MARKOV UNIQUENESS AND ESSENTIAL SELF-ADJOINTNESS OF PERTURBED ORNSTEIN-UHLENBECK OPERATORS

SHIQI SONG

(Received December 6, 1993)

0. Iutroduction

Stating from a simple formula, we shall show in this paper some elementary inequalities on the Wiener space. We shall give two applications of these inequalities. The first one is a quick proof of the Markov uniqueness of the perturtions of Wiener measure. The second one is to prove the essential self-adjointness of the perturbed Ornstein-Uhlenbeck operatros on Wiener space, when the perturbation satisfies some kind of Lipschitz boundedness condition.

The Markov uniqueness and essential self-adjointness problems are one of the basic questions on Dirichlet forms. There are many studies on these subjects. We mention in the references the papers of Albeverio-Kondratiev-Röckner, of Albeverio-Kusuoka, Albeverio-Röckner-Zhang, of Röckner-Zhang, of Song, of Takeda, of Wielens, etc. The present paper tries to give a simpler proof of the Markov uniqueness, and to extend the result of Wielens [11] to the Wiener space. It will be noticed that our proof of the Markov uniqueness does not use the maximality property as it did in Song [8] (cf. also Albeverio-Kusuoka-Röckner [3]), and our method to prove the essential self-adjointness is different from that used in Wielens [11].

1. Notations

In this paper E denotes the space $C_0(\mathbf{R}_+, \mathbf{R}^d)$ and m denotes the classical Wiener measure on E. Let ι denote the usual imbedding map from the topological dual space E^* of E into E. For any element $k \in \iota(E^*) \subset E$, we shall put $\alpha_k = \iota^{-1}(k)$. Recall that E^* is a pre-Hilbert space with the inner product $\int (\alpha_k)^2(x)m(dx)$. We fixe an orthonormal basis K of E^* . We introduce the space $FC_b^{\infty}(K)$ to be the family of the functions u on E such that there is $n \in \mathbb{N}$, $f \in \mathbb{N}$

824 S. Song

 $C_b^{\infty}(\mathbf{R}^n)$, and $k_i \in K$, $i=1, 2, \dots, n$, so that

$$u(x) = f[\alpha_{k_1}(x), \dots, \alpha_{k_n}(x)].$$

For $k \in K$, for a function $g \in FC_b^\infty(K)$, $\frac{\partial g}{\partial k}$ is defined as $\lim_{r \to 0} \frac{1}{r} (g(x+rk) - g(x))$. We shall say that a function $g \in L^2(E, m)$ is differentiable in direction $k \in K$, if there is a function $f \in L^2(E, m)$ such that

$$\int \left(\frac{\partial v}{\partial k} - \alpha_k v\right)(x)g(x)m(dx) = -\int v(x)f(x)m(dx),$$

for any $v \in FC_b^{\infty}(K)$. In this case we denote $\frac{\partial g}{\partial k} = f$. Note that the two definition of $\frac{\partial g}{\partial k}$ coincide when $g \in FC_b^{\infty}(K)$. Recall that the bilinear form $(u, v) \mapsto \int \frac{\partial u}{\partial k} \frac{\partial v}{\partial k} dm$, defined on $FC_b^{\infty}(K)$ is closable in $L^2(E, m)$. We denote by $\mathscr E$ its closure, which is a Dirichlet form.

In this paper we are interested in probability measures μ on E which has the form $\mu = \varphi^2 \cdot m$, where φ is a function in $D(\mathscr{E})$. Let Γ denote the operator of carré du champs of \mathscr{E} . We define

$$Au = \sum_{k \in K} \left(\frac{\partial^2 u}{\partial k^2} - \alpha_k \frac{\partial u}{\partial k} \right) + 2\Gamma(u, \log \varphi), \ u \in D(A) = FC_b^{\infty}(K),$$

