In this note, developing our previous work [8] with S. Takashima, we will characterize rings R for which every finitely generated submodule of the injective envelope $E(R)$ is torsionless. Those characterizations would yield recent results of Gómez Pardo and Guil Asensio [6, Theorems 1.5 and 2.2]. Also, we will provide a necessary and sufficient condition for an extension ring Q of a ring R to be a quasi-Frobenius maximal two-sided quotient ring of R.

Throughout this note, R stands for an associative ring with identity, modules are unitary modules, and torsion theories are Lambek torsion theories. Sometimes, we consider right R-modules as left R^{op}-modules, where R^{op} denotes the opposite ring of R, and we use the notation $_RX$ (resp. X_R) to stress that the module X considered is a left (resp. right) R-module. We denote by $\text{Mod} R$ the category of left R-modules and by $(-)^*$ both the R-dual functors. For a module X, we denote by $E(X)$ its injective envelope and by $\varepsilon_X: X \to X^{**}$ the usual evaluation map. A module X is called torsionless (resp. reflexive) if ε_X is a monomorphism (resp. an isomorphism). For an $X \in \text{Mod} R$, we denote by $\tau(X)$ its Lambek torsion submodule. Namely, $\tau(X)$ is a submodule of X such that $\text{Hom}_R(\tau(X), E(R)) = 0$ and $X/\tau(X)$ is cogenerated by $E(R)$. A module X is called torsion (resp. torsionfree) if $\tau(X) = X$ (resp. $\tau(X) = 0$). A submodule Y of a module X is called a dense (resp. closed) submodule if X/Y is torsion (resp. torsionfree).

Here we recall some definitions. Let Y be a submodule of a module X. Then X is called a rational extension of Y if $\text{Hom}_R(X/Y, E(X)) = 0$. Let Q be an extension ring of R, i.e., Q is a ring containing R as a subring with common identity. Then Q is called a left (resp. right) quotient ring of R if $_RQ$ (resp. Q_R) is a rational extension of R (resp. R_R). A left quotient ring Q of R is called a maximal left quotient ring of R if $E(\tau Q)/Q$ is torsionfree. As an extension ring of R, a maximal left quotient ring of R is isomorphic to the biendomorphism ring of $E(R)$ (see, e.g., Lambek [10] for details). An extension ring Q of R is called a maximal two-sided quotient ring of R if it is both a maximal left quotient ring of R and a maximal right quotient ring of R. A ring homomorphism $R \to Q$ is called a left (resp. right) flat epimorphism if the induced functor $\text{Mod} R$ (resp. $\text{Mod} R^{op}$),
i.e., \(Q_R \) (resp. \(RQ \)) is flat and \(Q \otimes_R Q \sim Q \) canonically (see, e.g., Silver [17], Lazard [11] and Popescu and Spîrcu [15] for details). A module \(X \) is called \(\tau \)-finitely generated if it contains a finitely generated dense submodule. A finitely generated module \(X \) is called \(\tau \)-finitely presented (resp. \(\tau \)-coherent) if for every epimorphism (resp. homomorphism) \(\pi : Y \to X \) with \(Y \) finitely generated, \(\text{Ker} \pi \) is \(\tau \)-finitely generated. A module \(X \) is called \(\tau \)-noetherian (resp. \(\tau \)-artinian) if it satisfies the ascending (resp. descending) chain condition on closed submodules. Finally, a ring \(R \) is called left (resp. right) \(\tau \)-noetherian if \(R \) (resp. \(R \)) is \(\tau \)-noetherian, left (resp. right) \(\tau \)-artinian if \(R \) (resp. \(R \)) is \(\tau \)-artinian, and left (resp. right) \(\tau \)-coherent if \(R \) (resp. \(R \)) is \(\tau \)-coherent.

1. \(\tau \)-absolutely pure and \(\tau \)-semicompact rings. In this section, we characterize rings \(R \) for which every finitely generated submodule of \(E(R) \) is torsionless.

Lemma 1.1 (Hoshino [7, Theorem A]). For a ring \(R \) the following are equivalent.

