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Introduction

This paper is written about the property (DF) on regular rings whose maximal

right quotient rings are Type If. Hereafter regular rings whose maximal right

quotient rings are Type If are said to satisfy (*). The property (DF) is very

important property when we study on regular rings satisfying (*), and it was

treated in the paper [5] written by the first author, where (DF) for a ring R is

defined as that if the direct sum of any two directly finite projective /^-modules

is always directly finite. In the above paper, the equivalent condition that a regular

ring R of bounded index satisfies (DF) was discovered and called (#). Stillmore,

we proved that the condition (DF) is equivalent to (#) for regular rings whose

primitive factor rings are artinian in the paper [6]. Then we have the problem

that (DF) is equivalent (#) for regular rings satisfying (*) or not, where the condition

(*) is weaker than one that primitive factor rings are artinian.

In § 2, we shall prove Theorem 2.4. This is important, and using this, Theorem

2.5 (i.e. if R is a regular ring satisfying (*) and k is any positive integer, then kP

is directly finite for every directly finite projective Tΐ-module P) is proved. Moreover,

we shall solve the above problem in Theorem 2.11.

In § 3, we shall consider some applications of Theorem 2.11. We prove Theorem

3.3 that if R is a regular ring satisfying (*) whose maximal right quotient ring of

R satisfies (DF), then so does R. Though it is clear that a regular rings satisfying

(*) which has a nonzero essential socle satisfies (DF), we can prove that, for regular

rings satisfying (*), the condition having a nonzero essential socle is not equivalent

to (») in Example 3.4. Next, we shall consider that (ΠfR)/(®R) satisfies (DF)

or not for a regular ring R satisfying (*). This problem is a generalization of

Example 3.4, and we prove that, for a regular ring R of bounded index,

(TL?R)/(®R) satisfies (DF) (Theorem 3.9).

Throughout this paper, R is a ring with identity and ^-modules are unitary

right ^-modules.
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1. Definitions and notations

DEFINITION 1. A ring R is (Von Neumann) regular provided that for every
xeR there exists yεR such that xyx=x.

NOTE. Every projective modules over regular rings have the exchange property.

DEFINITION 2. A module M is directly finite provided that M is not isomorphic
to a proper direct summand of itself. If M is not directly finite, then M is said
to be directly infinite. A ring R is said to be directly finite (resp. directly infinite)
if so is R as an ^-module.

DEFINITION 3. The index of a nilpotent element x in a ring R is the least
positive integer such that xn = Q (In particular, 0 is nilpotent of index 1). The
index of a two-sided ideal / of R is the supremum of the indices of all nilpotent
elements of /.
If this supremum is finite, then / is said to have bounded index. If / does not
have bounded index, J is said to be index oo.

NOTE. Let R be a regular ring with index oo. Then using [3, the proof of
Lemma 2], there exists a family {An}£L! of independent right ideals of R such that An

contains a direct sum of n nonzero pairwise isomorphic right ideals. Therefore
R has a family {£«./}jj= 1,2,- °f idempotents such that

e2ίR~e22R

, where eιy = 0 (/</), and {e^,---,^} are orthogonal for all i.

DEFINITION 4. A ring R has (DF) if the direct sum of two directly finite
projective ^-modules is directly finite.

DEFINITION 5. A regular ring R is abelian provided all idempotents in R are
central.

DEFINITION 6. A ring R satisfies (*) if every nonzero two-sided ideal of R
contains a nonzero two-sided ideal of bounded index.

DEFINITION 7. A ring R is unit-regular provided that for each x e R there is a
unit ueR such that xux = x.
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NOTE. Every finitely generated projective module over a unit-regular ring has
the cancellation property ([2, Theorem 4.14]).

DEFINITION 8. Let e be an idempotent in a regular ring R. Then e is called
an abelian idempotent (of R) whenever the ring eRe is abelian.

DEFINITION 9. Let e be an idempotent in a regular right self-injective ring

R. Then e is faithful (in R) if 0 is the only central idempotent of R which is
orthogonal to e. A regular right self-injective ring R is said to be Type I provided

that it contains a faithful abelian idempotent, and R is Type If if R is Type /

and directly finite.

