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Introduction

Let (M,D) be a contact manifold of dimension 2n—1, #>2, and
(E,E’) a pair of subbundles of D. We say that (D; E,E’) is a Lagrangean
contact structure on M if for each point xe M the fibres E, and E’, are
transversal Lagrangean subspaces of D, with respect to the natural
conformal symplectic structure of D,.

An example of Lagrangean contact structure is given on the projective
cotangent bundle P(T*M) of a manifold M of dimension 7 in the following
way. Let D be the canonical contact structure on P(T*M). Suppose
that a projective structure Q on M is given. For [A]e P(T*M), we define
E}; to be the space of vertical vectors in Ty,;,(P(T"M)) for the projection
w: P(T"M) - M. Furthermore, choosing a local torsionfree connection
n belonging to Q defined over a neighbourhood of x=w([1])e M, we
define Ejp; to be the space of horizontal lifts to [4] of vectors Xe T M
with A(X)=0. It is determined by Q independently on the choice of
n. These subspaces E;, E;; of T ,(P(T"M)), [Ale P(T*M), constitute
subbundles E, E’ of D such that (D; E,E’) becomes a Lagrangean contact
structure on P(T*M) (Theorem 4.2).

A typical one is the Lagrangean contact structure (Dg; Ey,Ey) on
the projective cotangent bundle of n-projective space P" associated to
the flat projective structure Q, on P". A Lagrangean contact structure
is said to be flat if it is locally isomorphic to (Dgy; Ey, Ey). The purpose
of the present note is to prove:

The Lagrangean contact structure on P(T"M) associated to a
projective structure Q on M is flat if and only if Q is projectively flat.

A conformal analogue to our theorem in the following form was
proved by Miyaoka [2], Sato-Yamaguchi [3]: The Lie contact structure
on the tangential sphere bundle S(7'M) associated to a conformal structure
C on a manifold M is flat if and only if C is conformally flat, provided
dim M > 3.
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The proof of our theorem is based on the theory of Tanaka[5] of
G-structures associated to simple graded Lie algebras as in [2], [3]. First,
we show that the Lagrangean contact structures are in bijective
correspondence with the G-structures of type m associated to sl(n+1)
endowed with gradation of contact type in the sense of T'anaka[5] (Theorem
5.1). Next, we construct a normal Cartan connection @ associated to
the G-structure of type m which corresponds to our Lagrangean contact
structure on P(T*M), making use of the normal Cartan connection for
the projective structure Q (Theorem 6.4). It turns out that the curvature
of w vanishes if and only if the projective curvature of Q vanishes. This
implies our theorem.

1. Lagrangean pairs

In this paper we work in C*-category though all the arguments are
valid also in complex analytic category, replacing the real number field
R by the complex number field C.

Let (W, A) be a symplectic vector space over R of dimension 2n. A
subspace E of W is said to be Lagrangean with respect to A (or with
respect to the conformal symplectic structure determined by 4) if dim E=n
and A(E,E)={0}. A pair (E,E’) of subspaces of W is called a Lagrangean
pair if E and E' are Lagrangean subspaces of (W,4) such that
EnE ={0}. A symplectic basis {e;,:-,e,,} of (W,A) with A(e;,e,.;)=96;;
is said to be adapted to (E,E') if E=[e,, :-,e,] and E'=[e, ., *,€,,], Where
[#*] denotes the subspace spanned by *. Any Lagrangean pair admits
an adapted symplectic basis. The Lagrangean pairs are congugate to
each other under the symplectic automorphisms or the conformal
symplectic automorphisms of (W,A4).

Now let us recall the notion of torsionfree connection in order to
give a geometric example of Lagrangean pair. Let M be a manifold of
dimension # and fix a vector space V over R of dimension n. Let
w: F(M)—> M be the frame bundle of M, with structure group
GL(V). Denote by 0 the canonical form on F(M), which is a I/-valued
1-form on F(M). A connection n in F(M) is said to be torsionfree if

d0+[n,01=0.

It is also described in the following way (see Kobayashi[1]). Let
n?: FX(M) — M be the second order frame bundle of M, with structure
group G?*(V). We may consider GL(V) as a subgroup of G*(V) through
the natural monomorphism GL(V) » G*(V). Then the natural projection
n2: FA(M) - F(M) is GL(V)-equivariant. Denote by 6> the second
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canonical form on F?(M), which is a V+gl(V)-valued 1-form on
F*(M). We decompose it to the sum

02=®_1+®0

of the V-component ®_; and the gl(})-component ®,. Then the
torsionfree connections # are in bijective correspondence with the
GL(V)-equivariant sections s: F(M) — F*(M) of n?: F2(M) - F(M) in such
a way that s'®,=#. The section s corresponding to 7 is constructed as
follows. For a given ue F(M) a local diffeomorphism f: (V/,0) - M is
defined by f(v)=Exp"u(v), where Exp” denotes the exponential map for
the linear connection in the tangent bundle 7M induced by #. Then
the correspondence u— j3(f), the second jet of f at 0, provides the required
section s.

