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1. Introduction

We work in the smooth category with free actions by groups in the
present paper. Let us recall Milnor's theorem:

Theorem 1.1 ([6; Corollary 12.13]). Any h-cobordism W between
lens spaces L and Lf must be diffeomorphic to Lx [0,1] if the dimension of
L is greater than or equal to 5.

Let Zm be the cyclic group of order m. Then we see that Theorem
1.1 is put in another way as follows:

Theorem 1.2. Let S(V) and S(V') be free linear Zm-spheres of
dimension 2n—1^5. Then any Zm-h-cobordism W between S(V) and
S(V) must be Zm-dίjfeomorphic to S(V)xIy where J=[0,l].

Let R be a ring with unit, G a finite group. Put GL(R) = lirη GLJR)
and E(R) = [GL(R),GL(R)] the commutator subgroup of GL(R). Then
K^R) denotes the quotient group GL(R)/E(R). Let Z be the ring of
integers and Q the ring of rational munbers. Let Z[G] and Q[G] denote the
group rings of G over Z and Q. The Whitehead group of G is the
quotient group

Wh(G) = K1(Z[G])/<±g:geG>.

The natural inclusion map i:GL(Z[G])-+GL(Q[G]) gives rise to a group
homomorphism ύiK^ZlG^-^K^QlG]). Then SKγ{Z[G]) is defined by
setting

In [15], C.T.C. Wall showed that SKt(Z[G]) is isomorphic to the torsion
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subgroup of Wh(G). We will apply the following algebraic result to
extend Theorem 1.2.

Theorem A. Let G be a finite group which can act linearly and freely
on spheres. Then SKt(Z[G]) = 0 if and only if G is isomorphic to one of
the following groups.

(1) A cyclic group.
(2) A group of type I in Appendix(a metacyclic group with certain

condition).
(3) A quaternionic group Q(8ί) with generators ByR and relations

£ 4 ί = l, B2t = R2 = (BR)2, where t^l.
(4) A group Q(8ί,m1)m2) generated by A, B, R with relations

Amm2 = B4* = l, BAB~i=A-\ R2 = B2t

y RAR~i=A\ RBR~i =
J B " 1 , where m 1 , m 2 ^ l , m 1 m 2 > l , (m1,m2) = l, (2ί,m1m2) = l,
l=-\(mt), l=\(m2).

(5) The binary tetrahedral group T*.
(6) A generalized binary octahedral group O*(48ί) generated by

B,P,Q,R with relations B3t= 1, P2 = Q2 = (PQ)2 =
Q, BQB~1=PQi RPR~1 = QP, RQR-1 = Q~\
where t is odd.

(7) The binary icosahedral group I*=>SL(2,5).
(8) The group generated by *SL(2,5) and an element Sy where

Q ) ( ^ J for
LeSL(2y5).

We obtain the following applications of Theorem A as generalizations
of Theorem 1.2.

EXAMPLE B. Let G be a finite group in Theorem A. Let X be a
free G-homotopy sphere of dimension In —1^5, and let S(V) and S(V')
be free linear G-spheres of dimension 2n—1^5. Then,

(1) Any G-Λ-cobordism W between X and itself must be
G-diffeomorphic to X x /.

(2) Any G-/*-cobordism W between S(V) and S(V') must be
G-diffeomorphic to S(V)xI.

EXAMPLE C. Let G be a finite group. Let X be a free G-homotopy
sphere of dimension 4w+1^5, and let S(V) and S(V) be free linear
G-spheres of dimension 4w+1^5. Then,
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(1) Any G-Λ-cobordism W between X and itself must be G-dif-
feomorphic to X x /.

(2) Any G-/*-cobordism W between S(V) and S(V) must be
G-diffeomorphic to S(V)xI.

When G is a compact Lie group of positive dimension, a generalization
of Theorem 1.2 is:

Theorem D. Let G be a compact Lie group of positive dimension
which can act freely on spheres. Let X"1 and X'm be free G-homotopy spheres
of dimension my and let (W;XyX

f) be a G-h-cobordism of a free G-action.

(1) // G = S1 and m = 2n-ί^7y then W must be S1-dijfeomorphic
to Xxl.

(2) / / G = NS1 andm = 4n-1^7y then Wmust be NS1-diffeomorphic
to Xxl where NS1 is the normalizer of S1 in S3.

(3) If G = S3 and m = 4 n - l ^ l l , then W must be Sz-dijfeomorphic
to Xxl.

This paper is organized as follws: Section 2 presents the proof of
Theorem A. In section 3 we prove Examples B and C, and state some
results on G-Λ-cobordisms between G-homotopy spheres. We prove
Theorem D in section 4. Appendix is devoted to quoting the table of
the finite solvable groups which can act linearly and freely on odd
dimensional spheres from [16].