where $\Gamma(u,\log\varphi)$ is defined as $\frac{1}{\varphi}\Gamma(u,\varphi)$. It is easy to see that A is a symmetric operator on $L^2(E,\mu)$. Let $D(\mu)$ denote the family of all Dirichlet forms on $L^2(E,\mu)$ whose generator extends A. We shall say that the *Markov uniqueness* holds for the measure μ , if $\#D(\mu)=1$. Let $S(\mu)$ be the set of all self-adjoint operators on $L^2(E,\mu)$ which extend A. We shall say that A is essentially self-adjoint on $FC_b^\infty(K)$, if $\#S(\mu)=1$. Note that $S(\mu)\supset D(\mu)$ are not empty. In fact, the pre-Dirichlet form $(u,v)\to\int \frac{\partial u}{\partial k}\frac{\partial v}{\partial k}d\mu$, defined for $u,v\in FC_b^\infty(K)$, is closable on $L^2(E,\mu)$ (cf. Albeverio-Röckner [4], Song [8]). If we denote by $\mathscr E_\mu$ its closure, $\mathscr E_\mu\in D(\mu)$.

We shall denote by R_{λ} (resp. by U_{λ}) the resolvent operator of \mathscr{E} (resp. of \mathscr{E}_{μ}). The generator of \mathscr{E}_{μ} will be denoted by L. The space $D(\mathscr{E}_{\mu})$ (resp. the space D(L)) will be considered as a Hilbert space with the inner product $\mathscr{E}_{\mu,1}$ (resp. $\|u-Lu\|_{L^{2}(\mu)}$).

2. Resolvent R_{λ}

We present some elementary properties of the resolvent operator R_{λ} .

Lemma 1. For any $k \in K$, for any bounded function f we have the following formula:

$$\frac{\partial}{\partial k}R_{\lambda}f(x) = \int_0^{\infty} e^{-\lambda t} \frac{1}{\sqrt{e^{2t}-1}} dt \int \alpha_k(y) f(e^{-t}x + \sqrt{1-e^{-2t}}y) m(dy).$$

Proof. Note we have $\int \frac{\partial g}{\partial k} dm = \int a_k g dm$, for any $k \in K$, for $g \in FC_b^{\infty}(K)$.

Using this relation the lemma can be easily proved when $f \in FC_b^{\infty}(K)$. For a general bounded function f, choose a uniformly bounded sequence of functions $f_n \in FC_b^{\infty}(K)$ such that $f_n \to f$ in $L^2(E, m)$. Let $v \in FC_b^{\infty}(K)$. We have:

$$\int v(x) \int_{0}^{\infty} e^{-\lambda t} \frac{1}{\sqrt{e^{2t} - 1}} dt \int a_{k}(y) f(e^{-t}x + \sqrt{1 - e^{-2t}} y) m(dy) m(dx)$$

$$= \lim_{n \to \infty} \int v(x) \int_{0}^{\infty} e^{-\lambda t} \frac{1}{\sqrt{e^{2t} - 1}} dt \int a_{k}(y) f_{n}(e^{-t}x + \sqrt{1 - e^{-2t}} y) m(dy) m(dx)$$

$$= \lim_{n \to \infty} \int v(x) \frac{\partial}{\partial k} R_{\lambda} f_{n}(x) m(dx)$$

$$= -\lim_{n \to \infty} \int \left(\frac{\partial v}{\partial k} - a_{k}v\right) R_{\lambda} f_{n}(x) m(dx)$$

$$= -\int \left(\frac{\partial v}{\partial k} - a_{k}v\right) R_{\lambda} f(x) m(dx).$$

This achieves the proof of the lemma. \square

Lemma 2. For any bounded function f, we have the inequality:

$$\sup_{\lambda>0} \lambda \Gamma(R_{\lambda}f, R_{\lambda}f)(x) \leq (C_{\infty})^{2} ||f||_{\infty}^{2},$$

where
$$C_{\infty} = \sup_{\lambda > 0} \sqrt{\lambda} \int_{0}^{\infty} e^{-\lambda t} \frac{1}{\sqrt{e^{2t} - 1}} dt < \infty$$
.