NOTE. It is well-known from [4, Theorem 2] and [2, Lemma 7.17] that

a regular ring R satisfies (*) if and only if the maximal right quotient ring of R

is Type If.

NOTE. Let R be a regular ring satisfying (*). If P is a finitely generated

projective Λ-module, then EndR(P) is a regular ring satisfying (*).

Proof. Choose a positive integer n and an idempotent matrix eeMn(R) such

that e(nRR)~P. Then Er\dR(P)~eMn(R)e. Using [2, Corollary 10.5], we see that

eMn(Q(R))e~Q(eMn(R)e) is Type If9 where Q(R) is the maximal right quotient of

R. Since eMn(R)e^eQ(eMn(R)e) as an eMwCR)e-module, we have that eMn(R)e
satisfies (*), and so has EnάR(P).

NOTATIONS. Let A, B and Ai (/e/) be ^-modules, and A: be a positive
integer. Take xeTlAt. Then we have some notations as following.

A<B A is a submodule of B.

A<B B has a submodule isomorphic to A.
A<®B A is a direct summand of B.

A<@B B has a direct summand isomorphic to A.

A < eB A is an essential submodule of B.

A<eB B has an essential submodule isomorphic to A.

kA the fc-copies of A.

x(i) the i-th component of x.

Q(R) the maximal right quotient ring of R.

2. The property (DF) for regular rings satisfying (*)

Lemma 2.1 ([2, Theorem 6.6]). Let R be a regular ring whose primitive

factor rings are artinian. Then R satisfies (*).
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Lemma 2.2. Let R be a regular ring satisfying (*). Then there exist

abelian regular rings {St}teT and orthogonal central idempotents {et}teT of R

such that RR<e[UMn(t)(StKR, ®Mn(t)(St)£R and etR = Mn(t}(St). Therefore Q(R)~

ΠMn(t)(Q(St)).

Proof. This theorem follows from [2, Lemma 7.17 and the proof of Theorem

7.18].

Lemma 2.3. Let R be a regular ring of bounded index and P be a finitely

generated projective R-module. Then P can not contain a family {AlyA2, " } of

nonzero finitely generated submodules such that Ai>Ai+l and iAt<P for each

1=1,2,.-.

Proof. By [2, Corollary 7.13], we see that EndR(P) has bounded index. Note

the claim in the proof of [2, Theorem 6.6], and applying [5, Lemma 5] to EndR(P)9

we see that this lemma holds.

Theorem 2.4. Let R be a regular ring satisfying (*), and P be a projective

R-module with a cyclic decomposition P=@ieIPi. Then the following conditions

(a)~(d) are equivalent:

(a) P is directly infinite.

(b) There exists a nonzero cyclic projective R-module X such that X0X<P.

(c) There exists a nonzero cyclic projective R-module X such that X<>

θί6/-{ilf....in}Λ/^ any finite subset {/15 •••,/„} of I.
(d) There exists a nonzero cyclic projective R-module X such that

Proof. It is clear that (a) -» (b) and (c) -> (d) -» (a) hold, hence we shall prove that

(b)-»(c) holds. We may assume ®Mn(t)(St)<RR<e[nMn(t)(St}]R for some set of

abelian regular rings {St}tGT by Lemma 2.2. Now we assume that (b) holds, hence

there exists a nonzero principal right ideal X of R such that K 0X< P. Let {* 1? , /„}

be a subset of 7 and set / = /-{/1,-,ill}. Since ®Mn(t)(St)<RR<e[ΠMn(t)(St^R9

there exists tΈT such that r=[(Πί#tΌ)xMπ(O(5'ί)]nAΓ^0. By the property of

regular ring, it is clear that Y is a principal right ideal of R. Then K 0^^

P, hence Y<®P. Thus for each ιe/, we have decompositions Pt = Pl®P\l)

and ^^Λ 1θ ΘΛvl®(©ier^). Set (Tlt*t,G)xMn(tΊ(St,) = S, and then there exists
a central idempotent e in R such that eR = S.