2. Proof of Theorem A

First, let G be a finite solvable group which can act linearly and
freely on spheres. As in [16; Theorem 6.1.11], there are 4 types for
such kinds of groups. For the convenience of the readers, the table of
these groups are cited in Appendix. We now recall the structure of
SK^ZIG]) of these groups G. We must prepare the following notations.

Let Gl9 G2, G 3 and G 4 denote the groups of type I, II, III and
IV respectively mentioned in the table in Appendix. Let (a1,a2,'-,aλ)
denote the greatest common divisor of integers {alya2,'-,aλ}y and let
mynyr,lykyuyv and d be the integers appeared in the definition of Giy G2,
G3 and G4.For positive integers ocyβyy and δy put

Mβ = (rβ-lym)y

D((x) = {xeN I x is a divisor of α},

D{<xyβ) = {xeD{<x) I x can be divided by /?},



406 F. USHITAKI

If d is an even integer, we put d' = d/2, and put

for some integer a with 0^a<m/M2uβ}

— ίt (J Z)(m)^_lrn/4_

t\2) = #{(α,jβ) I j?GD(tOΣ-i,α

) ( / l / / 4 l ) 0 ( ) or

for some integer a with 0 ^

— it (J
0<b<d

ί(3)= Σ W(Mβ)-ί,
βeD(n,3)

ί(4)= X ^(M,,)- £ *D(Mt)77+ί.

Then we have:

Theorem 2.1 ([12; Theorem]). Let Gly G2, G3 and G 4

groups of type I, II, III <zmf IV respectively.

(2) ^ ^ ( Z C G j ] ) ^ ^ 2 ' z/ rf ΰ α«

S'XiίZfGz])^^' 2 ' if d is an even integer.

(3) f
(4)

By Theorem 2.1, we get (1) and (2) of Theorem A. Let G\ be a
group G2 such that <ί is odd. At first, we determine the group G\
satisfying SK1(Z[Gl]) = 0. Put
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for some integer a with 0^a<m/M2Uβ}y

and

0<b<d

By [12; §3], f(2) the 2-rank of ^ ( Z f G j ] ) is calculated by

It is easy to see that 2Γ_ is a subset of ^ + . Suppose that ί(2) = 0. Then
it is necessary that D(v)l_i={v}. In fact, if there exists an element β
of D(v)%-ι which is different from v> we see that the ordered pair of
numbers (M2Uβyβ) is in &~+9 but is not in ^~_. Hence, if β in D(v)
satisfies β(k—l) = 0 (υ), it must be equal to v. Thus we have
(A-l,ϋ) = l. Since £2 = 1 (n) and Λ = - l (2"), it holds that k=-l
(n). Since d is a divisor of k—ί and rf is odd , by [12; Observation
3.1 ] (k — 1 yv) is divisible by d. Hence we have d = 1, thereby r = 1 (m). By
using (w(r—l),m) = l, we get ra = l, that is, -4 is equal to the identity
element of G\. Thus if SK1(Z[Gl]) = 0y G\ must be isomorphic to a
group of order 2n which is generated by the elements of the form B and
i?, and which has relations:

Bn=\y R2 = Bn/2, RBR-1=B~i

i

where n is a number of the form 2uv for some w^2, (vy2) = ίy

v^.1. Conversely, we can easily check that SKX for this group
vanishes. By putting t = n/Ay we have (3) of Theorem A.

Let G2 be a group G2 such that d is even. Next, we determine the
group G2 satisfying SK^ZIG^]) = 0. Since d is even, we have m > 1. Put

l-u oceD(M2uβ)y

ί9 r w / 4 - l ) = 0(m) or

for some integer a with 0^a<m/M2up}y

and

^l={(α,ϋ)|αe 1J
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By [12; §3], t'{2) the 2-rank of SK^ZlGζ]) is calculated by

It is easy to see that ^ Ί is a subset of ZΓ'+. Then by the same argument
as before, we have D(v)l_i={v} and (k—l,v) = l. Since k2 = l (n) and
k + 1 = 0 (2M), it holds that k = - 1 (w). Since rf is even, by [12; Observation
3.1], d — d/2 is a divisor of (k— l,v). Hence, we have d=2, thereby rψ\
(m) and r2 = ί (m). Now we claim that r= — 1 (m). In fact, since (r+1)
(r— l) = 0 (m) and (r— l,m) = l, it holds that r + l = 0 (m) or m = l . How-
ever, it must hold r=— 1 (m) because m>\. Therefore, we have

(lrd'-ί, rw/4—1) = (/+1,( —l)n/4—1).