Let n be a connection in F(M) and V the linear connection in the
cotangent bundle p: T"M — M induced by . For given Ae T.M and
XeT .M, we denote by X¥e T,(T*M) the horizontal lift of X to T"M
with respect to V. It may be also described as follows. Identify T°M
with the associated bundle F(M) X g V" with respect to the natural
(contragredient) action (id)* of GL(V) on the dual space I* of I/, and
denote the projection F(M) x V* - T*M by (u,{)—u-£. For a fixed £€ 177,
the differential T(F(M)) —» T(T"M) of the map F(M)— T"M defined by
ur—u-& will be denoted by X+— X-£. Then we have

Xi=Xx-¢ for A=u-¢,
where X, e T,(F(M)) is the horizontal lift of X to F(M) with respect to 7.

ExampPLE 1.1. Let # be a torsionfree connection in F(M). For a
given Ae T M we define subspaces E; and E;, of T,(T"M) by

E,={X]; XeT\M}, w={uy; pe TLM},

where urs p! denotes the identification ToM=T,(T.M). Further, we
define a 1-form a on T"M by

UX)=Ap.X)  for XeT(T"M),

whose exterior differential do is known to be a symplectic form on each
T(T*M). Then (E,E}) is a Lagrangean pair of (T,(T"M),do). More
precisely, we have that

du(E;, E;) =du(E}, E) = {0},
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1
da(.u;/yXlH) =E#(X) for He T‘;M, Xe TxM

2. Lagrangean contact structures

In this section we assume that n>2. A graded Lie algebra
(abbreviated to GLA) over R

m=q_,+g_4, [gp)gq]ch‘HI

is called a fundamental GLA of contact type of degree n, if dimg_,=1,
dimg_,;=2n—2, and [g_,,X]={0} implies X=0 for Xeg_,. Such a
GLA is unique up to GLA-isomorphism. If we take an eyeg_, with
e, #0, a symplectic form A, on g_, is defined by

[X, Y]=A0(X, Y)eo fOI‘ X, YEg_l,

whose conformal class is determined by m independently on the choice
of 5. We define C(m) to be the subgroup of GL(m) consisting of a€
GL(m) such that ag_,;=g_, and that the graded linear automorphism
a of m induced by a is a GLA-automorphism.

Let M be a manifold of dimension 2n—1 and D a subbundle of TM
of codimension 1. Denote by k: TM — TM/D the projection to the
quotient line bundle TM/D. For a point x€ M we define a GLA m(x) as
follows. Let g_,(x)=(TM/D),, g_,(x)=D,, and m(x)=g_,(x)+g_,(x).
For X, Yeg_ (x) we define

[X, Y]=K[X) ?]xeg—Z(x))

taking local sections X and ¥ of D around x which extend X and Y,
respectively. Further, we set [m(x),g_,(x)]={0}. If m(x) is GLA-
isomorphic to m for every point xe M, D is called a contact structure on
M. Note that then D carries a natural conformal symplectic structure
determined by the m(x)’s. A contact structure may be also defined by
a system of contact forms {U,,y;}, where {U;} is an open cover of M, and
y; is a 1-form defined on U, with y;A(dy;)"” ! #0 everywhere on U; which
satisfies y;=f;;7; on U;nU; with a function f;; on U;nU;. Then

D.={XeT.M; y(X)=0} if xe U;

defines a contact structure D. And every contact structure D is obtained
in this way. Note that in this case the conformal symplectic structure
on D is given by (dy;),|D, x D,.
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ExampLE 2.1. Let M be a manifold and w: P(T*M) —» M the
projective cotangent bundle of M. We set T*"M= T*M —{zero section}
and denote by ¢: T"M — P(T*M) the natural projection A+>[1]. Let a
be the 1-form on T"M defined in Example 1.1. If we take local sections
sit U; = T*M of g and set y; =5, then { U,,7;} becomes a system of contact
forms on P(T*M). The contact structure D determined by this system
is called the canonical contact structure on P(T*M).

For a contact structure D on a manifold M of dimension 2n—1, a
frame u: m — T, M at xe M is called a contact frame of (M,D) if ug_, =D,
and the graded linear isomorphism #«: m — m(x) induced by u is a
GLA-isomorphism. Then the subset Fp(M) of F(M) consisting of the
contact frames of (M,D) becomes a C(m)-structure. Furthermore,
P=Fp(M) is a C(m)-structure of type m in the sense that

d0_2+%[0_1,0_1]50 mod 0_,,

where 0_, and 0_, denote the g_,-component and the g_,-component,
respectively, of the restriction 6 to P of the canonical form on
F(M). Conversely, for every C(m)-structure P of type m there exists
uniquely a contact structure D such that Fy(M)=P.

Let D; be a contact structure on M;, i=1,2. A diffeomorphism
@: M, > M, is called a contact isomorphism of (M,,D,) to (M,,D,) if
¢.D,=D,, which is equivalent to that ¢, induces a GLA-isomorphism
of m,(x) to m,(¢@(x)) for each point xe My, or to that ¢ is a C(m)-structure
isomorphism of (M,Fp (M,)) to (M,,Fp,(M,)), namely, the first
prolongation ¢™": F(M,) —» F(M,) of ¢ sends Fj, (M) onto Fy,(M,).

ExampLE 2.2. Let D; be the canonical contact structure on P(T"M,),
i=1,2. A diffeomorphism ¢: M; - M, induces a diffeomorphism
¢: P(T*M,) - P(T"M,) such that the diagram

*\ — 1 o
v, . o,
41l 42l
P(T"M,) P(T"M,)
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is commutative, where g;: f*Mi — P(T"M,;), 1=1,2, are natural projections.
Then @ is a contact isomorphism of (P(T*M,),D,) to (P(T*M,),D,).