(a) \(\tau(X) = \text{Ker} \epsilon_X \) for every finitely presented \(X \in \text{Mod} \ R \).
(b) \(\text{Ext}^1(X, R) \) is torsion for every finitely generated \(X \in \text{Mod} \ R \).
(c) \(\text{Ext}^1(Y, R) \) is torsion for every finitely generated \(Y \in \text{Mod} \ R \).
(d) \(\text{Ext}^1(Y, R) \) is torsion for every finitely generated \(Y \in \text{Mod} \ R \).
(e) \(\text{Ext}^1(Y, R) \) is torsion for every finitely generated \(Y \in \text{Mod} \ R \).
(f) \(\text{Ext}^1(Y, R) \) is torsion for every finitely generated \(Y \in \text{Mod} \ R \).
(g) \(\text{Ext}^1(Y, R) \) is torsion for every finitely generated \(Y \in \text{Mod} \ R \).
(h) \(\text{Ext}^1(Y, R) \) is torsion for every finitely generated \(Y \in \text{Mod} \ R \).
(i) \(\text{Ext}^1(Y, R) \) is torsion for every finitely generated \(Y \in \text{Mod} \ R \).
(j) \(\text{Ext}^1(Y, R) \) is torsion for every finitely generated \(Y \in \text{Mod} \ R \).

Following [8], we call a ring \(R \) \(\tau \)-absolutely pure if it satisfies the equivalent conditions in Lemma 1.1. We call a homomorphism \(\pi : X \to Y \) a \(\tau \)-epimorphism if \(\text{Cok} \pi \) is torsion. Then we call a module \(X \) \(\tau \)-semicompact if for every inverse system of \(\tau \)-epimorphisms \(\{ \pi_{\lambda} : X \to Y_{\lambda} \}_{\lambda \in \Lambda} \) with each \(Y_{\lambda} \) torsionless, the induced homomorphism \(\lim_{\lambda} \pi_{\lambda} : X \to \lim_{\lambda} Y_{\lambda} \) is a \(\tau \)-epimorphism. Finally, we call a ring \(R \) left (resp. right) \(\tau \)-semicompact if \(R \) (resp. \(R \)) is \(\tau \)-semicompact.

Remarks. (1) The \(\tau \)-semicompactness is just the \(R \)-linear compactness, in the sense of Gómez Pardo [5], relative to Lambek torsion theory.

(2) Let \(\text{Mod} \ R/\tau \) denote the quotient category of \(\text{Mod} \ R \) over the full subcategory \(\text{Ker}(\text{Hom}_R(-, E(R))) \). Assume that the image of \(R \) in \(\text{Mod} \ R/\tau \) is linearly compact in the sense of Gómez Pardo [5]. Then \(R \) is left \(\tau \)-semicompact.

Theorem 1.2. For a ring \(R \) the following are equivalent.

(a) Every finitely generated submodule of \(E(R) \) is torsionless.
(b) \(\tau(X) = \text{Ker} \epsilon_X \) for every finitely generated \(X \in \text{Mod} \ R \).
(c) \(\text{Ext}^1(X, R) \) is torsion for every finitely generated \(X \in \text{Mod} \ R \).
(d) \(\text{Ext}^1(X, R) \) is torsion for every finitely generated \(X \in \text{Mod} \ R \).
(e) \(\text{Ext}^1(X, R) \) is torsion for every finitely generated \(X \in \text{Mod} \ R \).
(f) \(\text{Ext}^1(X, R) \) is torsion for every finitely generated \(X \in \text{Mod} \ R \).
(g) \(\text{Ext}^1(X, R) \) is torsion for every finitely generated \(X \in \text{Mod} \ R \).
(h) \(\text{Ext}^1(X, R) \) is torsion for every finitely generated \(X \in \text{Mod} \ R \).
(i) \(\text{Ext}^1(X, R) \) is torsion for every finitely generated \(X \in \text{Mod} \ R \).
(j) \(\text{Ext}^1(X, R) \) is torsion for every finitely generated \(X \in \text{Mod} \ R \).

Proof. (a) \(\iff \) (b). See Hoshino [7, Lemma 5].

