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1. Introduction.

Rao has firstly introduced the Riemannian structure associated with the Fisher
information matrix over a finite dimensional parametrized statistical model. He
proposed the Riemannian distance as a measure of dissimilality between two
probability measures, (cf. [2], for example.) In [1], Amari introduced a pair of
dual affine connections with respect to the metric and discussed of the differential
geometry of the space of a finite dimensional parametrized statistical model. It
provides a differential geometrical meaning to statistical inference.

In the present paper, we realize the above idea for a family of equivalent
(i.e.,mutually absolute continuous) Gaussian measures on a Banach space. Our
main result is as follows.

Let 5 b e a real separable Banach space and P be a centered gaussian measure
on B\ the topological dual of B (cf. [6]). The covariance of P naturally determines
the Hubert space H. i.e., for arbitrary x1 and x2eB, let

>-ίσ(xl9x2)=\ <xuξXx2,ξ>P(dξ)
JB'

be the covariance operator of P where <-,*> denotes the natural pairing between
B and B'. The completion of (B, C( , )) is a separable Hubert space. We denote
it by (//,(•,)). The space B is continuously embedded in H, so the following
relation is satisfied

—> — •

Let us denote

(1.1) Θί = {AeLs

(2){H); (I+A) is positive definite}
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where L\2){H) is the totality of symmetric Hilbert-Schmidt operators on H. It is
a well-known fact that a Gaussian measure Q which is equivalent to P has a
mean vector beH, i.e.,

ί (x,ξ>Q(dξ)=(x,b)H forallxefi
JB'

and has a covariance operator (/H-^)"1 with AeΘu i.e.,

C%i,* 2) = ί <XuξXx2,ξ>Q(dξ) = ((I+A)-ιxί9x2)H
JB'

for all xux2eB. Let

(1.2) Θ = Θ 1 x #

and denote the above Q by jPβ with θ: = (A,b)eΘ. The totality of Gaussian
measures on B' which are equivalent to P, say 5, is parametrized by Θ, i.e.,

(1.3) S={PΘ;θeΘ}.

Since we obtain the explicit formula for Radon-Nikodym derivative dPe/dP for
arbitrary ΘeΘ, we can introduce the Fisher information at θeΘ. Let

(1.4) 3tf = L\2){H)xH

and call the following symmetric and nonnegative definite bilinear form on ^f the
Fisher information on S at θeΘ

%Lu, v] = EθlDuiφ)DJ{θ)] with l(θ) = l o g ^ .

Here, w, veJf, 2sβ[ ] denotes the expectation with respect to Pθ and D.l(θ) denotes
the Frechet derivative of l(θ) which will be defined in Section 4. In our case,
because # β [ v ] is strictly positive definite, it can be interpreted as a Riemennian
metric on S. First, we establish the following:

Theorem 1. The set S is a Hilbert-Riemannian manifold with a global chart

and with the Riemannian metric

(1.5) ^ [ M , v ]
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at θ = (A,b)eθ and for u = (Uί,u2), v = (F 1,v 2)GJf under the identification between

the Hiϊbert space tf and the tangent space TΘS.

REMARK: The Fisher information is exactly the hessian of H(P\PΘ), the relative

entropy of P with respect to Pθ. In fact,

(1.6) H{P\PΘ)= 1 |(/+Λ)i/26|2 _ _I l o g dεt2(I+A).

Next, for oceR and w, v and weJf, we will set

2j i ^Γ, |>; ii, v] = Eθ\_DJ(β\D2jφ) + i ^

and, with this trilinear form on ^ , we will define a 1-parameter family of affine

connections on S. We obtain the following:

Theorem2. (i) ForoceR,θeΘandu = (U1,u2), v = {Vu

(1.7) fβ[w;iι, v ] = ( t / 1 v 2 +

1-α
( ( ^

()
TTze corresponding affine connection on S, say V, is torsion free and satisfies

(1.8) z ( ^ [ x , Y])=%LVZX, Y]+99\x9

 ( v }

2 y]

/or any vector fields X, Y and Z on Θ w«ύfer the identification of S and Θ. So,
(-«) (<*) (0)

V is called the dual connection of V with respect to the metric. Especially, V is

the Levi-Civita connection.
(i) ( - υ

(ii) V and V are flat connections on S. In fact, for θ = (A,b)eθ, set

(1.9) 3

(1.10) and η = η(θ) =
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(i) (-D
Then, (1.9) is a V-flat, (1.10) is a V flat coordinate, respectively.

