho1) and

60(U§n+l(2t+l)/vlan“): v§.4n+1t+bn+lh30
for t=0, n>0.
Here v3/vf denotes a cocycle of the cobar complex whose leading term is v$/v1.

Therefore, we obtain the lemma by setting v3*/vi=x»/v{ from Lemma 3.6. Now
apply Lemma 4.2 to obtain

Proposition 4.5. The Ext group Ext®(M) is a direct sum of Cw{1> and
Ca{v§"?*V) for n=0 and t=0. Here Asn=an and Awni1=1+2an.

These give us the cokernel of & :

Corollary 4.6. The cokernel of 0: Ext®(M)— Ext'(L) is a K(2)x-free
module generated by

V3 har, 0¥ hso, v3ha and vip
for t=20, u¢ T and w'&27T. Here T is a subset of the natural numbers N :
T={n: 4n or 4"*(n—2b:—2) for some i>0},

for b;=4(4""1—1)/3.
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Lemma 4.7. The complement U=N —T is given as

U={n:2tn or n=2-4*t+6-4*"1+2(4*1—-1)/3
for some k>0 and t =0}

For the computation of 61, we introduce other elements :

Lemma 4.8. Consider an element ¢=vs+ vsvi. Then there exist elements
H and Hs: in X such that

d@)=Hs2+ ts+ Ha, di(Hz)=0=di(Hs),
Hu=t} and Hzx=t mod(v,)

in the cobar complex Qiv:'A/(2).
Proof. For an element ¢ =13+ vivs, we compute do(¢)=vit; by ne(vs)=uvs
+uitf+ ity in BPlts, ts, -]. Now put
Hop=ti+0vi¢t3.
Then, the formula A(#)=#®1+1® &+ 0vit; ® t5 yields
di(H3)=0 and Hs=# mod(v).
Furthermore, we compute
do(@)=t3+ ts+ vst; mod{vy),
and so
do(@)= Hsz+ ts+ vst? mod(vy).
Put, then,
Ha=do( @)+ Ha+ ts
and we have
di(Hx)=0 and Hxu=uvst7 mod(v:).

q.ed.

Lemma 4.9. For the connecting homomorphism 61 : Ext'(M) — Ext*(L),
we have

51(U§t+3h21/vf)=U§t+lh21ha1,
S1(V8 P oy [U8) = V3 Mg s,
81(vél"(4t+2)+1h21/vll+2an): U§"+lt+2b"+1hz1(v§h31 + 1)31’L21)
)
61(vé”*‘(2t+1)+1h21/vfznn)= v§-4"“t+bn+1+1h21h30

31(v§t+1h30/v1)= Ugthmhso,
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51(1/??”21’!30/0?): Ugthsohal,
Si(pgtrDrora oy [ pirean) = ot 4+ D2 o (hgy 4 05 ha),

81(U§t+1h31/’l}1>= ’Uszthuhm and
Si(vg"EttDrbr2 o, @) = 3" E 02 oo hay + 05 h2a).

Proof. The first four equations follow immediately from Lemmas 4.4 and 4.8
with replacing vsha1 by Hz. The fifth, sixth and eighth equations follow immedi-
ately from Lemmas 3.2 and 3.6. For the other equations, just put

4k(4t+2)+b*”h30/7)11+2ak: ng(4t+2)do(x2h+2)/vll+2a~+akn and

U3
4k(2t+1)+ br+1 Zh ar — ,,4k(2t+1 i Z,dlc+1+2(1k
U3 ( ) ! 31/2/1 U3 ¢ ) O(JCZk'*'l)/ 1 >

and we have the result by Lemma 3.6.
Now use Lemma 4.2, and we obtain

Proposition 4.10. Ext'(M) is a direct sum of pExt’(M) and

' (M) =D, Cr{v5" ™ hso> D Ci< 03 har> D Cs v3* 2 hsod)

@@n>o,tzoCA,,<v%"‘z’“)“hm)
k. 2 4k (2
(‘B@Lkzo(C1+2ak<U§ e +0xe1 o SD Canl 3™ t+l)+b"”/2h31>).

Corollary 4.11.  The cokernel of 6:: Ext'(M)— Ext(L) is a direct sum of
pCoker 0o and a K(2)x-module generated by

2 207
V3  haohat, V3  harhsy and v3Y T haihso

for t=20,2uéET and w'&2T.
Lemma 4.12. For the connecting homomorphism 0:: Ext'(M)— Ext*(L),
we have
52(0§t+1h30h31/vl)=Ugth21h30h3l,
52(U§t+3h21h30/013)=Ungl’lthsohal,

sh(4t+2 . 4k(4t42)—
82(1)3 (4t+ )+bk+l+1h21h30/vll+2ak)_va (4t+2) 1h21h30h31,
k k&, _
Oo(p3 @D+ OraD¥ o oy [of*) = 03" F D71 oy Bao sy

Proof. Note that 82(v3** hsoha1/v1)=00(v3' ! [v1) hsoha1 since hs;=csi's are
cocycles by Lemma 3.2. Now the first equation follows from Lemmas 4.4 and 4.9.
For the other equations, use Lemmas 4.8 and 4.9 since O2(v3** hzhsi/v)=
01(v3* ha:/vi)vsha if we use the representative Hai for the cohomology class vs/a1.

Again by Lemma 4.2, we obtain g.ed.
Proposition 4.13. Ext*(M) is a direct sum of pe'(M) and

(M) =& 42o( Cre2au 03" D02 1 Bagd
@ Co,{vg* @D+ ri 1 ) 131 >) @ CilvEt  hsohiar)).