(b) \(\iff \) (c). This is due essentially to Ohtake [14, Lemma 2.3]. Let \(0 \to Y \to F \to X \to 0 \) be an exact sequence in \(\text{Mod} \ R \) with \(F \) finitely generated free
and let \(\pi: Y^* \to \text{Ext}_R^1(X,R) \) denote the canonical epimorphism. Let \(h \in Y^* \) and form a push-out diagram:

\[
\begin{array}{ccc}
0 & \to & Y & \to & F & \to & X & \to & 0 \\
& & h & \downarrow & \downarrow & \downarrow & & & \\
0 & \to & R & \to & Z & \to & X & \to & 0.
\end{array}
\]

Since \(Z \) is finitely generated, \(\text{Ker } \varepsilon_x \) is torsion. Thus \(\phi^{**} \circ \varepsilon_R = \varepsilon_Z \circ \phi \) is monic, so is \(\phi^{**} \). Hence \((\text{Cok } \phi^*)^* \simeq \text{Ker } \phi^{**} = 0 \). Since \(\pi(h)R \) is an epimorphic image of \(\text{Cok } \phi^* \), \((\pi(h)R)^* = 0 \) and thus \(\text{Ext}_R^1(X,R) \) is torsion.

(c) \(\Rightarrow \) (b). Let \(X \in \text{Mod } R \) be finitely generated. Let \(Y \) be a submodule of \(\text{Ker } \varepsilon_x \) and let \(j: Y \to X \) denote the inclusion. Then \(j^* = 0 \) and \(Y^* \) embeds in \(\text{Ext}_R^1(X/Y,R) \). Thus \(Y^* \) is torsion, so that \(Y^* = 0 \). Hence \(\text{Ker } \varepsilon_x \) is torsion and \(\varepsilon(x) = \text{Ker } \varepsilon_x \).

(c) \(\Leftrightarrow \) (d). This is easily deduced from [8, Lemma 2.7].

Remark. The equivalence (a) \(\Leftrightarrow \) (d) of Theorem 1.2 would yield a result of Gómez Pardo and Guil Asensio [6, Theorem 2.2].

Corollary 1.3 (cf. Sumioka [20, Theorem 1]). Let \(R \) be left perfect. Then the following are equivalent.

(a) Every finitely generated submodule of \(\text{Ext}_R(X) \) is torsionless.

(b) \(R \) contains a faithful and injective left ideal.

Proof. (a) \(\Rightarrow \) (b). By Storrer [18] \(R \) contains an idempotent \(e \) with \(ReR \) a minimal dense right ideal. It is obvious that \(ReR \) is faithful. Since by Theorem 1.2 \(\text{Ext}_R^1(X,Re) \simeq \text{Ext}_R^1(X,R) \otimes ReR = 0 \) for every finitely generated \(X \in \text{Mod } R \), \(ReR \) is injective.

(b) \(\Rightarrow \) (a). Obvious.

Corollary 1.4. Let \(R \) be \(\tau \)-absolutely pure, left and right \(\tau \)-semicompact. Then both \(\text{Ker } \varepsilon_x \) and \(\text{Cok } \varepsilon_x \) are torsion for every finitely generated \(X \in \text{Mod } R \).

Proof. Let \(X \in \text{Mod } R \) be finitely generated. By Theorem 1.2 \(\text{Ker } \varepsilon_x \) is torsion. We know from the argument of Jans [9, Theorem 1.1] that \(\text{Cok } \varepsilon_x \simeq \text{Ext}_R^1(M,R) \) with \(M \in \text{Mod } R^{\text{op}} \) finitely generated. Thus again by Theorem 1.2 \(\text{Cok } \varepsilon_x \) is torsion.

Remark. Assume that \(R \) is a maximal left quotient ring of itself, i.e., \(E(R)/R \) is torsionfree. Then \(\text{Ext}_R^1(X,Y) = 0 \) for all torsion \(X \in \text{Mod } R \) and reflexive.
Corollary 1.5. Let R be τ-absolutely pure and left τ-semicompact. Then every finitely generated $X \in \text{Mod } R$ is τ-semicompact.

Proof. Let $X \in \text{Mod } R$ be finitely generated. Since every factor module of a τ-semicompact module is τ-semicompact, we may assume that X is free. Then the argument of [8, Lemma 2.7] applies.

2. Flat epimorphic extension rings. Throughout this section, Q stands for an extension ring of R.

The following lemmas seem to be known (cf. Silver [7], Lazard [11], Popescu and Spircu [15], Morita [13] and so on). However, for the benefit of the reader, we include proofs.

Lemma 2.1. The following are equivalent.

(1) The inclusion $R \to Q$ is a left flat epimorphism.
(2) $Q \otimes_R X = 0$ for every submodule X of Q/R.