Note that S is a regular ring of bounded index. It is clear that

and 2Y®RSS<P®RSS. Since S is unit-regular, Y®RSS has the cancellation

property. Hence
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ϊΘ Θί̂

Thus for each i, we obtain that P\i}®RSs=Pf®F(-2} for each iel and

Continuing this procedure, we have that Pjm) = JP?'+10Jp(m+1) and

for each iel and each positive integer m.

Now we set ^w = P^e 0jP^, where ^ι=(/>/1®ΛS)Θ Θ(Λ!L®jιS) τhen

^ι^Θ^2®(®i€/'Λ^ hence there exist a direct summand B2 of ^42 and a direct
summand Qf of Pf such that Al~B2®(®ieΓQf). Continuing this procedure, we
obtain a family {Bί9B29 } (Aί=Bί) of finitely generated projective S-submodules

of (/^Θ θjPJ®*5 such that Bm>Bm+i and mBm<nS for all m. By Lemma
2.3, there exists a positive integer k such that £m = 0 for all m (^k). Thus we

have that Λι^(Θie/'β?)Θ Θ(Θfej'βί) and Ήg^S's^e^ρ^e ΘίΘ^'δfr
Noting that O^F<5', we have that YR<®ieΓPi.

Corollary 2.5. Let R be a regular ring satisfying (*). Then R contains no
infinite direct sums of nonzero pairwise isomorphic right ideals. Hence R is
directly finite.

Proof. From Lemma 2.2, we may assume that, RR < eTIMn(t)(St) for some
abelian regular rings {Sf}feΓ. Set T= HMn(t)(St). Now we assume that R contains a

direct sum of nonzero pairwise isomophic right ideals, and so there exists a nonzero
idempotent e of R such that Q=£X0(eR)<RR. Then K 0(eR)®RT<R®RT,
and so K0(eΓ)<Γ, which contradicts to Theorem 2.4 because T is a directly
finite regular ring satisfying (*).

Theorem 2.6. Let R be a regular ring satisfying (*) and k be a positive
integer. If P is a directly finite projective R-module, then so is kP.

Proof. We may assume that ®Mn(t}(St)<RR<e[ΠMn(t](St)']R for some abelian
regular rings [St}teT, and let P=φieIPi be a cyclic decomposition of P. It is

sufficient to prove that this theorem holds in case k = 2. Assume that 2P is directly
infinite. Then Theorem 2.4 follows that there exists a nonzero principal right

ideal X of R such that X<®ieI_(i^...tin}2Pi for any finite subset {/i, •••,!„} of /. By
the proof of Theorem 2.4, we may assume that exists t' of T such that

Ar<(Πί^ίΌ)xMπ(r)(S'ί') = Sr. For any finite subset {/i, •••>*«} of Λ we have that
Q^X®RSs<®ieI-{ili...>in}(2Pi®RS). Since S is a regular ring of bounded index,

we see that 2(P®RS)S is directly infinite by Theorem 2.4 and so (P®RS)S is directly
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infinite by [5, Theorem 4]. Moreover, using Theorem 2.4 again, there exists a

nonzero principal right ideal Y of S such that ϊΓ;SΘje/-{i1,...fjn>(Λ®jA) for any
finite subset {ii9 9in} of/. Considering Y as an Λ-module, Oφ YR£®ι-{ilt...tin}Pi.
Therefore P is directly infinite, and so this theorem is complete.

Corollary 2.7. Let R be a regular ring satisfying (*). Then every finitely

generated projective R-module is directly finite.

Proof. It is clear by Corollary 2.5 and Theorem 2.6.

Corollary 2.8. Let R be a regular ring satisfying (*).

(a) Mn(R) is directly finite for all positive integer n, and so Mn(R) contains no
infinite direct sums of nonzero pairwise isomorphic right ideals.

(b) If P and Q are finitely generated projective R-modules, then P®Q is directly
finite.

Proof, (a) R is a regular ring satisfying (*), and hence so is Mn(R). Therefore
Corollary 2.5 shows that (a) holds, (b) follows from Corollary 2.7.