REMARK: (i) For 0, 0 'eΘ, let us denote

η = η(θ) and η' =

Then, from the assertion (ii), the V-geodesic between θ and 0' is given by

(-D
and the V -geodesic between η and η' is given by

respectively.

(ii) Theorem 2 is the extension of the results in finite dimensional statistical

model cases. Especially, the assertion (ii) is the analogy of finite dimensional

exponential families cases (cf. Section 2 or [1]), since our Gaussian family can be

interpreted as "an infinite dimensinal exponential family".

The Gaussian family on a finite dimensional space Rd has non-positive sectional

curvatures with respect to the Levi-Civita connection. Analogous result is obtained

in our infinite dimensional case.

Theorem 3. The Riemann-Christoffel curvature tensors ^ [ * ; v , ] on S is equal

to

(1.11) ΛJ[r,κ, v,iv] = - i z ^ J + ^ X C ^ - Vtu2)9

4

for (xeR9 θ =(A,b)eθ andu = (Uuu2), v = (F1,v2), w = (Wu w2) and z = {Zuz2)e Jf.

When α = 0, the sectional curvatures are non-positive. Therefore the manifold S has

non-positive curvature with respect to the Levi-Civita connection.

In Section 5, we will deal with an example of the family of linear Gaussian

diffusions Ar={Ar

ί}o<ί<τ defined by the following stochastic differential equation

(112) {dXt(ω) = dBt(ω) + (a(t)Yt(ω) + b(t))dt (0<t<7)

1
where dBt(ω) is the Wiener integral. We will regard (a,b) as parameters, so will

denote the law of the above X by P^fb) and will use the notation Pτ instead of
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P{$'°\ which is the Wiener measure on Q[09T]9R). We obtain that

i*?.» ~ pτ o fa b) e L2([0,7], /A) x L2([0, T], dt)

where " ~ " denotes the equivalence (i.e., mutual absolute continuity) between
probability measures. Let us set

(1.13) 09 T], tdt) x L2([0, T]9dt)}.

Further, in this example, by Itό formula, we get the explicit expression of Xt(ω)
and by Cameron-Martin-Maruyama-Girsanov formula, the Radon-Nikodym
derivative is written as

J-(2J(ω)) = exp{ (a(t)Bt(ω) + b(t))dBt(ω)--\ (a(t)Bt(ω
"T JO ^JO

p{ή = (m(0, σ\t)) = (ElXtl E{{Xt -

dF%

~dPτ

We will take

for 0<t<T as a new coordinate and will compute the Fisher information and
the α-affine connections (α eR) on S with respect to this coordinate.

Theorem 4. Let u = (uuu2), v = (v1,v2) and w = (wu W2)E(C1[09T])2 and for
p{t)=(mit),a\t))e(O\S),T])2, set

(1.14)

d W{t)-\
KM, = — M . M,

" l dt1 2σ\t) l

l d W(t)-\

The Fisher information and the cc-affine connections on S in p-coordinate are
equal to

(1.15)

(1.16)

T

p\u, v] =

ΓP )r[w; M, v] = - {(u2(Lpv2) + vj) + v2{Lpu2)KLpWl)
Jo
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2) + {KpVι\Lpu2))Wι}dt

+ (Lpv2)(Lpw2)u2 + (Lpw2)(Lpw2)v2}

+ {(Kpu1)(Lpv2)HKpvi)(Lpu2)}wί

In Section 2, we give a brief survey of the differential geometrical structure

associated with the Fisher information of an exponential family and mention that

it appears naturally in the limit and the rate of convergence in the central limit

theorem.

In Section 5, we compute the covariance of the functional ^/(ήdX^ of the

scaled diffusion ^(ή : = εX(jτ) (ε>0) and observe the behavior as ε -> 0. The Fisher

information, 1-and ( —l)-connections naturally appear in the asymptotics.

ACKNOWLEDGEMENT. This paper originates in my Master Thesis. I would like

to express my sincerely gratitude to my supervisor, Proof. Y. Takahashi, for all his

encouragements. I also thank to the referee for his careful reading and his valuable

suggestions.