Proof. We have:

$$\begin{split} &\lambda \Gamma(R_{\lambda}f, R_{\lambda}f)(x) = \lambda \sum_{k \in K} \left(\frac{\partial}{\partial k} R_{\lambda}f(x)\right)^{2} \\ &\leq C_{\lambda}\sqrt{\lambda} \int_{0}^{\infty} e^{-\lambda t} \frac{1}{\sqrt{e^{2t} - 1}} dt \sum_{k \in K} \left(\int \alpha_{k}(y) f(e^{-t}x + \sqrt{1 - e^{-2t}}y) m(dy)\right)^{2} \\ &\leq C_{\lambda}\sqrt{\lambda} \int_{0}^{\infty} e^{-\lambda t} \frac{1}{\sqrt{e^{2t} - 1}} dt \|f(e^{-t}x + \sqrt{1 - e^{-2t}} \cdot)\|_{2}^{2}, \end{split}$$

because α_k forms an orthonormal system in $L^2(E, m)$,

$$\leq C_{\lambda}\sqrt{\lambda}\int_{0}^{\infty}e^{-\lambda t}\frac{1}{\sqrt{e^{2t}-1}}dt \|f\|_{\infty}^{2},$$

where

$$C_{\lambda} = \sqrt{\lambda} \int_{0}^{\infty} e^{-\lambda t} \frac{1}{\sqrt{e^{2t} - 1}} dt$$

$$= \sqrt{\lambda} \int_{0}^{\infty} (\lambda + 2) e^{-(\lambda + 2)t} \sqrt{e^{2t} - 1} dt$$

$$= \sqrt{\lambda} \int_{0}^{\infty} (\lambda + 2) e^{-(\lambda + 1)t} \sqrt{1 - e^{-2t}} dt$$

$$\leq \sqrt{\lambda} \int_{0}^{\infty} (\lambda + 2) e^{-(\lambda + 1)t} \sqrt{2t} dt$$

$$= \int_{0}^{\infty} \frac{\lambda + 2}{\lambda} e^{-(1 + 1/\lambda)u} \sqrt{2u} du$$

$$\to \int_{0}^{\infty} e^{-u} \sqrt{2u} du < \infty, \text{ when } \lambda \to \infty. \quad \Box$$

3. A resolvent change formula

Lemma 3. For any $f \in FC_b^{\infty}(K)$, $\Gamma(R_{\lambda}f, \log \varphi) \in L^2(E, \mu)$, and the following formula holds:

$$U_{\lambda}f = R_{\lambda}f + 2U_{\lambda}[\Gamma(R_{\lambda}f, \log \varphi)].$$

Proof. It is enough to remark that $R_{\lambda}f \in FC_b^{\infty}(K) \subset D(\mathcal{E}_{\mu})$, and

$$(\lambda - L)R_{\lambda}f = (1 - A)R_{\lambda}f = f - 2\Gamma(R_{\lambda}f, \log \varphi).$$

Lemma 4. The formula in Lemma 3 also holds for any bounded function. Moreover, for any bounded function f, $R_{\lambda}f \in D(\mathcal{E}_{\mu})$ and the following inequalities hold:

$$\begin{split} & \|\lambda R_{\lambda} f\|_{L^{2}(\mu)} \leq \|\lambda U_{\lambda} f\|_{L^{2}(\mu)} + 2 \frac{1}{\sqrt{\lambda}} C_{\infty} \mathcal{E}\left(\varphi, \varphi\right)^{1/2} \|f\|_{\infty}, \\ & \mathcal{E}_{\mu} (\lambda R_{\lambda} f, \lambda R_{\lambda} f)^{1/2} \leq \mathcal{E}_{\mu} (\lambda U_{\lambda} f, \lambda U_{\lambda} f)^{1/2} + 2 C_{\infty} \mathcal{E}\left(\varphi, \varphi\right)^{1/2} \|f\|_{\infty}. \end{split}$$

Proof. The two inequalities are direct consequences of Lemma 3 (cf. Song [8]) if $f \in FC_b^{\infty}(K)$. In fact, the equality in Lemma 3 implies immediately

$$\|\lambda R_{\lambda} f\|_{L^{2}(\mu)} \le \|\lambda U_{\lambda} f\|_{L^{2}(\mu)} + 2\|\Gamma(R_{\lambda} f, \log \varphi)\|_{L^{2}(\mu)}$$