Let m=g_,4+g_, be a fundamental GLA of contact type of degree
n. If a Lagrangean pair (e,e¢’) of the symplectic vector space (g_,4,)
is given, the triple (m; e,e’) is called a fundamental GLA of Lagrangean
contact type of degree n. Such a triple is unique up to isomorphism. Here
for two such triples (m;; ¢;,¢}), i=1,2, a GLA-isomorphism ¢ of m, to m,
such that ge;=e,, @e|=¢), is called an isomorphism of (my; e,,e}) to
(m,; e,,e5). For a fundamental GLA (m; ¢,¢’) of Lagrangean contact
type, a basis {eg,e,, *-,€,,_,} of m is called a Lagrangean contact basis if
€0€G_, and {e;, -,e,,_,} is a symplectic basis of (g_;,4,) adapted to
(e,¢’). We define the Lagrangean contact group C(m; e,¢’) to be the
subgroup of C(m) consisting of ae C(m) such that ae=¢,a¢’=¢". With
respect to a Lagrangean contact basis, it is represented by

¢c 0 O
C(m; e,¢)= by a 0 |];ceR,b;,b,eR" ! aeGL(n—1)

b, 0 c'a™!

Let D be a contact structure on a manifold M of dimension
2n—1. Suppose that two subbundles E,E" of D are given. We say that
(D; E,E") is a Lagrangean contact structure if for every xe M,(E,,E’) is
a Lagrangean pair of D, with respect to the natural conformal symplectic
structure on D,. A frame u: m—> T, M of M is called a Lagrangean
contact frame of (M,D; E,E') if it is a contact frame of (M, D) such that
ue=FE,  ue'=E,. Then the subset F g (M) of F(M) consisting of the
Langrangean contact frames of (M,D; E,E’) becomes a C(m; e,e’)-structure
of type m. Conversely, for every C(m; e,e')-structure P of type m there
exists uniquely a Lagrangean contact structure (D; E,E’) such that
F(D;E,E,)(JW)=I3. Let (D;; E;,E}) be a Lagrangean contact structure on
M; i=1,2. A diffeomorphism ¢: M, — M, is called a Lagrangean contact
isomorphism if it is a contact isomorphism of (M,,D,) to (M,,D,) such
that ¢, F,=E,, ¢,E1=E’,, which is equivalent to that ¢ is a C(m; e,e’)-
structure isomorphism of (M, Fp, .5, g,(My)) to (My,Fip,.g, g)(M3)).

3. Projective structures

Let W be a vector space over R of dimension n+1, n>1, and
P"=P(W) the projective space associated to W. We denote by L the
group of projective transformations of P", which is isomorphic to the
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quotient group GL(W)/C of GL(W) by its center C. The Lie algebra
[=LieL of L is identified with sl(W), and L may be considered as a
subgroup of the automorphism group Aut(l) of [ through the adjoint
representation. We define an L-invariant nondegenerate symmetric
bilinear form B on | by

B(X,Y)=tr(XY) for X,Yel.
In the following we fix a basis {wg,w;, -, w,} of W, and denote by

{CO,CI,-H,C"} the basis of W* dual to this. Thus we have identifications:
L=PL(n+1)=GL(n+1)/C where C=R'1,,,, [=sl(n+1), and P'=

P(R"*1). We set
_ 1
E= <n 0 )el,
n+1\0 —1,

Ipz{XGI; [E-)X_‘:pX} P=‘_1)0»1:

which determines a GL A-structure on [:
I=1_,+1,+1,, Il = Lsg

We set V=1_,. Then, since B|l_; xI; is nondegenerate, 1, is identified
with I through B. These subspaces [, are explicitly given as follows.

el e o ]
10={<3 ,(1)1>’ aeR,Aegl(n),trA= —a}.

[,=IO+II’

We set

which is a subalgebra of | with [=1_, +[' (direct sum as vector space). Let
L, denote the group of GLA-automorphisms of I. It is given by

L0;{<g 2>;aeR*,beGL(n)}/C,

and thus L, L and LieLy,=I,. Further, we have that L=L,Inn(l),
where Inn(l) denotes the group of inner automorphisms of . We define
L,=expl, and L'=N(l'), the normalizer of I' in L, whose Lie algebras
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arel; and ', respectively. The subgroup L’ has a semidirect decomposition
L'=LyL, and is identical with the isotropy subgroup in L at the point
[wo]le P". Therefore, we have an identification

L/L'=P",

which implies an identification T}, ,P"=I_;. Let p: L'> GL(I_)=GL
(V) be the linear isotropy representation at [w,]. Then we have that
Kernel p=L,; and Image p=GL(V), and hence, p maps L, isomorphically
onto GL(V). We shall identify L, with GL(V) through p, and also I,
with gl(V) through p,. We define

€&=FEii11, €=FE;+ for 1<i<n,

where the E;;’s denote the standard matrix units in gl(n+1). Then {¢;}
is an orthonormal basis of [_; with respect to the inner product

(X,V)=tr(XY) for X,Yel

on . (In complex analytic category, one should replace tr(‘XY) by
tr('XY).) Furthermore, {&}} is the basis of I; dual to {&} under the
previous identification [;=V*. We may identify l,=gl(}) with gl(n)
through the basis {&;} of V. It is easy to see the following.