2. A Differential Geometrical Structure of Exponential Families.

Let us consider a family S of mutually absolutely continuous probability

measures. Such a family is usually called a statistical model in statistics. We fix

a measure space (Ω,^,m) so each PeS can be written as P{dω) = ^

Sometimes we identify S with the space of Radon-Nikodym derivatives

{p(ω) ^
dm

A special type of statistical model called an exponential family plays an

important role in statiatical inference.Gaussian family and Poissonian family are

typical examples of exponential families. In this section, we restrict our statistical



HlLBERT RlEMANNIAN STRUCTURE OF GAUSSIAN MEASURES 7 7

models to finite dimensional exponential families and give a brief survey of
differential geometry on them. We call it, following Amari(cf. [1]), the information
geometry of exponential families. Simple explicit expressions can be obtained on
them.

Let X(ω) = (X1(ω\ •••, Xn{ω)) be an /?"-valued random variable on (Ω, ̂ ,m) and
( , ) be the standard inner product on Rn. Assume that there existsw a domain©
in Rn such that

exp{(X(ω), θ)}m{dώ) < oo
JΩ

for all θeθ. We set

= log\ exp{(X(ω),0)}m(</ω)
JΩ

for θeθ. By definition, ψ(θ) is an analytic function on Θ. Now, we will call
the following statistical model

(2.1) S

where l(ω\θ) = {X(ω\θ)-\j/{θl

an (^-dimensional) exponential family. The function /(ω ) on Θ is called the
loglikelihood and the parameter θ = (θu -,θn) is called a natural parameter of the
exponential family S in statistical inference.

The Fisher information matrix is the following symmetric nonnegative matrix

( 2 2 ) Gθ = (gij(V))i <: ij < n = EBl—Tλ ^ J
OΌi OUj

where Ee\_-~\ denotes the expectation with respect to Pθ(dω) : = emm(dω). If we
assume it is strictly positive definite, it gives the Riemannian metric ( , ) on the
tangent space TΘS by

(2.3) («,v)β=

where u=£?_ iU\^-)e and v = Σ j . , v ^ e TβS.
Next, we will define a 1-parameter family of torsion free affine connections

(«)
V (xeR) on S by

δ d
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<) ()
By definition, V and V satisfy

(2.5) A(B, Qθ = $AB9 QΘ + {B,' V AQe

()
for any smooth vector fields A, B and C. So V is called the dual connection

(α) (0)

of Vwith respect to the Riemannian metric. The connection V is actually the

Levi-Civita connection(cf. [5]).
(i) ( - D

Furthemore, we can observe that V and V are flat affine connections on
(i ) ( - D

S. In fact, we can choose V and V flat coordinates as follows:
Since

( 2 6 )

s2Φ(θ)E dim
dθk

(i) ( - D

for l<ij9k<n, so the natural parameter θ is a V-flat coordinate. A V -flat

coordinate is defined by

(2.7) η = η(Θ) = (ηi(θ\ .-.9η
n(θ)) = EθlX]

and called the expectation parameter of S. It is easy to see that

which shows η is actually another coordinate of S. It follows from

t ) ( ) ) $

that
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' Ae\Z )η(θ))θ

79

is satisfied for arbitrary \<Uj<n and a smooth vector field A. Hence, η is a
(- i )

V -flat coordinate.

These geometrical quantities appear in a natural manner when we compute
the rate of convergence in the central limit theorem as follows.

Let pfj( )}j6N be the independent copies of X( ) and let

Of course, XN goes to the n-dimensional centered Gaussian random variable with
covariance matrix Gθ in law when Ngoes to infinity by the central limit theorem.
For arbitrary ueR, we obtain the followings.

»,«)2]=(«,«),

(2.9)

et cetera where £•*[•] denotes the expectation with respect to P$: = ]JN Pβ(dω). The
(-1)

k-th iterates of V appears in the k-th moment of XN. These formulas are

understood in a more natural manner when we look at the cumulant expansions:

(2.10)
J(R» )N

_γk ( - 1 ) ( - 1 )

( V M V uu,u)θ}.