Since
$$|\Gamma(R_{\lambda}f, \log \varphi)|^2 \le \Gamma(R_{\lambda}f, R_{\lambda}f)\Gamma(\varphi, \varphi)\frac{1}{\varphi^2}$$
, we have

$$\|\Gamma(R_{\lambda}f, \log \varphi)\|_{L^{2}(\mu)} \leq [\sup_{y} \Gamma(R_{\lambda}f, R_{\lambda}f)(y)]^{1/2} \mathscr{E}(\varphi, \varphi)^{1/2}$$

$$\leq \frac{1}{\sqrt{\lambda}} C_{\infty} \mathscr{E}(\varphi, \varphi)^{1/2} \|f\|_{\infty},$$

by Lemma 2. Similarily, we have

$$\mathcal{E}_{\mu}(\lambda R_{\lambda}f, \lambda R_{\lambda}f)^{1/2} \\ \leq \mathcal{E}_{\mu}(\lambda U_{\lambda}f, \lambda U_{\lambda}f)^{1/2} + 2\mathcal{E}_{\mu}(\lambda U_{\lambda}\Gamma(R_{\lambda}f, \log \varphi), \lambda U_{\lambda}\Gamma(R_{\lambda}f, \log \varphi))^{1/2}.$$

The second term can be controlled by

$$\mathcal{E}_{\mu,\lambda}(\lambda U_{\lambda}\Gamma(R_{\lambda}f, \log \varphi), \lambda U_{\lambda}\Gamma(R_{\lambda}f, \log \varphi))$$

$$= \lambda^{2} \int \Gamma(R_{\lambda}f, \log \varphi) U_{\lambda}\Gamma(R_{\lambda}f, \log \varphi) d\mu$$

$$\leq \lambda^{2} \|\Gamma(R_{\lambda}f, \log \varphi)\|_{L^{2}(\mu)} \|U_{\lambda}\Gamma(R_{\lambda}f, \log \varphi)\|_{L^{2}(\mu)}$$

$$\leq \lambda \|\Gamma(R_{\lambda}f, \log \varphi)\|_{L^{2}(\mu)}^{2}$$

$$\leq [C_{\infty}\mathcal{E}(\varphi, \varphi)^{1/2} \|f\|_{\infty}]^{2}.$$

We therefore proved the two inequalities for $f \in FC_b^{\infty}(K)$.

Now, consider any bounded function f. Let $f_n \in FC_b^{\infty}(K)$ be a sequence of functions converging to f in $L^2(E, \mu+m)$, and uniformly bounded by $(1+\varepsilon)\|f\|_{\infty}$, where ε is an arbitrary fixed positive constant. Thanks to the second inequality, we see that $\mathcal{E}_{\mu}(\lambda R_{\lambda}f_n, \lambda R_{\lambda}f_n)$ is uniformly bounded. Since the function $R_{\lambda}f_n$ converges to $R_{\lambda}f$ in probability with respect to μ , and is uniformly bounded, it converges also in $L^2(E, \mu)$. We have for any $\alpha > 0$:

$$\int \alpha (1 - \alpha U_{\alpha}) \lambda R_{\lambda} f(x) \lambda R_{\lambda} f(x) \mu(dx)$$

$$= \lim_{n \to \infty} \int \alpha (1 - \alpha U_{\alpha}) \lambda R_{\lambda} f_n(x) \lambda R_{\lambda} f_n(x) \mu(dx)$$

$$\leq \sup_{n \in \mathcal{E}} \mu(\lambda R_{\lambda} f_n, \lambda R_{\lambda} f_n) < \infty.$$

This proves $R_{\lambda}f \in D(\mathcal{E}_{\mu})$. It now is clear that $R_{\lambda}f_n$ converges to $R_{\lambda}f$ weakly in $D(\mathcal{E}_{\mu})$. By continuity and by Banach-Saks theorem (cf. Ma-Röckner [6]), we can prove that the above two inequalties hold for $R_{\lambda}f$.