NOTE. In [1], Chuang and Lee have shown that there exists a regular ring
satisfying (*) which is not unit-regular. Our Corollary 2.8 gives a partially solution

for open problems 1 and 9 in GoodearΓs book ([2]).

DEFINITION. Let R be a regular ring and P be a projective /^-module. We
call that P satisfies (If) provided that, for each nozero finitely generated submodule

/ of P and any family {Al9Bl9 } of submodules of P with

there exists a nonzero projective /^-module A' such that X< φ^^j or X< ®f=mB for
any positive integer m.

Lemma 2.9 ([5, Lemma 6]). Let P be a nonzero finitely generated projective
module over a regular ring R, and set T= EndΛ(P). Then the following conditions
are equivalent

(a) P satisfies (it).
(b) T satisfies (#) as a T -module.

Lemma 2.10 ([5, Lemma 7]). Let P be a nonzero finitely generated projective
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module over a regular ring R9 and set T= EndR(P). Then the following conditions
are equivalent:

(a) R satisfies (#) as an R-module.
(b) All nonzero finitely generated project ive R-modules satisfy (#).
(c) For any positive integer k, kR satisfies (it).
(d) There exists a positive integer k such that kR satisfies (#).

Theorem 2.11. Let R be a regular ring satisfying (*). Then the following
conditions are equivalent

(a) R has (DF).
(b) R satisfies (#) as an R-module.
(c) For any nonzero finitely generated projecti ve R-module P9 EndR(P) has (DF).
(d) For any positive integer k, Mk(R) has (DF).
(e) There exists a positive integer k such that Mk(R) satisfies (DF).

Proof. Note that EndR(P) is a regular ring with (*). [5, Theorem 8] was
proved only using [5, Theorem 2]. Now [5, Theorem 2] holds on a regular ring
satisfying (*) by Theorem 2.4. Hence we see that this theorem holds under this
condition using the similar proof of [5, Theorem 8] (Note that the unit-regularlity
is not needed).

3. Some applications

Lemma 3.1. Let R be a regular ring satisfying (*), and let {e^ be a set of nonzero
orthogonal central idempotents of R such that ®eιRR<eRR. Then R has (DF)
if and only if efi has (DF) for all i.

Proof. Note that etR is a ring direct summand of R. It is clear from Theorem
2.11 that "only if part holds. We shall prove that "if part holds. Let / be a
nonzero direct summand of R, and so e^n/^O for some i. Setting J=etRnI,
J is a principal right ideal of both R and e{R. We consider decompositions

f°r each y= 1,2, •••,

and so there exist decompositions of / such that
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j and Dj<®Bj for each y=l,2,— .

By the assumption, there exists a nonzero cyclic projective ^jR-module X such
that X£(&JLmCj or X<®f=mDj for each positive integer m. Hence X®

®T=m(Cj®ReίR) or ATΘ^Λ^Θ^J^®^/?). Note that Θ^JC,® **,
θj°= ,*Λ; and ®JLm(Dj®RetR) £ θ j°=m£," Therefore X® RetR < ®f=mAj or X®RetR
<®j"=mBj. Since Afφj^jR^O, this lemma has proved by Theorem 2.11.

Lemma 3.2 ([6, Proposition 2.1]). Let R be an abelian regular ring. If Q(R)
has (DF), then so has R.

Theorem 3.3. Let R be a regular ring satisfying (*). If Q(R) has (DF),
then so does R.

Proof. By Lemma 2.2, we may assume that there exists a set {St} of abelian
regular rings such that RR < e[ΠMH(t^St)']. Then Q(R) = ΠMn(t)Q(St). Assume that
Q(R) has (DF), then so does Mn(t)(Q(St)) for all t by Lemma 3.1. Moreover, Theorem
2.11 shows that Q(St) also has (DF), hence so has St by Lemma 3.2. Thus Mn(t)(St)
also has (DF) by Theorem 2.11. There exists the set {et} of orthogonal central
idempotents of R such that etR = Mn(t}(St)x [ΠίgtίΌ] and φetR<eRR. Therefore
R has (DF) by Lemma 3.1.