Proof. (1) \Rightarrow (2). Obvious.

(2) \Rightarrow (1). Let $\pi : Q \otimes_R Q \to Q$ denote the multiplication map. Then $Q \text{Ker } \pi \simeq Q \otimes_R (Q/R) = 0$. Next, let $F_1 \to F_0 \to X \to 0$ be an exact sequence in $\text{Mod } R$ with each F_i finitely generated free and put $Y = \text{Im}(F_1 \to F_0)$. We have a sequence of embeddings $\text{Tor}_1^R(Q,X) \subset \text{Tor}_1^R(Q/R,X) \subset (Q/R) \otimes_R Y$. Let us form a pull-back diagram:

$$
\begin{array}{ccc}
(Q/R) \otimes_R F_1 & \to & (Q/R) \otimes_R Y \\
\uparrow & & \uparrow \\
Z & \to & \text{Tor}_1^R(Q,X).
\end{array}
$$

Since $(Q/R) \otimes_R F_1$ is isomorphic to a finite direct sum of copies of Q/R, it follows by induction that $Q \otimes_R Z = 0$. Thus, since $Q \otimes_R Q \simeq Q$ canonically, $\text{Tor}_1^R(Q,X) \simeq Q \otimes_R \text{Tor}_1^R(Q,X) = 0$.

Lemma 2.2. The following are equivalent.

(1) Q is a left quotient ring of R.
(2) (a) $Q \otimes_R (Q/R)$ is torsion.
(b) $Q \text{Tor}_1^R(Q,X)$ is torsion for every $X \in \text{Mod } R$.

Proof. Note that $\text{Hom}_R(Q \otimes_R (Q/R), E(Q)) \simeq \text{Hom}_R(Q/R, \text{Hom}_R(Q_R, E(Q)))$,
and that $\text{Hom}_Q(\text{Tor}^R(Q,X), E(Q)) \cong \text{Ext}_R^1(X, \text{Hom}_Q(QR, E(Q)))$ for every $X \in \text{Mod} R$.

(1) \Rightarrow (2). Obvious.

(2) \Rightarrow (1). It follows that $\text{Hom}_Q(QR, E(Q))$ is injective. Thus $E(Q)$ embeds in $\text{Hom}_Q(QR, E(Q))$. It then follows that $\text{Hom}_R(Q/R, E(Q)) = 0$.

The next lemma generalizes results of Cateforis [2, Proposition 2.2] and Masaike [12, Proposition 3] (cf. also Morita [13, Theorem 7.2]).

Lemma 2.3. The following are equivalent.

(1) The inclusion $R \to Q$ is a left flat epimorphism.

(2) (a) Q is a left quotient ring of R.

(b) $Q \otimes_R X$ is torsionfree for every submodule X of R.

Proof. (1) \Rightarrow (2). By Lemma 2.2 (a) follows. It is obvious that (b) holds.

(2) \Rightarrow (1). Let Y be a submodule of Q/R. Since R is torsion, so is $Q \otimes_R Y$. Next, let us form a pull-back diagram:

$$
\begin{array}{ccc}
0 & \to & R \\
\| & & \| \\
0 & \to & R \oplus X \to Y \to 0,
\end{array}
$$

where $j: R \to Q$ is an inclusion. Since $Q \otimes_R j$ is a split monomorphism, so is $Q \otimes_R Y$. Thus $Q \otimes_R X$ is torsionfree, so that $Q \otimes_R Y = 0$. By Lemma 2.1 the assertion follows.

Lemma 2.4. The following are equivalent.

(1) (a) Q is a maximal left quotient ring of R.

(b) $E(Q)$ is an injective cogenerator in $\text{Mod} Q$.

(2) (a) Q/R is torsion.

(b) $Q \otimes_R X = 0$ for every torsion $X \in \text{Mod} R$.

Proof. (1) \Rightarrow (2). Obvious.

(2) \Rightarrow (1). By Lemma 2.1 the inclusion $R \to Q$ is a left flat epimorphism. Thus by Lemma 2.2 Q is a left quotient ring of R. Next, let $X \in \text{Mod} Q$ be torsion. Then $R X$ is torsion and thus $Q \otimes Q \otimes_R X = 0$. Hence $E(Q)$ is an injective cogenerator in $\text{Mod} Q$, so that Q is a maximal left quotient ring of R.