To prove the equality in Lemma 3 for $R_{\lambda}f$, we notice that $\Gamma(R_{\lambda}f_n, \log \varphi)$ converges to $\Gamma(R_{\lambda}f, \log \varphi)$ in probability with respect to μ , and

$$\|\Gamma(R_{\lambda}f_n, \log \varphi)\|_{L^2(\mu)} \leq (1+\varepsilon)\frac{1}{\sqrt{\lambda}}C_{\infty}\mathscr{E}(\varphi, \varphi)^{1/2}\|f\|_{\infty}.$$

These facts imply that $\Gamma(R_{\lambda}f, \log \varphi)$ is in $L^2(E, \mu)$. It now becomes clear that $\Gamma(R_{\lambda}f_n, \log \varphi)$ converges to $\Gamma(R_{\lambda}f, \log \varphi)$ in $L^1(E, \mu)$, and consequently converges weakly in $L^2(E, \mu)$. Finally, we can prove the equality in Lemma 3 by Banach-Saks theorem and by continuity. \square

REMARK. We in fact have proved

$$\|\Gamma(R_{\lambda}f, \log \varphi)\|_{L^{2}(\mu)} \leq \frac{1}{\sqrt{\lambda}} C_{\infty} \mathscr{E}(\varphi, \varphi)^{1/2} \|f\|_{\infty}.$$

for any bounded function f. \square

Corollary 5. For any bounded function f, $R_{\lambda}f \in D(L)$. Moreover,

$$||LR_{\lambda}f||_{L^{2}(\mu)} \leq ||f - \lambda U_{\lambda}f||_{L^{2}(\mu)} + 2||\Gamma(R_{\lambda}f, \log \varphi) - \lambda U_{\lambda}\Gamma(R_{\lambda}f, \log \varphi)||_{L^{2}(\mu)}$$

$$\leq 2||f||_{L^{2}(\mu)} + 4\frac{1}{\sqrt{\lambda}} C_{\infty} \mathcal{E}(\varphi, \varphi)^{1/2} ||f||_{\infty}.$$

Proof. We note that for any $g \in L^2(E, \mu)$, $U_{\lambda}g \in D(L)$. Now, this lemma is a direct consequence of Lemma 3 and Lemma 4. \square

4. Markov uniqueness

Lemma 6. Let \widehat{D} denote the closure of $FC_b^{\infty}(K)$ for the norm $||u-Au||_{L^2(\mu)}$. Let f be a bounded function. Then, for any fixed $\lambda > 0$, $R_{\lambda} f \in \widehat{D}$.

Remark. The space \widehat{D} is a closed subspace in D(L), because L is an extention of A.

Proof. We regard \widehat{D} as a Hilbert space with the inner product $\|u-Lu\|_{L^2(\mu)}^2$. Let f_n be a sequence of functions in $FC_b^{\infty}(K)$ which tend to f in $L^2(E, \mu+m)$. We shall suppose that f_n 's are uniformly bounded by $2\|f\|_{\infty}$. Then, $R_{\lambda}f_n \in FC_b^{\infty}(K)$ for each $n \in \mathbb{N}$. Furthermore, according to Corollary 5, the family of functions $R_{\lambda}f_n$ is a bounded family in \widehat{D} .

Now, the closed bounded balls in \widehat{D} are weakly compact, we can suppose that $R_{\lambda}f_n$ converges weakly to an element g in \widehat{D} . According to the Banach-Saks theorem we can even suppose that the Cesaro mean v_n of $R_{\lambda}f_n$ converges strongly in \widehat{D} to g. It is clear that $R_{\lambda}f_n$ converges to $R_{\lambda}f$ in probability with respect to μ . Hence, the only limit for v_n must be $R_{\lambda}f$. We thus have proved that $R_{\lambda}f = g \in \widehat{D}$. \square

Lemma 7. Let $\alpha > 0$. Let A^* denote the adjoint operator of A. Let h be a bounded solution of the equation $(A^* - \alpha)h = 0$. Then, $h \in D(\mathcal{E}_{\mu})$.

Proof. Note that by the preceding lemma, $\int h(L-\alpha)R_{\lambda}fd\mu=0$ for any bounded function f. Let $g_{\lambda}=\lambda U_{\lambda}h$. We have:

$$0 = \int h(L-\alpha)\lambda R_{\lambda}g_{\lambda}d\mu$$

$$= \int hL(\lambda U_{\lambda}g_{\lambda} - 2\lambda U_{\lambda}[\Gamma(R_{\lambda}g_{\lambda}, \log \varphi)])d\mu - \alpha \int h\lambda R_{\lambda}g_{\lambda}d\mu$$