Now we shall give an example of a regular ring with a zero socle satisfying

(*) which has (DF), as following.

EXAMPLE 3.4. Let F be a field, and set R = Π?LίFi(Fi=F) and R = R/soc(R).
Then R is a regular ring satisfying (*) which has (DF).

Proof. Since it is clear that R is a regular ring satisfying (*), we shall prove
that R has (DF) using Theorem 2.11. Let Ψ be the natural map from R to R, and
let / be a nonzero direct summand of R with following decompositions:

I=A1@Bί

for ι=l,2, .

Now assume that there does not exist {C,-} (Cj=Aj for some ί) which is an infinite
subset of {Λjίi! such that Cj>Cj+ί and C^O for ally. Let {Dp} (Dp = A( for
some /) be an infinite decreasing sequence of {Λj, and so there exists a
positive integer p' such that Dp = Q (p^p') Hence Q = Dp, = Ail for some
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ι l β Thus 5^/0. Next, we take {Eq} (Eq = Ai for some i) which is an infinite
decreasing sequence of {Λj, where Eq<Btl and Bkq<Btl (Akq = Eq) for all positive
integer q. Similarly, there exists a positive integer q' such that Eq = 0 (#' ̂  q). Hence
there exists a positive integer /2 (/2 > /J such that ls^ = Ai2 = 0. Therefore J9ί2 + 0 and

Continuing this procedure, we can get an infinite set {Bik} such that
[Bik] and Bik^Q for all fc. From the above, we may assume that there

exists an infinite decreasing sequence {C,-} such that {At} ID {C,-}, Cj>Cj+1 and
Cj /0 for all/
We have a set {e,-} of idempo tents of R such that λ¥(ejR) = Cj and ejR^ej+ίR for all
y. We take an idempo tent f^ee^R) with dimJ?(/lJR)=l. Next we take an
idempo tent f2(^e2R) such that dimF(/2/?)=l and /ι/2 = 0. Continuing this
procedure, we can take a set {/}} of orthogonal idempotents of /?. Set e = V/},
and then Ψ(e)^0. We have that eR = J®(eRr^ejR) and J<®Fi for some right
ideal /. Noting that /®ΛΛ = 0, we have that

~ Cj for all /

Therefore O/Ψ^Λ g©?!,^ for any positive integer m. Hence ,R has (DF) by
Theorem 2.11.

By Example 3.4, we have a problem that, for any regular ring S9 R
= (ΠfS)/(φ5) satisfies (DF) or not. Example 3.5 shows that, even if S satisfies
(*), R does not satisfy (*). Therefore we shall give the necessary and sufficient
condition for that R satisfies (*), and we solve the above problem under this condition.

EXAMPLE 3.5. Let F be a field and set S=U^=iMn(F\ S=S/(®Mn(F)),
T= Π?L ̂  (St = S) and R = T/(®Si). Then S satisfies (*), but R does not satisfy (*).

Proof. It is clear that S satisfies (*). Therefore we shall show that R does
not satisfy (*). Set a central idempotent e ( e T) as following;

1,0,0,.

where e(n)eSn.
Let Φ be the natural map from 5 to 5, and p be the natural map from T to R. Set
ψ = p|eT. Noting that e(ri)Sn~Mn(F\ we have eT~S. Hence there exists a ring
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isomorphism K from eT to S. Now, we define a ring homomorphism α from
Ψ(4R to S as following; for each x (eΨ(e)R), we take any element y of Ψ'^x)
and set α(x) = Φκ(y).

Similarly we define a ring homomorphiism β from S to Ψ(e)Λ Then we have that

β<*—lψ(e)R and α/?= Is" Hence α and /? are isomorphic. Therefore Ύ(e)R~S. Let
/ be a nonzero two-sided ideal of S, and so /=//(φ5,) for some nonzero two-sided
ideal of S which contains ©$. There exists 0^xeJ—(®S^ with x(ΐ)^0 for
almost all i. Since SiX(i)Si = Mj(F) has index i, there exists a nonzero central
idempotent e(ί) of M^F) which 8^(1)81 has index i. Therefore SxS does not have
bounded index, and so does not J/(®St). Therefore S does not satisfy (*), and
hence so does not *¥(e)R. Thus R does not satisfy (*).