THE HOMOTOPY GROUPS OF A SPECTRUM 79

Corollary 4.14. The cokernel of &:: Ext*(M)— Ext*(L) is a K(2)x-
module pCoker 0.

Now the following proposition follows immediately, by the same argument as
above.

Proposition 4.15. For n>3, Ext"(M)=0, and
Ext}(M)=pe*(M).

5. On the map jx: Ex(X)— Ex(C)

As is stated in the introduction, C denotes the cofiber of Xz — L:X,. Then
it is an Xe-module spectrum and %20 75(Xz2) induces a map k20 : C— C. In fact,
it is the composition

hao N C
C=S°AC =5 XAC—— C,
in which v denotes the X;-module structure. Then we have a cofiber sequence

ssct oL x L sec

i

Let E¥(Y) denote the E,-term of the Adams-Novikov spectral sequence converg-
ing to mx(L:Y) for a spectrum Y, and d7", its differentials. Then this gives rise
to the exact sequence

0—— EXH(C) - E9{(X) 25 E¥5(C)—> Ey(C) — -

Here E5*(X)=Ext>*(M), whose structure is given in the previous section. We
further consider a cofiber E of /20: C— C. Then we have a commutative diagram
hao 7

c - C — <5 sC
Lo Lo ) Lo i Lo
(5.1) c = ¢ 45 x L s,
Lo s s 18
s ™ sp - s - 3p

in which rows and columns are cofibrations.

Lemma 5.2. Let vi/vf* denote a generator of ExX) as a
Z/2[v1, v2, v2']-module. Then

Jx(vi o) =0.

Proof. If =2"(2s+1) for some %, s=0, then v{/vf is a homology class
represented by x2°*'/vf". For n=0, the lemma is trivial. Now suppose that
7x(x5 Juf")=0 for even n=2m. Then squaring this, we obtain

Tx(2 fof)=vd v,



80 K. MASAMOTO, T. MATSUHISA AND K. SHIMOMURA

for some w=0. Consider the diagram
EYX) 2 EXC)
) ) . )
EXD) — E}E) —> E¥D)
induced from (5.1). Since 8(x23i'/vf™') is in the image of 7« by Lemma 4.4,

8(v¥/v1)=0 in E}(D) by the above diagram, and so 2|w since 6(v¥/v1)=wvi’
by Landweber’s formula do(vs)=uv1t+vit, in BPx[f, 5, ---]. Thus we have

Fx( 28 o) =08 for.

Square this, and we have

Tx(x555! o) = vi* vt
Notice that j«(x)=y if do(x)=ytz, where do(x)=7r(x)—x. A direct computation
shows us do(v3*x1/vt)=vi"t:/vf in the cobar complex Q2#M. Thus we have shown

inductively that j«(v5® " /vf") equals to 0 if % is even, and to v3°/v: for some u if
7 is odd. q.e.d.

6. The Adams-Novikov differential

Consider the cofiber E of sz : 2°D—D. Then by [7, Th. 7.1], we immediate-
ly obtain the following

Proposition 6.1. The Adams-Novikov spectral sequence for computing
7x(L2E) collapses from the E-term.

Note that the E»-term for our X is
EF¥(X)=Ext}A, v:'BP«(X))=Ext*(M).

Lemma 6.2. For the Adams-Novikov differential di": E3(X)—E3(X),
diN(vi/vf) is a sum of the elements of the form v3**'haihs:o/vf for i=0, 1 and
k>1. Here vi/vi is a generator of the Z/2[v\, vz, v2']-module Mo.

Proof. Consider the diagram (5.1). The third column induces the long exact
sequence

o — Ext¥(M) — Ext}(M) LN Ext(L)— -+

of the Ea-terms. If the 0o image of v3/vf' is x#0, then 85(dsN (vi/vf))=ds" (x)=
0 by Proposition 6.1. Thus d5"(v3/vf') is divisible by v1. Furthermore it implies
that v3"*'hsohs10/v1 cannot be a target of d#*¥. In fact, it is not divisible by v1 by
Proposition 4.15. Now the lemma follows from Lemma 4.15. q.ed.
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Theorem 6.3. The Adams-Novikov spectral sequence for computing
7x(L2X) collapses from the E-term.

Proof. By proposition 4.15, the Adams-Novikov differentials are all trivial
except for di : E3(X)— E3(X). So it is sufficient to show that d¢*"(vé/v{)=0 for
each vi/vi€E E(X). By Lemma 6.2,

(6.4) dé“”(vé/vf"‘)=u23 A, V3 harhsio v}

for some £=0, where Au:EZ/2. Since
a’a(v??uﬂhmhsm/vf) = U:?uhgoh:az‘p/w +*(
in the cobar complex Q2#BPx(C), we see that

(6.5) ]*(g Au,ivgu+1h21h3i.0/vf) = qu Au,ivguhzohsip/vl +0.

Now send (6.4) by jx and we have a contradiction to Lemma 5.2, which says
Jx(vdfof=*)=0 if £>0. If k=0 and j«(vi/vf)#0, then

Jx(v3/vf) =03 Jn
for some # =0 as is seen in the proof of Lemma 5.2. Therefore, (6.4) and (6.5) yield

d{‘”(v%”/vl) = uzi/iu,ivguhzohaip/m +0

in E¥(C) for some A4,;Z/2. Now pull this back to E¥(D) under the map 7x:
E¥(D)— E#(C) to obtain the non-trivial differential

déw( ve%u) = uZMu,,-v§”hzohsip +0

in E¥(D), which again contradicts to a result of [7] which says d¢'"(v4*)=0 and
dsN (vi**%)=v3* h}o for k>0. g.e.d.
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