$$= \int g_{\lambda}Lg_{\lambda}d\mu - 2\int hL(\lambda U_{\lambda}[\Gamma(R_{\lambda}g_{\lambda}, \log \varphi)])d\mu - \alpha \int h\lambda R_{\lambda}g_{\lambda}d\mu$$

$$= -\mathcal{E}_{\mu}(g_{\lambda}, g_{\lambda}) - 2\int h\lambda(\lambda U_{\lambda}[\Gamma(R_{\lambda}g_{\lambda}, \log \varphi)] - \Gamma(R_{\lambda}g_{\lambda}, \log \varphi))d\mu$$

$$-\alpha \int h\lambda R_{\lambda}g_{\lambda}d\mu$$

$$= -\mathcal{E}_{\mu}(g_{\lambda}, g_{\lambda}) - 2\int g_{\lambda}\Gamma(\lambda R_{\lambda}g_{\lambda}, \log \varphi)d\mu + 2\int h\Gamma(\lambda R_{\lambda}g_{\lambda}, \log \varphi)d\mu$$

$$-\alpha \int h\lambda R_{\lambda}g_{\lambda}d\mu.$$

From this equality we obtain:

$$\mathcal{E}_{\mu}(g_{\lambda}, g_{\lambda}) = -2 \int g_{\lambda} \Gamma(\lambda R_{\lambda} g_{\lambda}, \log \varphi) d\mu + 2 \int h \Gamma(\lambda R_{\lambda} g_{\lambda}, \log \varphi) d\mu$$
$$-\alpha \int h \lambda R_{\lambda} g_{\lambda} d\mu$$
$$\leq 2(\|g_{\lambda}\|_{\infty} + \|h\|_{\infty}) \int |\Gamma(\lambda R_{\lambda} g_{\lambda}, \log \varphi)| d\mu + \alpha \|h\|_{\infty}^{2}$$
$$\leq 4\|h\|_{\infty} \mathcal{E}_{\mu}(\lambda R_{\lambda} g_{\lambda}, \lambda R_{\lambda} g_{\lambda})^{1/2} \mathcal{E}(\varphi, \varphi)^{1/2} + \alpha \|h\|_{\infty}^{2}.$$

By Lemma 4 we have:

$$\mathcal{E}_{\mu}(\lambda R_{\lambda}g_{\lambda}, \lambda R_{\lambda}g_{\lambda})^{1/2} \leq \mathcal{E}_{\mu}(g_{\lambda}, g_{\lambda})^{1/2} + 2C_{\infty}\mathcal{E}(\varphi, \varphi)^{1/2} \|g_{\lambda}\|_{\infty}.$$

Putting $C = ||h||_{\infty} + (1 + C_{\infty})||h||_{\infty} \mathcal{E}(\varphi, \varphi)^{1/2}$, we obtain:

$$\mathcal{E}_{\mu}(g_{\lambda}, g_{\lambda}) \leq 4C(\mathcal{E}_{\mu}(g_{\lambda}, g_{\lambda})^{1/2} + 2C) + \alpha C^{2}$$

or equivalently,

$$(\mathscr{E}_{\mu}(g_{\lambda}, g_{\lambda})^{1/2} - 2C)^2 \leq (12 + \alpha)C^2$$

Finally, $\mathcal{E}_{\mu}(g_{\lambda}, g_{\lambda})^{1/2} \leq (6 + \sqrt{\alpha})C$. By this uniform boundedness, by the fact that $h = \lim_{\lambda \to \infty} \lambda U_{\lambda} h$ in $L^{2}(E, \mu)$, we conclude that $h \in D(\mathcal{E}_{\mu})$. \square

Lemma 8. The function h is the same as that in the preceding lemma. Then $\mathcal{E}_{\mu,\alpha}(h, h) = 0$.

Proof. Let $\alpha > 0$. By the definition of h, for any $v \in FC_b^{\infty}(K)$,

$$\mathcal{E}_{\mu,\alpha}(h, v) = -\int h(A-\alpha)vd\mu = 0.$$

But $FC_b^{\infty}(K)$ is dense in $(D(\mathcal{E}_{\mu}), \mathcal{E}_{\mu,\alpha})$, we therefore conclude $\mathcal{E}_{\mu,\alpha}(h, h) = 0$. \square

830 S. SONG

Theorem 9. The measure μ has Markov uniqueness.