Lemma 3.1. Under the identification above, for

*v='('vl,---,v”)=z veelV=I1_,,
i

éz(fla“‘)én)=z ﬁiE:G V=Il)

[v,E]egl(n)=1, is given by
[v,{]=2v¢+ (&)1,
Next, we embed V=I_, into P" as an open set containing [w,] by

the map o> (expv)[w,], and so every a€L determines a local
diffeomorphism a: (V/,0) - P". We define a map ¢ : L — F*(P") by

¢ (a)=ji(a) for aeL.

Then ¢ is an embedding which induces a monomorphism ¢ : L' — G*(V)
such that n3o¢= p, where n2: G*(V') - GL(V) is the natural projection. In
the following we shall consider L’ as a subgroup of G*(V) through the
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monomorphism ¢ .

Now let M be a manifold of dimension n. An L’-subbundle
QO = F*(M) of the second order frame bundle n2: F>(M) — M is called a
projective structure on M. For example, let 5 be a torsionfree connection
in F(M), with the corresponding GL(1V)-equivariant section s: F(M) —
F*(M) of n%: FA(M)— F(M). Then O,=s(F(M))-L, F*(M) is a
projective structure on M, which we call the projective structure associated
to . Let n and 5’ be torsionfree connections in F(M). They are said
to be projectively equivalent if Q,=Q,., which is equivalent to that there
exists an I, = I"-valued function p on F(M) of type Ad=(id)* such that

n—n'=[0,p],

which is the case that §'=s-expp for the corresponding sections
5,8 F(M) - F*(M). Let Q c F?(M) be a projective structure and U ¢ M
an open set. A torsionfree connection 1 in F(M)|U=n"*(U) is called
a local torsionfree connection belonging to Q if Q,=Q|U. For any projective
structure Q < F2(M) there exists a family {U,n;} of local torsionfree
connections belonging to Q, where (x): {U,} is an open cover of M; g,
is a torsionfree connection in F(M)|U;; n; and 7, are projectively equivalent
over U;nU;. Conversely, for any family {U,,n;} with (), there exists
uniquely a projective structure Q < F?(M) such that each #; belongs to Q.

ExampLE 3.2. Set Q,=L and regard it as a submanifold of F*(P")
through the embedding ¢ . Then Q,c F*(P") is a projective structure
on P", which we call the flat projective structure on P".

Let Q,c F*(M, be a projective structure on M, i=1,2. A
diffeomorphism ¢@: M; — M, is called a projective isomorphism of (M,,Q,)
to (M,,Q,) if the second prolongation ¢'*: F2(M,) —» F*(M,) of ¢ sends
Q, onto Q,. A projective structure Q = F*(M) is said to be projectively
flat if (M,Q) is locally projectively isomorphic to (P",Q)), that is, for
each point x€ M there exist an open neighbourhood U of x and an open
set U, of P" such that (U, Q| U) is projectively isomorphic to (U, Q| Uy).

Now we recall the theory of Cartan connections for projective
structures following the formulation by Tanaka [4]. Let O be a projective
structure on a manifold M of dimension n. An l-valued 1-form @& on
Q is called a Cartan connection in Q of type L/L’ if

(1) for each z€Q, @: T,0 — 1 is a linear isomorphism,;
(2) R.®=Ada '® for aeL’; and
(3) @(A)=A for Ael,
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where R, denotes the action of ael’ on O, and A" the fundamental
vector field on O generated by Ael’. Let

D=0 _, +dy+d,

be the decomposition of @ into the sum of [,-components @,. We call
N
Q=dw+§[w,w]

the curvature of @, which is semibasic in the sense that Q(X, Y)=0 if
X or YeT,Q is tangent to the fibre of n>. Thus there exists an
I®A?I*. |-valued function K on Q, called the curvature function of @, such
that

Let
K=K_,+K,+K,
be the decomposition of K into the sum of [ -components IZP. Recall

that the second canonical form 0% on F2(M) is a V+gl(V)=1_, +1,-valued
1-form with decomposition into the sum

02=0_,+0,

of [,-components ®,. A Cartan connection @ is said to be normal if it
satisfies the following two conditions.

(1) The restrictions of ®_, and ©, to O are identical with @_,
and @,, respectively. (In this case K_;=0.)

(2) If {&,---,é,} is a basis of I_, with (,¢)=0;;, and {&},---,e,}
the basis of I; dual to {¢;} with respect to B, then

(FR(X) =Y [6,R(,X)]=0  for Xel_,.

ExampLe 3.3. The Maurer-Cartan form & of L=(; is a normal
Cartan connection in Q; = F?(P") of type L/ L’ with the curvature Q=0.

Theorem 3.4. (Tanaka [4]) For any projective structure Q on a
manifold M of dimension n>2, there exists uniquely a normal Cartan
connection @ in Q of type L/L’.
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The following follows from Example 3.3 and Frobenius’ theorem.

Corollary 3.5. Q is projectively flat if and only if the curvature Q
of @ vanishes on Q, provided n>?2.