3. Flatness of the injective envelope. Throughout this section, Q stands for a left quotient ring of R.

Lemma 3.1. Let R be left τ-noetherian and let $X \in \text{Mod } R$ be flat. Then $Q \otimes_R X$ is torsionfree.

Proof. Let I be a dense left ideal of R. By Faith [4, Proposition 3.1] I contains a finitely generated subideal J with I/J torsion. Then R/J is finitely presented torsion, so that $\text{Hom}_R(R/J, Q \otimes_R X) \simeq \text{Hom}_R(R/J, Q) \otimes_R X = 0$. Thus $R Q \otimes_R X$ is torsionfree, so is $Q \otimes_R X$.

Corollary 3.2. Let R be left τ-noetherian. Let $n \geq 1$ and let $X \in \text{Mod } R$ with weak dim $\Lambda X \leq n$. Then $\text{Tor}^R_n(Q, X) = 0$.

Proof. Let $\cdots \to F_1 \to F_0 \to X \to 0$ be an exact sequence in $\text{Mod } R$ with each F_i free and put $Y = \text{Cok}(F_{n+1} \to F_n)$. Then Y is flat and thus by Lemma 3.1 $Q \otimes_R Y$ is torsionfree. On the other hand, by Lemma 2.2 $Q \text{Tor}^R_n(Q, X)$ is torsion. It follows that $\text{Tor}^R_n(Q, X) = 0$.

Lemma 3.3. Let $X \in \text{Mod } Q$ with $Q \otimes_R X$ torsionfree. Then $Q \otimes_R X \simeq Q X$ canonically.

Proof. Let $\pi: Q \otimes_R X \to X$ denote the canonical epimorphism. Then $R \text{Ker } \pi \simeq_R (Q/R) \otimes_R X$ is torsion, so is $Q \text{Ker } \pi$. It follows that $\text{Ker } \pi = 0$.

Proposition 3.4. Let R be left τ-noetherian. Then every $X \in \text{Mod } Q$ with $R X$ flat is flat. In particular, $E(Q)$ is flat whenever $E(R)$ is.

Proof. Let $X \in \text{Mod } Q$ with $R X$ flat. Then by Lemmas 3.1 and 3.3 $Q \otimes_R X \simeq Q X$ canonically. Since both $\otimes_R Q$ and $\otimes_R X$ are exact, so is $\otimes_R X$.

Proposition 3.5. For a ring R the following are equivalent.

(1) Arbitrary direct products of copies of $E(R)$ are flat.

(2) R is τ-absolutely pure and right τ-coherent.

Proof. (1) \Rightarrow (2). By Hoshino and Takashima [8, Lemma 1.4] R is τ-absolutely pure. Next, let $0 \to M \to F \to R$ be an exact sequence in $\text{Mod } R^{op}$ with F finitely generated free. By Colby and Rutter [3, Theorem 1.3] M contains a finitely generated submodule N with $(M/N) \otimes_R E(R) \simeq 0$. It suffices to show that M/N is torsion. For an $L \in \text{Mod } R^{op}$, there exists a natural homomorphism $	heta_L: L \otimes_R E(R) \to \text{Hom}_R(L^*, E(R))$ such that $\theta_L(x \otimes y)(z) = \alpha(x)y$ for $x \in L$, $y \in E(R)$ and $\alpha \in L^*$. Now, let L be a cyclic submodule of M/N and let $\pi: R \to L$ be epic in $\text{Mod } R^{op}$. Since $\theta_L \circ (\pi \otimes_R E(R))$
\(= \text{Hom}_R(\pi^*, E(R)) \cdot \theta_R \) is epic, so is \(\theta_L \). Note that \(L \otimes_R E(R) = 0 \). Thus \(\text{Hom}_R(L^*, E(R)) = 0 \) and hence \(L^* = 0 \). It follows that \(M/N \) is torsion.

(2) \(\Rightarrow \) (1). See Hoshino and Takashima [8, Proposition 1.6].

4. Quasi-Frobenius quotient rings. In this section, we provide a necessary and sufficient condition for an extension ring \(Q \) of \(R \) to be a quasi-Frobenius maximal two-sided quotient ring of \(R \).