Thus, for # ^ + = # ^ " 1 , it is necessary that

#{αeD(m)|α(/-l, ( - 1 ) W / 4 - 1 ) = 0 (m)

or α(/+l, ( - 1 ) W / 4 - 1 ) = 0 (m)}

= # U (D(m)Tι-1,(-Dn/4-1.(-i)biΛ +1) U ^ (

However, we can easily check that this formula always holds. Thus,
if *SriC1(Z[G2]) = 0, G2 must be isomorphic to a group of order In which
is generated by the elements of the form A> B and Ry and which has
relations:

where myn and / satisfy the following conditions:

, (w,ra) = l, /2 = 1 (m),

Conversely, we can easily check that SKX for this group vanishes. Now,
we put t = n/4. Since /2 = l(m), there exist two integers m1 and m2 such
that m = m1m2y (miym2)= 1, / = — 1 ^ ^ , and /=l(ra2). Conversely if we
write m = ra1ra2 where (m1,m2) = l, there exists an integer / uniquely
modulo m such that /= — 1 ^ ) and /=l(m 2). We denote this group by
Q(Stymiim2) (This notation is based on [11]). Thus we get (4) of
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Theorem A.

Next, we determine the group G3 satisfying SKt(Z[G3]) = 0. Assume
that

t(3)= £ W(Mβ)-\=0.
βeD(n,3)

Since %D(Mβ)^.ί for every βeD(n,3), it is necessary that #Z)(«,3) = 1.
Hence, n must be 3, thereby d is 1 or 3. However, if d==3, n/d is not
divisible by 3. Hence d must be equal to 1, thereby r=ί(m). By using
(n(r— l),ra) = l, we have ra=l, that is, A is equal to the identity element
of G3. Thus, if SKi(Z[G3]) = 0, G3 must be isomorphic to a group of
order 24 which is generated by the elements of the form B,P and Q,
and which has relations:

B3 = ί, P2 = Q2 = (PQ)2, BPB~X = Q, BQB~1=PQ.

This group is the binary tetrahedral group T*. Conversely, we can easily
see that SK1(Z[T*]) = 0. This proves (5) of Theorem A.

Next, we determine the group G4 satisfying *Si^1(Z[G4]) = 0. Sup-
pose that

ί(4)=

Then it is necessary that D(n,3)=D(n,3)l+1. In fact, if there exists an
element β0 of JD(W,3)-Z>(«,3)2 + 1 , since #Z)(M^O)^1, we have
Hence, for every element β in D(n,3), it must hold that
(w). In particular, we have 3(k + l) = 0(n). Thus k must satisfy
&+l=0(w/3). We claim that k= — l(w). In fact, if k is congruent to
n/3 — 1 or 2n/3 — 1 modulo «, the conditions k+ 1 =0(3) and n = 0 (3) imply
w = 0 (9), but it is a contradiction to the condition k2 = l(n). Therefore
we have

rk-ι=rn-2 = rn = \ (m),

which implies d is a divisor of (n — 2,n). Since a group G 4 has odd n,
we have d=ί. By the same argument as above, we have m = l, that is,
yl is equal to the identity element of G4. Thus if SK1(Z[G4]) = 0, G 4

must be a group of order ίβn which is generated by the elements of the
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form B, P, Q and i?, and which has relations:

BPB~1 = Qy
1=Q-\ RBR-1=B~1

where n is divisible by 3, but is not divisible by 2. This group is the
generalized binary octahedral group O*(48ί) Conversely, we can easily
check that SK1(Z[O*(48t)]) = 0. This proves (6) of Theorem A.

Next, we consider the case that G is non-solvable.

Lemma 2.2 ([16; 6.3.1 Theorem]). Let G be a finite non-solvable
group. If G has a fixed point free representation, then G is one of the
following two types.

TYPE V. G = Kx *SL(2,5) where K is a solvable fixed point free group
of type I in Appendix and order prime to 30.

T Y P E VI. G = <G5yS> where G5=KxSL(2,5) is a normal subgroup

of index 2 and type V, S2 = -leSL(29S)9SLS'1=(° ~)L[ ~)

for LGSL(2,5), and S normalizes K.

Let G be a finite group of type V or VI. For an odd prime p,
since ^-Sylow subgroups of G are cyclic, »SJK"1(Z[G])(p) = 0. Hence by
[7;Theorem 3], SK^ZIG]) is generated by induciton from 2-elementary
subgroups of G, that is, SKi(Z[G]) = 0 if and only if G has not a subgroup
which is isomorphic to Γ x 5 2 where Γ is a cyclic group of order prime
to 2 and *S2

 1S a 2-group. In these cases, SKi(Z[G]) = 0 if and only if
G has not a subgroup of the form Γ x Q8 (see [5]). Hence K must be
{1} which proves (7) and (8) of Theorem A.