4. Lagrangean contact structures on projective cotangent
bundles

Let M be a manifold of dimension n>2 and w: P(T*M) - M the
projective cotangent bundle of M. We identify P(T"M) with the associated
bundle F(M) X gp4P(V*) with respect to the natural projective action of
GL(V) on P(I’"). In the same way as in Section 1, the projection
F(M) x P(V*) - P(T*M) will be denoted by (u,[é])+—u-[£]), and for a
fixed [E]e P(V*) the differential of the map F(M) — P(T*M) defined by
ur— u-[£] will be denoted by X+ X:[£]. Then we have

X [E]=q(X &)  for (eV'=V"—{0}, XeT(F(M)),

for the natural projection gq: T"M - P(T*M). Let n be a connection in
F(M). For given [4] € P(T"M) and X € T, M with w([4]) =x, the horizontal
lift X{53€ Tyy(P(T"M)) of X to P(T"M) with respect to 7 is defined by

XB=Xx,16  for [M=u-[£],

where X e T, (F(M)) is the horizontal lift of X to F(M) with respect to
n. It is also described as follows. Choose an element A€ T%M so that
g(A)=[A], and let X% e T,(T*M) be the horizontal lift of X to T°M with
respect to the linear connection in T*M induced by 5. Then ¢ X% is
independent on the choice of 4, and is equal to Xg].

Lemma 4.1. Suppose that n and n' are torsionfree connections in
F(M) which are projectively equivalent. Let [Ale P(T*M) with w([1])=x.
Then for every X in

[ ={XeT,M; A(X)=0},
the corresponding horizontal lifts are identical:
Xia =Xy
Proof. It follows from the assumption that there exists an

[, = V*-valued function p on F(M) such that n—n'=[0,p]. 'Take an element
A=u-Ee T"M with q(A)=[A]. We shall show that
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X - X7 =p0(X;)] € Ty(T"M).

Then, applying g, to this we obtain the assertion. Indeed, since
n,X,=nX, =X, there is an Aegl(V) such that X} — X} =A4;. Then

=) (X)) =—1'(X})=—1(X,— X))
=—n'(4,)=—-A.

On the other hand, the lefthand side is equal to [0,p](X})=[v,p,] where
v=0(X}), and hence 4= —[v,p,]. Therefore, we have

Xi— X =X~ X)) E=4i¢
=u-(A-&=—u-([v,p,] %),

under the identification T V"= 1", where A-¢ denotes the natural action
of gl(I") on V™. Hoere for v="(2",---, oM eV=I_,,p,= 1, p)E V' =],
and ¢{=(¢,,--+,¢,)e V", by Lemma 3.1 we have

[v,p.] &= (vp,+ (B,0)1,) = —E(vp, + (P,V)1,)
= —{(v)p,— Pu(?)C.
Thus we obtain
X = XY =L@ p,+p()uE=p ()4,
since &(v)=(u-&)(X)=A(X)=0. This implies the required equality.

Now suppose that a projective structure Q < F*(M) is given. Let
D be the canonical contact structure on P(T°M). For a given [A]e P(T"M)
with @w([1])=x, take a local torsionfree connection n belonging to Q
defined over a neighbourhood of x, and set

Ey={X{; Xe[A]1},

Xﬁl being the horizontal lift of X to P(T*M) with respect to 5. By
Lemma 4.1 it is determined by Q independently on the choice of
n. Further we set

E};=Kernelw,: T\ (P(T"M)) - T, M.
These determine subbundles E and E’ of T(P(T'M)).

Theorem 4.2. The triple (D; E,E') above is a Lagrangean contact
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structure on P(T"M). This will be called associated to Q.
Proof. Recall that D is given by
Dy;;=Kernel(s"a);,

taking a local section s of gq: ff“‘M—»P(T“IV!) around [A]. We set
A=s([A]). First note that then we have

s X1 — X¥ < Kernel(g,), € Kernel(p,),,

because q*s,,Xﬁl- q*Xfi]:Xg]—Xﬁ]:O. Now for each Xe[A]l} we
have that oz(s*Xﬁ]~X§')=0 by the remark above, and hence

()X = XE) = 2(p. XE) = A(X) =0.
Thus we get E;; = Dy;;.  Furthermore, for each Xe E}; we have
psX=wgs5X=w,X=0,
and so
(s')(X) =(5,X) = 4(p,5,X) =0.

Therefore, we have also E; < Dy

Next, we shall show that d(s*oc)(Xﬁl, Y5])=O holds for every
X, Ye[AlL. Indeed, by the remark above we can write

s XA =X"1aly, s, YE,=Y¥+bl], abeR,
and so by Example 1.1 we have

d(s'a)(XT, YR ) =da(XT + ad}, Y +bA))
1
=§(a1( Y) +b4(X))=0.

It remains to show that d(s"a)(E;;, Ef;)={0}. But this is clear since E’
is an integrable subbundle of T(P(T"M)).

5. Cartan connections associated to Lagrangean contact
structures

In this section we assume that #>2 and retain the notation in Section
3. Let G=L=PL(n+1) and g=LieG=I[=sl(n+1) so that G = Aut(g).
We set
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10 0
E=1{00 0 | e€g,
00 —1

g,={Xeg; [E,X]=pX} p=-2,-1,0,1.2,
which determines a GLA-structure on g:
9=8-2+8-1+8o+8:+82  [9,,8,] = Gpsq
We set
m=g_,+g-y, m'=g, +g,,
4'=80+81+8,

so that g=m+g (direct sum as vector space). Then m becomes a
fundamental GLA of contact type of degree n. Since B|mxm® is
nondegenerate, m” is identified with the dual space of m through B. These
subspaces g, are explicitly given as follows.