Proof. Let $\mathscr{E}' \subseteq D(\mu)$. Let V_{λ} be its resolvent operator. We can easily see that $D(\mathscr{E}_{\mu}) \subset D(\mathscr{E}')$, and, for any bounded function f, $V_{\alpha}f - U_{\alpha}f \in \operatorname{Ker}(A^* - \alpha)$ for any $\alpha > 0$. By Lemma 8, $V_{\alpha}f = U_{\alpha}f$. This implies $\mathscr{E}' = \mathscr{E}_{\mu}$. \square

5. Essential self-adjointness

In this section we suppose in addition that the density function φ of μ is such that ess.sup $\Gamma(\log \varphi, \log \varphi) \leq M^2$, where M is a constant.

Lemma 10. For $f \in L^2(E, \mu)$, λ big enough, we have the inequalities:

$$\begin{split} \|\lambda R_{\lambda} f\|_{L^{2}(\mu)} &\leq \left(1 - 2\frac{M}{\lambda}\right)^{-1} \|f\|_{L^{2}(\mu)}, \\ \mathcal{E}_{\mu}(\lambda R_{\lambda} f, \lambda R_{\lambda} f)^{1/2} &\leq \left(1 - 2\frac{M}{\sqrt{\lambda}}\right)^{-1} \mathcal{E}_{\mu}(\lambda U_{\lambda} f, \lambda U_{\lambda} f)^{1/2}, \\ \|\Gamma(\lambda R_{\lambda} f, \log \varphi)\|_{L^{2}(\mu)} &\leq M \mathcal{E}_{\mu}(\lambda R_{\lambda} f, \lambda R_{\lambda} f)^{1/2} \\ &\leq \frac{\lambda M}{\sqrt{\lambda} - 2M} \|f\|_{L^{2}(\mu)} \end{split}$$

Proof. In fact, it is enough to prove the lemma for $f \in FC_b^{\infty}(K)$. The general case can be proved by continuity. We only prove the second inequality. Using Lemma 4 we obtain the following formulae:

$$\mathcal{E}_{\mu,\lambda}(\lambda U_{\lambda}\Gamma(R_{\lambda}f, \log \varphi), \lambda U_{\lambda}\Gamma(R_{\lambda}f, \log \varphi))$$

$$=\lambda \int \Gamma(R_{\lambda}f, \log \varphi)\lambda U_{\lambda}\Gamma(R_{\lambda}f, \log \varphi)\varphi^{2}dm$$

$$\leq \lambda \int \Gamma(R_{\lambda}f, \log \varphi)^{2}\varphi^{2}dm$$

$$\leq \lambda \int \Gamma(R_{\lambda}f, R_{\lambda}f)\Gamma(\log \varphi, \log \varphi)\varphi^{2}dm$$

$$\leq \frac{M^{2}}{\lambda} \int \Gamma(\lambda R_{\lambda}f, \lambda R_{\lambda}f)\varphi^{2}dm$$

$$= \frac{M^{2}}{\lambda} \mathcal{E}_{\mu}(\lambda R_{\lambda}f, \lambda R_{\lambda}f).$$

So,

$$\mathcal{E}_{\mu}(\lambda R_{\lambda}f, \lambda R_{\lambda}f)^{1/2} \leq \mathcal{E}_{\mu}(\lambda U_{\lambda}f, \lambda U_{\lambda}f)^{1/2} + 2\frac{M}{\sqrt{\lambda}} \mathcal{E}_{\mu}(\lambda R_{\lambda}f, \lambda R_{\lambda}f)^{1/2},$$

or equivalently for λ big enough,

$$\mathcal{E}_{\mu}(\lambda R_{\lambda}f, \lambda R_{\lambda}f)^{1/2} \leq \left(1 - 2\frac{M}{\sqrt{\lambda}}\right)^{-1} \mathcal{E}_{\mu}(\lambda U_{\lambda}f, \lambda U_{\lambda}f)^{1/2}. \quad \Box$$

Lemma 11. Let $\alpha > 0$, and let $h \in L^2(E, \mu)$ such that $(A^* - \alpha)h = 0$. Then, $h \in D(\mathcal{E}_{\mu})$ and $\mathcal{E}_{\mu,\alpha}(h, h) = 0$.