(k-2)times
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In the next section, we will deal with the family of equivalent Gaussian
measures on a Banach space. It is an example of "infinite dimensional version
of exponential family".

3. Gaussian Measures on a Banach space.

Let B a real separable Banach space. A centered Gaussian measure P on
B' is characterized as follows. Since its one dimensional marginal <*,•>, is a
Gaussian distribution with mean 0, so <*,*>, is square integrable, we have a natural
embedding/ B3x\-^(x,'yeL2(B\P). We denote the completion of the range of
j in L\B\ P) by //, which is a separable Hubert space. We regard j as a map

from B to //, so we obtain the relation as B c= H^H' aB'. This structure
—• —•

(j\H,B',P) is called as abstract Wiener space and P is called as abstract Wiener
(the standard Gaussian) measure. For details, see [6] for example. The
characteristic function of P is expressed as

I e
JB'

where xeB and NH = \ / ( V ) H *S the Hubert norm on H.
We choose our statistical model as the set of Gaussian measures on Br which

are equivalent to P and denote it by S through this paper.

Theorem 0. Let P be the standard Gaussian measure on (j,H,Br). Then, a
Gaussian measure on B\ say Q, is equivalent to P, if and only if there exist AeΘx

and beH, and the characteristic function of Q is given by the following:

(3.1) exp{
JB'

for xeB.

Sketch of the Proof: Let

1
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be Gaussian measures on R for keN and consider two Gaussian measures on R
such that

= Π ft

where Ĵ f00 (•) denotes the infinite products of probability measures. Then, by
using Kakutani's theorem (cf. [6]), straightfoward calculations tell us that

μ ~ v o £ α f c < + o o and ]Γ b\ < 4- oo.
k k

The proof of general Banach space's case reduces to the proof of the above Jϊ^'s
case. For details, see [9] for example. •

Set

Θ = Θ 1 x//

and write the above Gaussian measure Q as P with θ = (A9b)eΘ. The set S is
expressed as

S={Pθ:θeΘ}.

Next we need to express the Radon-Nikodym derivatives. When A is a trace
class operator and b balongs to B, we can write down dPθ/dP immedeately. Let

Θ1 = {AeLs

(ί) (//); Iλ-A is positive definite}

where Ls

{ί)(H) is the totality of symmetric trace class operators on H.

Lemma 1. Let θ = (A,b)eθ1 xB. Then,

(3.2) ^

where l(ξ;θ) = Uog det(/+Λ)- 1 <A(ξ-b\ ξ-b} + <b,ξ}- i \b\2

H.

REMARK: The quantity (A(ξ — b\ ξ-b} will be defined in the proof below as
the random variable on B'.
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Proof: Take eigenfunctions of A consisting of an orthonormal basis of //,
say {en}neN, and corresponding eigenvalues, say {αM}weiV. Then, αn > — 1 for all
neN, ΣJαJ<4- oo and for any heH,

Ah = Σ *nKen with hn = (h, en)H.
n

Let us denote the projection on H to the span {eu-~,en} by Qn and write θn = ((QnA,
Qnb) for 0 = (>4, 6)e 0 t x 1?. When £ G//, the Radon-Nikodym derivative is expressed
as

d^ l ξ)u~ \\Qnb\2

H}

or equivalently

dP 1 n

- - Σ «M,ek)H-bk2

+ Σ K{ξ,ek)H-\\Qnb\l}-
Jfc= 1 2

Here, (ξ,e) can be extended to ξeB' as the Gaussian random variable on E with
mean 0 and variance 1, which we will denote ek(ξ) (ξeB'). (cf. [6])

So, for ξeB\ Radon-Nikodym derivative is written as

dP n 1 n n 1

^ ) ( Π ( l + O 1 / 2 ) { - - Σ

Martingale convergence theorem (cf. [3], for example) assures the existence of the
limit

dP

and its integrability

hence follows the lemma.
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When we will write down —\ξ) for A e Θ t \Θ t and b e H\B, since the expression

of the above lemma lose its mean so we have to renormalize it. In fact, we can

express it as the certain limit as stated below.

Lemma 2. Let {Pn}neN
 o e a sequence of finite dimensional projection on H

such that Pn-+I as n-*oo with respect to the operator norm. Then, the limits of

(Pn(I+A)b,ξ>

and <PnAξ,ξ}-Ίr(PnA)

in both L2-sense and almost sure-sense as n-*oo exist.