Lemma 3.6. Let R be a ring, and e, f be idempotents of R. Then eR ^fR if
and only if there exist u and v of R such that vu = e and uv=f.

Lemma 3.7. Let S be a regular ring which has index oo, and set
R = (Tl?LίSί)/(®Si) (Si = S). Then R has an infinite direct sum of nonzero pairwise
isomorphic right ideals.

Proof. Let Ψ be the natural map from ΠfL^ to R. Since S has index oo,

there exists a set of idempotents {eij}ij=it2t...
 as following:

e21S~e22S

, where etj = 0 (/ <j ) and {eil9 - -,6^} are nonzero orthogonal for all i. For all positive
integer m, we take idempotents {/m} such that fm(k) = ekm for all positive integer
k. Since ekίS~ek2S for all &, there exist uk and vk of S such that ukvk = ek2 and
vkuk = ekί by Lemma 3.6. Set u and v of nfL^Si such that u(k) = uk and

v(k) = vk. Then uv—f2 and vu=f1—e, where e is an idempotent with e(l) = eίί and

e(k) = Q (kϊl). Hence (/i-^XΠ^) ^/2(Π5f) and (f.-e^ΠS
Therefore we see from Lemma 3.6 that Ψ(/i -4R-Ψ(/2)Λ and Ψ(/i -

- 0. Since ψ(/; - β)Λ = Ψ(Λ)Λ, we have that Ψ(/i)Λ ̂  Ψ(/2)Λ and Ψ(/i)Λ n Ψ(/"2)Λ
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=0. Continuing this produre, for all positive integers i and y, *¥(f^R~*¥(fyR and

Ψ(/))nΨ(/})jR=0 (iVy). Thus /? has an infinite direct sum of nonzero pairwise
isomorphic right ideals.

Theorem 3.8. Let S be a regular ring, and set R = (Π?LiSi)/(®Si)
(St = S). Then the following conditions are equivalent:

(a) R satisfies (*).
(b) R is a regular ring whose primitive factor rings are artinian.
(c) R has bounded index.
(d) R contains no infinite direct sums of nonzero pairwise isomorphic right ideals.

(e) S has bounded index.

Proof. It is clear by Lemma 3.7 that (d) -» (e) -» (c) -> (b) -» (a) hold, (a) -> (d)
follows from Corollary 2.5. Therefore this theorem is complete.

Theorem 3.9. Let She a regular ring of bounded index. Set R = (Π™= 15Λ)/(Θ Sn)

(SH = S). Then R has (OF).

Proof. Set Π£L 1SΠ = Γ, and let Ψ be the natural map from T to R. Let / be a

nonzero direct summand of R with following decompositions:

t = A2i®B2i

for ι =

Similarly to the proof of Example 3.4, we may assume that there exists an infinite

subset {Cj} of {Ai} (C/=v4£ for some i) such that C/>C/ + 1 and C^O for all positive

integer j. We have the set of idempotents {βj} of T such that Ψ(eJ Γ) = C/ and
ejT>ej+ίT. Set Jn = Snx(Πi^nO). Then, /^n^TVO for some positive integer

nv There exists a nonzero idempotent /Ί e Γ such that/1Γ=/Wln^1Γ. Next we

have a nonzero idempotent /2eΓ for some n2 (>«!) such that f2R = Jn2ne2R.
Continuing this procedure, we have the set {/}} of orthogonal idempotents of

T. Now, we set an idempotent g of T as following;

Put A^/ΊΓ® ••• e/j-i^ for all/ Then gT=Kj®(gTnejT). Noting Kj
we have that
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~ Cj for all /

From the above, we have that Ύ(g)R < 0£mΛ f for any positive integer m. Therefore
R has (DF) by Theorem 2.11.
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