Proof. let $g_{\lambda} = \lambda U_{\lambda} h$. By exactly the same calculus as in the proof of Lemma 7, we have

$$\mathcal{E}_{\mu}(g_{\lambda}, g_{\lambda}) = -2 \int g_{\lambda} \Gamma(\lambda R_{\lambda} g_{\lambda}, \log \varphi) d\mu + 2 \int h \Gamma(\lambda R_{\lambda} g_{\lambda}, \log \varphi) d\mu - \alpha \int h \lambda R_{\lambda} g_{\lambda} d\mu.$$

So, according to Lemma 10, we have

$$\mathcal{E}_{\mu}(g_{\lambda}, g_{\lambda}) \leq 4M \left(1 - 2\frac{M}{\sqrt{\lambda}}\right)^{-1} \mathcal{E}_{\mu}(\lambda U_{\lambda}g_{\lambda}, \lambda U_{\lambda}g_{\lambda})^{1/2} \|h\|_{L^{2}(\mu)}$$

$$+ \alpha \left(1 - 2\frac{M}{\lambda}\right)^{-1} \|h\|_{L^{2}(\mu)}^{2}.$$

for λ big enough. There exists then a constant $C = C(\alpha, M)$ such that

$$\mathcal{E}_{\mu}(g_{\lambda}, g_{\lambda}) \leq C \|h\|_{L^{2}(\mu)}^{2}$$

for λ big enough. From this fact we deduce $h \in D(\mathcal{E}_{\mu})$ and $\mathcal{E}_{\mu,a}(h, h) = 0$. \square

Theorem 12. The operator A is essentially self-adjoint on $FC_b^{\infty}(K)$.

Proof. It is enough to notice that any solution in $L^2(E, \mu)$ of the equation $(A^* - \alpha)f = 0$, $\alpha > 0$, will be a null function by Lemma 12. \square

References

- [1] S. Albeverio, Ju. G. Kondratiev, M. Röckner: An approximate criterium of essential self-adjointness of Dirichlet operators, Potential Analysis, Vol. 1, N°3, p. 307-317, 1992.
- [2] S. Albeverio, S. Kusuoka: Maximality of infinite dimensional Dirichlet forms and Hoegh-Krohn's model of quantum fields, "Ideas and methods in quantum and statistical physics" Vol. 2 Edited by Albeverio-Fenstand-Holden-Lindstrom, Cambridge University Press. (1992)
- [3] S. Albeverio, S. Kusuoka, M. Röckner: On partial integration in infinite dimensional space and applications to Dirichlet forms, J. London Math. Sc. 42, 122-136 (1990).
- [4] S. Albeverio, M. Röckner: Classical Dirichlet forms on topological vector spaces-closability and a Caméron-Martin formula. J. Funct. Anal. 88, 395-436 (1990)
- [5] S. Albeverio, M. Röckner, T. Zhang: Markov uniqueness for a class of infinite dimensional Dirichlet operators, To appear in Proc. 9th winter school, Friedrichroder (1992).
- [6] Z. Ma, M. Röckner: Introduction to the theory of (non symmetric) Dirichlet forms. Berlin-Heidelberg, Springer-Verlag, 1992.
- [7] M. Röckner, T. Zhang: Uniqueness of generalized Schrödinger operators and applications. J. Funct. Anal. 105, 187-231, 1992.
- [8] S. Song: A study on Markovian maximality, change of probability and regularity. To appear in Potential Analysis, 1993.

- [9] M. Takeda: On the uniqueness of Markovian self-adjoint extension of diffusion operators on infinite dimensional space, Osaka J. Math. 22, 733-742 (1985)
- [10] M. Takeda: On the uniqueness of Markovian self-adjoint extension, Lecture Notes in Math. 1250, Stochastic processes, Mathematics and Physics, Berlin, Springer, 319-325 (1985)
- [11] N. Wielens: On the essential self-adjointness of generalized Schrödinger operator, J. Funct. Anal. 61 (1985), 98-115.

Université Evry Val d'Essonne Boulevard des Coquibus 91025 EVRY, FRANCE