Lemma 4.1. Let \(R \) be left \(\tau \)-noetherian and let \(Q \) be a maximal left quotient ring of \(R \). Assume that weak \(\dim R \leq 1 \). Then the inclusion \(R \rightarrow Q \) is a ring epimorphism.

Proof. We claim that \((Q/R) \otimes_R Q = 0 \). Let \(I \) be a dense left ideal of \(R \). By Faith [4, Proposition 3.1] \(I \) contains a finitely generated subideal \(J \) with \(I/J \) torsion. Note that \(J \) is also a dense left ideal of \(R \). It follows that \((Q/R)_R \) is an epimorphic image of the direct sum \(\oplus \text{Hom}_R(R/J, Q/R)_R \), where \(J \) runs over all finitely generated dense left ideals of \(R \). Let \(J \) be a finitely generated dense left ideal of \(R \). Since \(\text{Hom}_R(R/J, Q/R)_R \simeq \text{Ext}_R^1(R/J, Q/R) \), we have only to show that \(\text{Ext}_R^1(R/J, Q/R) = 0 \). For an \(X \in \text{Mod } R \), there exists a natural homomorphism

\[\delta_X : X^* \otimes_R Q \rightarrow \text{Hom}_R(X, Q) \]

such that \(\delta_X(\alpha \otimes q)(x) = \alpha(x)q \) for \(\alpha \in X^*, q \in Q \) and \(x \in X \). As we remarked in [8], there exists an epimorphism \(\pi : X \rightarrow J \) with \(X \) finitely presented and \(\ker \pi \) torsion. Note that by Auslander [1, Proposition 7.1] \(\delta_X \) is monic. Since \(\pi^* \) is an isomorphism, \(\text{Hom}_R(\pi, Q) \circ \delta_X = \delta_X \circ (\pi^* \otimes_R Q) \) is monic, so is \(\delta_J \). Next, let \(j : J \rightarrow R \) denote the inclusion. Since \(\text{Hom}_R(j, Q) \) is an isomorphism, so is \(\text{Hom}_R(j, Q) \circ \delta_R = \delta_j \circ (j^* \otimes_R Q) \). Thus \(\delta_j \) is epic. Hence \(\delta_j \) is an isomorphism, so is \(j^* \otimes_R Q \). It follows that \(\text{Ext}_R^1(R/J, R) \otimes_R Q \simeq \text{Cok}(j^* \otimes_R Q) = 0 \).

In case \(Q = R \), the next theorem is due to Faith [4, Corollary 5.4].

Theorem 4.2. For an extension ring \(Q \) of \(R \) the following are equivalent.

1. \(Q \) is a quasi-Frobenius maximal two-sided quotient ring of \(R \).
2. (a) \(R \) is left \(\tau \)-noetherian.
 (b) \(RQ/R \) is torsion.
 (c) \(Q_R \) is injective.

Proof. (1) \(\Rightarrow \) (2). Obvious.
(2) \(\Rightarrow \) (1). For an \(X \in \text{Mod } R \), there exists a natural homomorphism
such that $\theta_x(q \otimes x)(x) = qx(x)$ for $q \in Q$, $x \in X$ and $x \in X^*$. Since Q_R is injective, θ_x is an isomorphism for every finitely presented $X \in \text{Mod} \ R$. Let I be a dense left ideal of R. By Faith [4, Proposition 3.1] I contains a finitely generated subideal J with I/J torsion. Then R/J is finitely presented torsion, so that $Q \otimes R(R/J) \simeq \text{Hom}_R((R/J)^*, Q) = 0$. Thus $Q \otimes R(R/I) = 0$. It follows that $Q \otimes R X = 0$ for every torsion $X \in \text{Mod} \ R$. Hence by Lemma 2.4, Q is a maximal left quotient ring of R, and $E(QQ)$ is an injective cogenerator in $\text{Mod} \ Q$. Thus by Lemma 2.1 Q_R is flat as well as injective, so that $E(R_R)$ is flat. Hence by Hoshino and Takashima [8, Proposition 1.7] and Masaike [12, Proposition 2] Q is a right quotient ring of R. It follows that Q is a right selfinjective maximal right quotient ring of R. On the other hand, since R is left τ-noetherian, so is Q. Thus Q is left noetherian. Hence by Faith [4, Theorem 2.1] Q is quasi-Frobenius.