000 00 «
g_,= 00O0);aeR;, g,= 000O0]);aerR;,
v 0 0 0 0 0
0O 0 O ] { /70 b, 0
g_1= bl 0 O ;bl,bzeRn_l , g1= O 0 b2 ;bl,bzeR”—l ,
0 ', 0 g 0 0 O
« 0 0
Go= 0A4A0]);apeR AAeglin—1), trA=—(a+p)
00

Let G, denote the group of GLA-automorphims of g. It is given by
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S a 00
0 b 0]);aceR,beGL(n—1) /C,

Gy
l 00 ¢

and thus Gy © G and Lie Gy=g,. It holds that G=GyInn(g). We define
G,=expg, and G'=Ng(g'), whose Lie algebras are g, and g,
respectively. Note that G' = L'. Furthermore, g, may be considered as
an algebra of GLA-derivations of m through the adjoint action. It is
known (Yamaguchi [6]) that then the GLA g is the prolongation of (m,g,) in
the sense of Tanaka[5].

Let & (W) be the manifold of flags of W of type (1,n), that is, the
manifold of all pairs ([w],0)eP,x G, (W) with [w] < g, where G, (W)
denotes the Grassmann manifold of n-subspaces of W. Let®,: # (W) - P"
denote the projection ([w],0)+— [w] to the first factor. For [w]eP", since
T, P" is linearly isomorphic to W/[w], T},,(P") is linearly isomorphic to

[w]' ={{e W"; {(w)=0},

and hence we can identify P(7T},,P") with P([w']) in a canonical way. For
[C]eP([w]l)=P(TEw]P") we define an element o€ G, (W) with [w] = ¢ by
o={veW; {(v)=0}. Then the correspondence [{J+>([w],0) gives a
diffeomorphism of P(T*P") onto % (W) by which the projection
w,: P(T*P") —» P" corresponds to our projection @,. On the other hand,
G acts transitively on & (W), where the isotropy subgroup in G at the
standard flag ([w], [we, -+, w,_1]) is identical with G’. Therefore, we have
an identification

G/G' =P(T*P"),

by which the origin G’ of G/G’ corresponds to the point [("] € P(TY,,;P") <
P(T*P"). Note that under our identification the action of G on G/G’
corresponds to the natural action ¢ =@ of G=PL(n+1) on P(T"P"). 'This
induces an identification TiP(T"P")=m. Let p: G’ > GL(m) denote the
linear isotropy representation at [("], and set

G=p(G') = GL(m).

Then we have that Kernelp=G, and G=p(G,)p(exp g,).
Next, we set

e=g_1f\l_l, €/=g_1ﬁlo.

Then (e,¢’) is a Lagrangean pair of (g_,,4,), and hence, (n; ¢,¢) is a
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fundamental GLA of Lagrangean contact type. If we set
eo=—E,+11,
&=E;iy 1, en—1+i=Eyiy1i41 for 1<i<n—1,

we have (e;,e;)=0;;, and {e,e,---,e,,_,} is a Lagrangean contact basis
of (m; e,e’). With respect to this basis, p is given by

a 00 alc 0 0
Go321 05 0 | modCHs 0 a' 0 ,
00 ¢ 0 0 bt
0 ', 0 1 0 0

expg;dexp{ 0 0 b, J—1{| b, 1,., O |},
0 0 O —b, 0 1,

and thus G =p(Gy)p(expg,) is represented by

c 0 0
G= by a 0 ; ceR" b, ,b,eR" ' aeGL(n—1)
b, 0 ca”!

Therefore, G is identical with the Lagrangean contact group C(m; e,e’).
Thus we have proved

Theorem 5.1. The G-structures of type m are in bijective
correspondence with the Lagrangean contact structures.

ExaMpPLE 5.2. Let Q;c F?*(P") be the flat projective structure on P”
and (Dg; E,, Ey) the Lagrangean contact structure on P(T"P") associated
to Q,. Then the G-structure of type m on P(T*P") corresponding to
(Dy; Eo, Ep) is given as follows. We embed m into P(T"P") as an open
set containing [{"] by the map X (exp X)[{"], and so each ae€ G determines
a local diffeomorphism a: (m,0) » P(T"P"). We define a map p,: G-
F(P(T'P")) by

Pola@)=j(a) for aeG.

Then we have that p,(2-a)=py(2) p(a) for 2€ G and ae G’, and the image
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P pO(G) < F(P(T‘P”)) is a G-structure such that P =F po:Eo.E: )(P(T*P"))
We call P the flat G-structure of type m on P(T'P")

A G-structure P = F(M) of type m or the corresponding Lagrangean
contact structure is said to be flat if (M,P) is locally isomorphic to
(P(T"P"),P,) as G-structure.

Now we recall the result of Tanaka on Cartan connections associated
to G-structures of type m. Let P be a principal G'-bundle over a manifold
M of dimension 2n—1 and w a Cartan connection in P of type G/G’ in
the same sense as in Section 3. Let

w=a)_2+w_l+wo+wl +(D2

be the decomposition of w into the sum of g,-components w,. Then the
curvature Q=dw+3[w,w] of w can be written

1
Q=-2—K((w_2+w_1)/\(w—2+w— 1))

by a g®A?m*-valued function K on P. We say that w is normal if it
satisfies the following two conditions.

(1) The g_,®A%g" j-component of K vanishes on P.

(2) If {eg,ey,"--,€2,-,} is a basis of m with (e,e)=0;;, and
{€b, €1, -, €5,—»} the basis of m"* dual to {¢;} with respect to B, then

@RX) = leh Koo X1+ LK ([, Xlpe) =0 for Xem,

where in general X, denotes the m-component of X € g with respect to the
decomposition g=m+g’.