Proof: If Pn = Qn, which was defined in the proof of Lemma 1, we have

<β n (/+ A)b, O = f (1 + oik)bkek(ξ)
k=i

and «2nAξ,ξ}-Ίr(QnA)= £<xk(ek(ξ)2-l).

Khinchin-Kolmogorov's theorem tells us that if independent random variables

{fk}keN satisfy E\fk~\ = 0 for all keN and £ f c E[fk

2~} < oo, then the limit limn ^ = 1 / f c

in both L2-sense and almost sure-sense exists (cf. [3]). Since {ek(-)}keN is a sequence

of independent identically distributed Gaussian random variables with means 0

and variances 1, the assertion is proved. It is an easy step to complete the proof

for general {Pn}neN (cf. [6]). •

NOTATION 1. We denote that

(3.3) :<(I+A)b, ξ}: = lim <Pn(I+A)b, ξ>
n-+co

(3.4) :<Λ£O-Tr(Λ):= lim {(PnAξ,ξy-Tr(PnA)}.
n ~* oo

DEFINITION 1. For a Hilbert-Schmidt operator A on H, let us define

(cf. [8]).

REMARK: In particular, if A is a trace class operator on H,



84 J. SEKINE

det2(/+Λ)= Π {(l+α>-α«}=
n = l

where {xn}neN are eigenvalues of A.

Lemma 3. For arbitrary θ = (A,b)eΘ, let

(3.5) :/(£ fl):= - 1 :<^{,{>-

ami fe/ θn=(PnA, PJb) where {Pn}^N is as same as in Lemma 2. Then,

(3.6) :l(ξ;θ):=Uml{ξθn)
«->oo

in both L\P)-sense and almost sure-sense and it satisfies

(3.7) £[exp{:/(£0):}] = l.

Therefore,

(3.8) ^ ) = exp{:/(£0):}

ybr almost everywhere ξeB'.

Proof: We will only show in the case of Pn = Qn for all neN. By Lemma
1, we see that

k=l k=l

l+ I log(Π (1 +«*))
2 fc= i
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so, (3.6) is obtained by Lemma 2. Further, (3.7) comes from martingale convergence
theorem, hence follows the lemma. •

REMARK: Let v and λ be probability measures on a mesurable space and let
H(v\λ) be the relative entropy of v with respect to λ which is given by the formula

/«vμ)=f
(4-00 otherwise

In our Gaussian case, P«PΘ is equivalent to P~PΘ (~ denotes the mutual absolute
continuity between probability measures) and for θeθ, we have

H(P\Pθ)= - £[:/(#):] = ^|(/+Λ)1 / 2&|| - I log det2(/+Λ),

hence, we observe that
P~PΘ*>H(P\PΘ)< 00.

4. Gaussian Statistical Manifold.

In this Section, we will construct an infinite dimensional version of information
geometry for Gaussian measures. We will start with the following:

Lemma 4. The function

which is restricted to Θ l 9 an open set of Ls

i2)(H), is C^-Frechet-dijferentiable. i.e.,
for instance, the continuous linear function Z).(logdet2(/-M)) on L\2)(H) which satisfies

I log det2(/+{A + s Ux)) - log det2(/+A) - sDv{log det2(/+A))\ = o(s)

for UXEL\2){H) as S ->0 exists for each Ae^t and it is computed as

(4.1) JDffl(logdetί(/+y<))= -Tr(^ί(/+^)- 1t/ 1).

The second and the third derivative are equal to

Dl t Kl(log det2(/+A)) = DVl{DVl(log det2(/+ A)))

(4.2) = 1
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(4.3) = 2Ίr((I+AyίUί(I+A)-ίVί(I+A)-ίWί)

for Vl9 WxeL\2)(H).

REMARK: When A e Θ l 5 since A is a compact operator, 0 is the only accumulation
point of eigenvalues, so (I+A)'1 is a bounded operator.