Corollary 4.3. Let R be left and right noetherian and let Q be a maximal left quotient ring of R. Then the following are equivalent.

1) Q is a quasi-Frobenius maximal two-sided quotient ring of R.

2) RQ is flat and $\text{inj dim } RQ \leq 1$.

Proof. (1) \Rightarrow (2). By Lemma 2.3 RQ is flat. Also, RQ is injective by Lambek [10, §5].

(2) \Rightarrow (1). By Lemmas 4.1 and 2.2 Q is a right quotient ring of R. Next, we claim that RQ is injective. Since

$$\text{Tor}_2^R(E(R_R), X) \simeq \text{Hom}_R(\text{Ext}_R^2(X, R), E(R_R))$$

$$\simeq \text{Hom}_R(\text{Ext}_R^2(X, R), \text{Hom}_Q(RQ, E(QQ)))$$

$$\simeq \text{Hom}_Q(\text{Ext}_R^2(X, R) \otimes RQ, E(QQ))$$

$$\simeq \text{Hom}_Q(\text{Ext}_R^2(X, Q), E(QQ))$$

$$= 0$$

for every finitely generated $X \in \text{Mod} \ R$, we have weak dim $E(R_R) \leq 1$. Thus by Hoshino [7, Propositions F and C] every finitely generated submodule of $E(R_R)$ is torsionless. Let $X \in \text{Mod} \ R$ be finitely generated. Since by Theorem 1.2 $X/\tau(X)$ is torsionless, there exists an exact sequence $0 \to X/\tau(X) \to F \to Y \to 0$ in $\text{Mod} \ R$ with F free. Thus $\text{Ext}_R^1(X, Q) \simeq \text{Ext}_R^1(X/\tau(X), Q) \simeq \text{Ext}_R^2(Y, Q) = 0$. Hence RQ is injective and by Theorem 4.2 the assertion follows.

Remark. Let R be left noetherian and let $X \in \text{Mod} \ R$ be flat. Then $\text{Ext}_R^i(Y, R) \otimes X \simeq \text{Ext}_R^i(Y, X)$ for all $i \geq 0$ and finitely generated $Y \in \text{Mod} \ R$, so that $\text{inj dim } RX \leq \text{inj dim } R$. Thus, together with Lemma 2.3, Corollary 4.3 would
yield a result of Sato [16, Theorem].

5. Appendix. Throughout this section, \(Q \) stands for an extension ring of \(R \). We make some remarks on submodules of \(Q_R \).

The argument of Sumioka [19, Proposition 6] suggests the following lemma.

Lemma 5.1. The following are equivalent.

1. \(Q \) is a left quotient ring of \(R \).
2. (a) \(RQ/R \) is torsion.

 (b) \(R \cap I \neq 0 \) for every nonzero two-sided ideal \(I \) of \(Q \).

Proof. (1) \(\Rightarrow\) (2). Obvious.

(2) \(\Rightarrow\) (1). Put \(QE = \text{Hom}_R(RQ, E(R)) \). Then \(RE \simeq E(R) \) canonically, so that the composite of ring homomorphisms \(\text{End}(E(R)) \to \text{End}(QE) \to \text{End}(RE) \) is an isomorphism. Thus \(\text{End}(QE) \simeq \text{End}(RE) \) and hence \(\text{Biend}(QE) = \text{Biend}(RE) \). Let \(\phi: Q \to \text{Biend}(QE) \) denote the canonical ring homomorphism. Since \(RE \) is faithful, \(R \cap \ker \phi = 0 \) and thus \(\ker \phi = 0 \). Since \(\text{Biend}(RE) \) is a maximal left quotient ring of \(R \), the assertion follows.

Lemma 5.2 (cf. Masaike [12, Proposition 2]). Assume that \(Q \) is a right quotient ring of \(R \). Let \(M \) be a submodule of \(Q_R \) containing \(R \) and put \(I = \{ a \in R | aM \subset R \} \). Then \(M \) is torsionless if and only if \((R/R/I)^* = 0 \).