Let P be a principal G’-bundle over M endowed with a Cartan
connection  of type G/G’ and P < F(M) a G-structure of type m with
the restriction 0 to P of the canonical form on F(M). We say that
(P,w) is associated to P, if there exists a group reduction p: P — P relative
to p, namely, a bundle map p inducing the identity on M and satisfying
p(z-a)=p(2) p(a) for ze P and aeG’, such that

ﬁ*0=w_2+a)_1.

ExampLE 5.3. Let Pg be the flat G-structure of type m on
P(T'P"). Set P,=G, which is a principal G’-bundle over P(T"P"). 'Then
the Maurer-Cartan form @ of G is a normal Cartan connection in P, of
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type G/G" with the curvature Q=0 such that (P,,w) is associated to ﬁg.

Theorem 5.4. (Tanaka [5]) For any G-structure P of type m on a
manifold M of dimension 2n—1, there exist a principal G'-bundle P over M
and a normal Cartan connection w in P of type G/G’ such that (P,w) is
associated to P.  Our (P,w) is unique in the following sense. Let (P,w) and
(P',w') be associated to P and P with canonical forms 0 and 0’ by group
reductions p and p’, respectively. Then

(a) for any G'-bundle isomorphism @: P — P with ¢*w' =w there exists
a G-bundle isomorphism @: P— P with @0 =0 which is induced by ¢ in
the sense that p'o@=@op; and

(b) conversely, for any G-bundle isomorphism &: P — P with ¢'0' =0
therve exists uniquely a G'-bundle isomorphism @: P — P with ¢*w’' =w which
induces .

In the same way as in Corollary 3.5 we get the following.

Corollary 5.5. Pis flat if and only if the curvature Q of @ vanishes on P.

6. Cartan connections associated to projective cotangent
bundles

Let M be a manifold of dimension >2 and &: P(T"M) —> M the
projective cotangent bundle of M. Fix a projective structure ©*: Q — M
on M. Let (D; E,E’) be the Lagrangean contact structure on P(T"M)
associated to Q, and n: P — P(T*M) the G-structure of the Lagrangean
contact frames of (P(T°M),D; E,E'). We define maps p: Q - F(P(T"M))
and #: Q - P(T*M) as follows. Let 2=j3(f)e Q where f: (V/,0) > M is
a local diffeomorphism. We embed 17 into P" as an open set containing
[we] as in Section 3. Then f induces a local diffeomorphism
F: (P(T"P"),[(") » P(T*M), and the differential

Fgr: M= TymP(T"P") > Ty P(T"M),
where [A]=/({"]), is a linear isomorphism. We define
p(2) =) € F(P(T"M)),
(=) = (") € P(T"M).
Then we have that nop=*, @oft =72, and

(%) p(z-a)=p(z): p(a) for zeQ, aeG'.
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Note that # is a surjective map.
Lemma 6.1. p(Q)=P.

Proof. We may assume that f above is given by
f(v)=Exp"u(v) for vel,

where 5 is a local torsionfree connection belonging to Q defined over a
neighbourhood of x=7%(z) and u=7%(z)e F(M), 72 being the projection
F*(M) - F(M). We make use of the basis {&,} of I_, in Section 3, its
dual basis {¢'}, and the basis {¢;} of min Section 5. Let q: T*M — P(T*M)
and ¢qq: f“P”—»P(T‘P”) be the natural projections. Then we have the
following commutative diagram.

o —l o
To(tPy=v+r L (1" M)

q()tl Q.l
TenP(TPY=m L T (P(T M),

where V=I1_;=T,,;P"and A=u-{". Here the decomposition T z( TP"=
V+ 1™ is the one induced from the trivialization of 7"P" around [w,]
through the embedding V< P". For 1<i<n we have ¢q,(¢;)=¢; and
()7 1E) = (X)E, where X;=u(g)e[A]t = T M, and hence p(z)e;=(X),.
Furthermore, we have go,(¢) =e,_, +; and (f7), (&) =(A)}, where A'=u-¢'e
T:M, and hence p(2)e,_;+;=4q,(A)s. Thus p(z) maps ¢ and ¢ to E;
and Ey;, respectively. Together with Example 2.2, we know that A(2)
is a Lagrangean contact frame of (P(T"M),D; E,E'), that is, p(z)eP.
Furthermore, it follows from (*) that p(Q) is invariant under G. Thus
we obtain the lemma.

Lemma 6.2. For 2,2 €Q, we have fi(2)=7(2") if and only if there
exists an element a€ G’ such that 2’ =z-a. Therefore : Q - P(T"M) is a
principal G'-bundle over P(T"M).

Proof. Let 2=j3(f) and 2’ =j3(f"). Suppose that #(z)=%(2'), that is,
A =F(¢"). Since then #2(2)=7*(%), there exists an element ae L'
such that j2(f)=j&(fca). This implies that F (") =Aa[L). Therefore,
from the assumption we obtain 4[("] =[("], which means that ae G’. 'Thus
we get 2’ =z-awhereae G’. The converse is clear from (¥) and nop=17.
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Let @ be the normal Cartan connection in the L’-bundle #*: Q - M
of type L/L’ (see Theorem 3.4). Since G' < L' = L=G, we may regard
® as a Cartan connection in the G'-bundle #: Q —» P(T*M) of type
G/G'. Let

(l_)=w_2 +CU_1 +a)0+w1 +w2
be the decomposition of @ into the sum of g-components w,.