Proof: The analyticity is obvious from the definition, and to obtain the
derivatives we use the following relation, (cf. [8])

det2(/+A + B + AB) = det2(/+Λ)det2(/+B)e~ Tτ{AB)

for Hilbert-Schmidt operators A, B. Then, for arbitrary UeL\2)(H) and seR,

det2{I+A+sU)

= det2(I+A)det2(I+s(I+Ay1U)e-sTr(AiI+A)''1U)

= det2(I+A){l-sTr(A(I+A)-ιU)

1U))2

Hence follows the lemma. •

Lemma 5. Let θ = (A,b)eΘ and °U be an open neighborhood ofO in ©! such
that A+^e&v Then, the function

which is retricted to <% x H is C^-Frechέt-dijferentiable. Especially, first two

derivatives are given as follows

(4.4)

^ ξ , ξ } - Tr(U):) + <(I+A)u, ξ>: + : < Ub, ξ}:
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(4.5) -((/-f A)u2, v2)H- i

where u = (Uuu2),v = (Vuv2)eJtf?: = Ls

(2)(H)xH.

Moreover, the derivatives belong to Lk(Pθ) for any keN.

Proof: Differentiability is obvious, because :/(£;): is the sum of continuous

(multi) linear functions. By direct computations, we get (4.4) and (4.5). Higher

derivatives /)*(:/(#):) for k>3 are also obtained directly. Integrability of the

derivatives is straightfoward from the expressions of them. •

Now, we can introduce the Fisher information and the α-affine connections on S.

DEFINITION 2. (i) The Fisher Information on S at 0 e Θ is the following

symmetric, nonnegative definite bilinear form on 2tf

(4.6) <$θ[u, v] =EΘIDU(: l(θ):)/),(: l(θ):)]

for u,veJ^f, where Eθ[-~] denotes the expectation with respect to Pθ.

(ii) For aeR, the oc-qffine connection on S at θeΘ is the following trilinear

form on Jf

(4.7) f β [ > ; u, v] =EθlDw(: l(θ): \(D2

UV(: l(θ) )+
u( (θ): ) y ( (θ):))]

They are well-defined by Lemma 5, and are computed as follows.

Lemma 6. Let θ = {A,b)e<d, u = (U1,u2),v = (Vί,v2) and w = (Wuw2)eJ^ and

(xeR. Then,

(i) <Zθlu,v~]=((I+A)u2, v2)H+ i

(α)

(ii) Γθ[w; M, v] = (U1 v2 + Vγu2, w2)H

•t

1 W,).
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Proof: (i) For any Θ=(A,b)eΘ, take Qπ, the projection on H which was
defined in the proof of Lemma 1, and set θn = {QnA,QJb). It is easy to see that

e n ))] =D\E[_eιφ"))] = 0

for k>\. In particular, we have

EiDlnVn{e1^)-] = EKD2

UnVJ(θn) + DJ(θn))DυJ(θn))e'^ = 0

for any ι/,ve^ with κH=(ρ ι lt/1,&,M2),v,1=(ρ,Λ,a,v2). So,

=((/+ QnΛ)Qnu2, v2)H + iτr((/+ QnA)~' 17,(7+ QJΓ1F

and by using Lebesgue's dominated convergence theorem, we get

%ίu, v] = lim E{Djφn)DJ

29 v2)H+ I

hence the assertion (i) follows,
(ii) Note that

Eθ£DwJ(θn)D2

UnVJ(θn)] H

holds for w = (IVί9 w2) e ̂ f with wn = (2« Ŵ i, Qnwi)- So, using Lebesgue's dominated
convergence theorem, we get that

(4.8) EJiDJc. Kθ): )D2

uvt l(θ):)]=(£/, v2

In the similar way, we see that

(4.9)
u, v])=DJElDJί: l(θ): )DV(: l(θ): ) e ! ^ ]

= £θ[£»^(: /(θ): )/?„(: l(θ):)] + £„[/)„(: /(θ): )Z>^(: /(0):)]
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The left hand side of (4.9) is computed as

Now, it is easy to deduce the assertion (ii) from (4.8) and (4.9).