Proof. Let \(j: R_R \to M_R \) denote the inclusion. Then \(j \) is an essential monomorphism, so that \(\ker \varepsilon_M = 0 \) if and only if \(\ker j^* = 0 \). It suffices to show that \(\ker j^* \simeq (R/R/I)^* \). Identify \((R,R/R)^* \) with \(R \). We claim that \(\text{Im} j^* \). It is obvious that \(I \subset \text{Im} j^* \). Conversely, let \(h \in M^* \). Since \(E(Q_R)_R \simeq E(R_R) \) is injective, \(h \) extends to some \(\phi: Q_R \to E(Q_R)_R \). It is easy to see that \(\phi \) is \(Q \)-linear. Thus \(h(1)x = \phi(1)x = \phi(x) = h(x) \in R \) for all \(x \in M \) and hence \(j^*(h) = h(1) \in I \).

For an \(M \in \text{Mod } R^{op} \), there exists a natural homomorphism

\[
\eta_M: M \to \text{Hom}_Q(\text{Hom}_R(M, Q), Q)
\]

such that \(\eta_M(x)(a) = a(x) \) for \(x \in M \) and \(a \in \text{Hom}_R(M, Q) \), and for an \(X \in \text{Mod } R \) there exists a natural homomorphism

\[
\xi_X: X^* \to \text{Hom}_Q(Q \otimes_R X, Q)
\]

such that \(\xi_X(a)(q \otimes x) = qa(x) \) for \(x \in X^* \), \(q \in Q \) and \(x \in X \). Also, for \(L, M \in \text{Mod } R^{op} \) there exists a natural homomorphism

\[
\delta_{L,M}: L \otimes_R M^* \to \text{Hom}_R(M, L)
\]
such that $\delta_{L,M}(x \otimes x)(y) = x \otimes y$ for $x \in L$, $x \in M^*$ and $y \in M$.

For each $M \in \text{Mod } R^{op}$, we have a commutative diagram:

$$
\begin{array}{c}
M \xrightarrow{\eta_M} \text{Hom}_Q(\text{Hom}_R(M,Q),Q) \\
\downarrow \epsilon_M \quad \downarrow \text{Hom}_Q(\delta_{Q,M},Q) \\
M^{**} \xrightarrow{\gamma_M} \text{Hom}_Q(Q \otimes_R M^*,Q)
\end{array}
$$

which yields the following lemma.

Lemma 5.3. Let $M \in \text{Mod } R^{op}$. Assume that both η_M and $\text{Hom}_Q(\delta_{Q,M},Q)$ are monic. Then M is torsionless.

Also, for each $M \in \text{Mod } R^{op}$, we have a commutative diagram with exact rows:

$$
\begin{array}{c}
R \otimes_R M^* \to Q \otimes_R M^* \to (Q/R) \otimes_R M^* \to 0 \\
\downarrow \delta_{R,M} \quad \downarrow \delta_{Q,M} \quad \downarrow \delta_{Q,R,M} \\
0 \to \text{Hom}_R(M,R) \to \text{Hom}_R(M,Q) \to \text{Hom}_R(M,Q/R).
\end{array}
$$

Note that, in case M is finitely generated, $\text{Hom}_R(M,Q/R)$ embeds in a direct sum of copies of RQ/R. Thus Snake lemma yields the following two lemmas.

Lemma 5.4. Assume that RQ/R is torsion. Then both $R\text{Ker} \delta_{Q,M}$ and $R\text{Cok} \delta_{Q,M}$ are torsion for every finitely generated $M \in \text{Mod } R^{op}$.

Lemma 5.5. Assume that the inclusion $R \to Q$ is a left flat epimorphism. Then $\delta_{Q,M} \approx Q \otimes_R \delta_{Q,M}$ is an isomorphism for every finitely generated $M \in \text{Mod } R^{op}$.

We are now in a position to formulate results of Masaike [12] as follows.

Proposition 5.6 (Masaike [12]). For an extension ring Q of R the following hold.

1. If Q is a left quotient ring of R, every finitely generated submodule of Q_R is torsionless.
2. If the inclusion $R \to Q$ is a left flat epimorphism, every finitely generated submodule of Q_R embeds in a free module.
3. Assume that Q is a right quotient ring of R. Then Q is a left quotient ring of R if and only if every finitely generated submodule of Q_R is torsionless.

Proof. (1) By Lemmas 5.3 and 5.4.
(2) By Lemma 5.5.
(3) By Lemmas 5.1 and 5.2.

References

Institute of Mathematics
University of Tsukuba
Ibaraki, 305
Japan