Lemma 6.3. For the restriction 0 to P of the canonical form on
F(P(T'M)), we have

pA*0=CU_2+(U_1.

Proof. Since [_y=e+g_,, [(=¢+(,ng"), and m=g_,+e+e’, we
get a decomposition

[_,+l,=m+((,ng) (direct sum as vector space).

Denote by [,: [_, +1;, = m the projection with respect to the decomposition
above. Let 0% be the restriction to Q of the second canonical form on
F*(M), which is an [_, +1,=V+gl(}V)-valued 1-form on Q. First, we
shall show that

pro=1,002

For that purpose we define a map [: F(M) - P(T"M) by ur u-[£"], where
{&'} is the one in Lemma 6.1. The corresponding map for P* will be
denoted by [,: F(P") > P(T*P"). Note that at the point e=id, € F(P") its
differential [y,: T (F(P")) = Tym(P(T"P") corresponds to the projection [,
under the identification T, (F(P")=I_,+I, induced from the local
trivialization F(P")| V' =V x GL(V) through the embedding IV < P". Now
let z=72()eQ and set u=72(2), [A]=#(z)=Uu). Then it follows from
definitions that the following diagram is commutative.
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92

<

i TuFM) YR TP ———— 1,41,
()4

T!Q l *l lo *l
T

Ta(PT*M)) L2y T P(T*P?)

3N
—

L 5

0Py

This implies the required equality. Thus it suffices to show that

lm°02=a)_2+w_1.

Let
D=0 _,+ Do+ D,

be the decomposition of @ into the sum of [,-components @,. Since @
is normal, for any XeTQ we have 0*(X)=d_(X)+@o(X), and hence
&(X) =0*(X)+®,(X) with @,(X)el; = g'. Therefore

@(X)=0*X) modg'.
On the other hand we have
d(X)=w_,(X)+o_(X) modg.

These imply the required equality.

Theorem 6.4. Let Q be a projective structure on a manifold M of
dimension n>2 and @ the normal Cartan connection in Q of type L/L’. Let
P be the G-structure of type m on P(T*M) corresponding to the Lagrangean
contact structure on P(T*M) associated to Q. Then & is a normal Cartan
connection of type G/G' in the principal G'-bundle #: Q — P(T"M) such
that (Q,®) is associated to P.

Proof. It follows from Lemmas 6.1 and 6.3 that (Q,®) is associated
to P. The curvature Q=dod+1[®,®] of @ is written in two ways:
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Q=

1
Ko A@—1)=5K((w—2 to_)Mo_+w_y)),

N | =

where K is the curvature function for the L’-bundle #2: Q — M, and K
the one for the G’-bundle #: Q —» P(T*M). They are related as

K(X,V)=R(r(X),(Y) for X,Yem,

where r: m — [_, denotes the projection with respect to the decomoisition
m=I[_,+¢". For any X,Yeg_,, from K_;=0 we have

K(X,Y)=K((X),rn(Y))=Ky(r(X),n(V))+ K (r(X),r(Y))
elotly =g +g,

that is, the g_,-component of K(X,Y) is 0, and hence the g_,®A%g" ;-
component of K vanishes. Thus it remains to show that ¢*K=0.

Let {é,,---,¢,} be the basis of [_; with (¢,¢;)=0,; and {&},---,&)} the
basis of I, with B(g;,&})=0,;, defined in Section 3. Let {eg, ey, -, €5,_5}
be the basis of m with (ei,ej)=5ij defined in Section 5, and further define
a basis {ep, e, -, €5, ,} of m* with B(e,ej)=06;; by

eB: Eln+1)
e&i=FEiiv1, €-1+i=FEiiin+1 for 1<i<n—1.
Note that e,= —e¢,,e,=—¢,, and ¢;=¢;,¢;=¢; for 1<i<n—1, and that
r(eq)= —é,and r(e;) =¢;,7(e,_+;)=0for 1 <i<n—1. Recall that for Xem
we have

2n-2

Z_ K([e:‘()XP_Im)ei)‘
i=0

2n—2 1
(TKY(X)= ), [e?,K(e,-,X)]+§
i=0
Now we have
le}, K(e;, X)) =[ei, K(r(e;), 7(X))]
(&5, K(&,,n(X))] 1=0,
= < [e1, K(&;,7(X))] 1<i<n—1,

0 n<i<2n—2,

and hence
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.;0 ¢}, K(ei, X)] =} [¢1,K(&,7(X))] = (0" K)(1(X)).

i=1
Furthermore, [€y, X]€[g8,,8-,+3_;] ©go+g; = ¢, and so

K{([€, X]ums €0) =0.

859

For 1<i<n—1, since [¢;,m]c], we have [e},m],<¢, and hence

r([e;, X],.)=0. Therefore
K([€}, X1 €)= K(r([¢}, X] ), 7(e) =O0.
For n<i<2n—2, since 7(¢;)=0 we have

K([e:) X]m) ei) = K(r([e;! X]m)) r(ei)) = 0

Consequently we get

@K)(X)=@Rr(X) for Xem.

Since 0*°K=0 by normality for K, we obtain ¢*K=0.

Now Corollaries 3.5 and 5.5 imply the following.

Corollary 6.5. The Lagrangean contact structure on P(T*M) associated
to a projective structure Q on M 1is flat if and only if Q is projectively

flat, provided dim M >?2.
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