Proof of Theorem 1: We can take a map

from Θ, an open set of Jf, to S as a global chart of S. Therefore, S is a Hilbert
manifold with the model space Θ (cf.[7]). Further, since the Fisher information
#β[v] is strictly positive definite for any 0eΘ, it defines the Riemannian metric
((v))θ on the tangent space TΘS by the formula

for U9 Vε TΘS with

the differential of Φ at θ, which is a linear isomorphism between the Hilbert
space Jtf* and the tangent space TΘS. Therefore, Theorem 1 is established. •

(«)
Proof of theorem 2: (i) It is obvious that V is torsion free, so let us observe

the relation (1.8). Take a smooth curve c = {θ(t);te( — ε,ε)} on Θ for some
ε>0. For arbitrary

X={(θ(t)Mt));te(-ε,ε)} and Y={(θ(t)Mt));te(-ε,ε)} <= Θ xjf,

smooth vector fields along the curve c, we see that

X ( £ [ A ( l(θ(ή): )Dv(t)(:

β ( O [ v ( 0 : <

' Γ \lt)ίu(t); 0(t),

)[M(0, V β(t)v(ί)]

where
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)=yκ(ί) and v(t)=yv

(0)

Hence, (1.8) follows. Obviously, V is the Levi-Civita connection,

(ii) If we take

as another coordinate of S, then, the log-likelihood function is written as

where φ(8) is a non-random function of 8. So, 8 is "a natural parameter" of our
"infinite dimensional exponential family" (cf. Section 2). Therefore, we get

ά 1(8): )Z)? y~(: 1(8):)] = - Dl^(8)Ee\_D^. 1(8):)] = 0

for w, v and we Jf where 2%[] denotes the expectation with respect to Pθ{&). Hence,

θ is a Vflat coordinate.

Furthermore, if we take

= ((I+Ayι+b®b,b)

as a new coordinate of 5, it is "an expectation parameter" of S (cf. Section 2), so,
(-D

by the similar way in Section 2, we see that η is a V flat coordinate. •

Proof of Theorem 3: The Riemann-Christoffel curvature tensors (cf. [5])
*2[;v, ] at θ = (A9b)eθis

(a) (α) (α) (α)

(4.10) Λ?[z; M, v, w] = SβKV.V, - V,V>, z]

= DJL9J$vw, z]) - D#f$uw, z])

for «=({/!,M2), v=(F1)v2), ^ = (^,^2) and z=(Z1,z2)ejf. Note that



HlLBERT RlEMANNIAN STRUCTURE OF GAUSSIAN MEASURES 9 1

vW, z]) = Du{Eβ[{D2

vw(: l(θ):

U;. 1{Θ): M: l(θ):)+D2

W{: l(θ): )D2

UZ(: l(θ):

+DU(: l(θ):)D2

vw(;.l(θ):)Dz(:l(θ):K

EIDU. iφ): )DW(: l(θ): )Z)Z(: l(θ):)

+A,( : ιφy.)D2

uj;.i{θy.)Dz{;.ιφy.)

+ DD(;.l(θy.)Dw(:l(θy.)D2

uz(:l(θy.)

+ £>„(: iφ): )Dυ(: l(θ): )DW(: l(θ): )DZ{: l(θ):)].

A little tedious computations tells that

(4.11) DJ?JiVvw, z]) - DV(<#1 Vuw, z]) = 0.

Let us denote

y = - 7 d ( / + ^ ) " ' {β(® βj+βj®β,},

12

then, we get that

.[(ϊy, 0), (£„, 0)] = 1 when {/j} = {k, 1}

—0 otherwise

With this orthonormal basis of <#?, we can observe that

(4.12) 9,lVvw,' V Iz] = X <tji v U (έ» °)]^t ( v<t)uz' (έ.> 0)]

βtV ,w, (0, β ^ ^ C V U (0, ~ej)l
j

Now, it is easy to deduce that

(4.13) R&z u, v,w]= - i z f L
4
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from (4.10-12) and (1.7). Of course, (4.13) vanishes when α + 1 . Let us compute
(0)

the sectional curvature A^0)[ ] for the Levi-Civita connection V (cf. [5]). We have

l"e»KEij] =-\ when ke{ij}

= 0 otherwise

*J0)[{£y> £„}] = RfXEij; Eijy Ekl, Ekl] = 0,

hence, Theorem 3 is established. •

5. An Example —Linear Gaussian Diffusions—.

Let (Ω,J^μ,\β"^0<t<Ύ) be a probability space with {^t}o<t<τ increasing,

right continuous family of sub σ-algebras and consider a 1-dimensional linear

Gaussian diffusion Ar={Λr

ί}0< ί<Γ on it which is defined by the following stochastic

differential equation.

{dXt(ω) = dBt(ω) + {a(t)Xt(ω) + b{t))dt (0<t<7)

\ X0(ω)=xeR

where dBt(ω) denotes the Wiener integral. We will deal with only 1-dimensional

diffusion to simplify the discussion and notations. Of course, similar results are

obtained in general multi dimensional cases. By Itό formula, the explicit expression

of X is given by

(5.1) ) = Φ(t){x+ f Φ-1(*)^)*+ Ϊφ-
Jo Jo

where Φ(f) = exp {Jό a(s)ds}. As stated in Introduction, we will regard (a9b) as

parameters, so let us denote the law of the above X— X(a,b) on the space C([0, T],R)

by P{ρb\ When a = b = 0, we will use the notation Pτ instead of Pψ>°\ If a(i)

and b(t)e C([0, T], R), immedeately by Cameron-Martin-Maruyama-Girsanov formu-

la, we obtain the absolute continuity of P^ with respect to Pτ and the formula

of the Radon-Nikodym derivative (cf. [4])

= exp{/r(β(ω); ajb)}
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where lτ(B(ω));a,b)= (a(t)Bt(ω) + b(ή)dBt(ω)--\ (a(t)Bt(ω) + b(t))2dt. By the Re-
Jo 2J 0

mark of Lemma 3, we have

H(PT I /*?'*

so, it is easy to see that

/><«>» ~ pτ o (^ b) e L2([0,7], /ώ) x L2([0, 7], Λ).

We will set

Sτ = {F*ϊb\ {a, b) e L2([0,7], tdt) x L2([0,71, Λ)},

then, we can introduce the Hilbert-Riemannian structure associated with the Fisher
information on Sτ in the similar way as Section 4. Let us take

pit) = (m(0, σ\t)) = (EIXJ, E[{Xt - m(/))2])

as a new coordinate of Sτ and compute the Fisher information and α-affine
connections in p-coordinate. By (5.1), we get

) = φ(O{x+ φ-ι(s)b(s)ώ}

so, m(f) and σ2(t) satisfy the following ordinary differential equations

£
It

di

Therefore,

2σ2(t)

Let us denote lAp) = lτ(a(p\b(p)) a n d define the Fisher information and the
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α-affine connections by the formulas:

ΓPir[w; K, v] = E^DJMiDlJM +

for u = (uuu2)9 v = (v1? v2)and w = (wί,w2)e(C1[0, T])2 and Z>./(p) denotes the Gateaux
derivative of l(p). Straightfoward calculations lead us to Theorem 4 in Introduction.

Finally, let us observe the behavior of the scaled diffusion Xε(t): = εX{^) (ε>0)
as ε -> 0. We set

'a1(ή = Γk where k > 1,

bί(ή = Γ1 where/> 1/2

and consider the Gaussian diffusion X{aub^. Note that P{jifbί)eSτ for any Γ>0,

since (aubι)eL2(R,tdήxL2(R,dt). For ε>0, the scaled diffusion X*(aubi): =

{sXQi)}t>o satisfies

(0<t<T)

so, the law of X*{aubx) is equal to pf'la^21'^). Obviously, pf-'a^2l~^) g Oes

to P weakly as ε -• 0 and if we compute the co variance of the functional J J

for any test function fe C°°([0,7]), we get

(5.2)
Jo Jo

In (α, έ)-coordinate on 5^ we can observe that

D{Uι.U2M
a>b) = \(ui(t)Bt +

Jo

Au1,u2)(,1,ϋ2)M^*)= (uι(t)Bt +
Joo

et cetera for any (a,b\ (uu u2) and (vls v2) eL2([0, ΓJ, ίΛ) x L2([0, 7], dt). Therefore,
(5.2) is equal to

E[(D{OJ)lT(0,0))2exp{Mεk- 'a\ εlx~ %)}!

and it is easy to observe that
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) 2 ] = J E [ ( Z ) ( 0 > / ) / T < 0 , 0 ) ) 2 { 1 +ε k - 1 Z) ( ( , l i 0 ) MO,
o

(1)

.oj.rKO, i j ; (0,f), (0,/)]
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