3. G-Λ-cobordisms between G-homotopy spheres

Let Wh(G) be the Whitehead group of G, Um{G) and Lh

m(G) the Wall
groups (for the Wall groups, see [2], [14]). Z[G] is the integral group
ring with involution - defined by Έagg = Σagg~1 where ageZ and
geG. For a matrix (x(j) with coefficients in Z[G], (x^ ) is defined by
(Xji). Then Wh(G) has the induced involution also denoted by -. We
define a subgroup Am(G) of Wh(G) by

and put
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Am(G)=lm(G)/{τ + (-\)mτ\τeWh(G)}.

Let c:A2n + ι(G)-+Ls

2n(G) be the map in the Rothenberg exact sequence

- - A2n+i(G) A U2n(G) -1 L\n(G) - - ,

and c: Ά2n + ι(G) -> Z,2Π(G) the map determing c (for this exact sequence,
see [8; Proposition 4.1]).

Proposition 3.1. Let G be a finite group such that »Si^1(Z[G]) = 0.
Then the following hold:

(1) If X is a free G-homotopy sphere of dimension 2« —1^5, any
G-h-cobordism W between X and itself must be G-diffeomorphic
to Xxl.

(2) If S(V) and S( V) are free linear G-spheres of dimension In — 1 ̂  5,
any G-h-cobordism W between S(V) and S(V') must be
G-diffeomorphic to S(V)xI.

Proof. (1) In the case |G |^2, since it holds that Wh(G) = 0, the
conclusion follows from the s-cobordism theorem. Our proof will be
done under | G | ^ 3 . Let IF be a G-λ-cobordism between X and itself,
with dim W=2n^6. To distinguish the inclusions of X to W> we put
dW=XUX\ where X is a copy of X. Let i:X-> W and ϊ\X' -• W be
the natural inclusion maps. Let r be a G-homotopy inverse of i. Since
the order of G is greater than or equal to 3 and G acts freely on a
homotopy sphere X with dimX^5, any G-self-homotopy equivalence of
X is G-homotopic to the identity map. Hence, we have

On the other hand,

= r.(τ(ί)-τ(ι)).

Thus we have τ(ί') = τ(ί), that is,

τ{W,X) = τ{W,X').

By the duality theorem ([6; p. 394]), we also get
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Hence by these formulae, we see that τ= — τ, that is, τ is an element of

Since G has periodic cohomolgy, ?̂2w + i(^) *s isomorphic to
SKX(Z[G]) by [9; Theorem 3]. Hence we have A2n + i(G) = 0, thereby
τ = 0.

(2) Let C be a cyclic subgroup of G. By Theorem 1.2, res cF= rescF'
as real C-modules. Thus V=V as real G-modules, and then S(V) is
G-diffeomorphic to S(V). Since SK1(Z[G]) = 0, the conclusion now
follows from (1) of this proposition. •

Proof of Examples. Example B follows from Theorem A and
Proposition 3.1 immediately. By [10], if a finite group G whose 2-Sylow
subgroups are quaternionic acts freely on spheres, its dimension must be
4w — \(neN). Hence, if a finite group G can act freely on spheres of
dimension 4w + l, the 2-Sylow subgroups of G are cyclic. Thus G must
be of Type I in Appendix, thereby SKx{Z\G\) — 0, which proves Example
C.

In [13], we studied G-Λ-cobordisms between G-homotopy spheres and
obtained the following results:

Theorem 3.2 ([13; Theorem K\).Let G be a finite group, and X a
free G-homotopy sphere of dimension 2n —1^5. Then the following (1) and
(2) are equivalent.

(1) Any G-h-cobordism W between X and itself must be G-diffeomorphic
to Xxl.

(2) ker c is trivial.

Corollary 3.3 ([13; Corollary B]). Suppose ker c = 0. Let S(V)
and S( V) be free linear G-spheres of dimension 2n — 1 ̂  5. Then a
G-h-cobordism W between S{V) and S{V) must be G-diffeomorphic to
S(V)xI.

Theorem 3.2 is shown by using surgery theory. Corollary 3.3 is an
immediate consequence of Theorem 3.2. Since by [9; Theorem 3]
SK1(Z[G]) = A2n+1(G) for a periodic group G, Proposition 3.1 is a special
case of Theorem 3.2 and Corollary 3.3. Moreover, as in [13], there
exists a finite group G such that *SK1(Z[G])τέ0 and kerc = 0. For
example, let p be an odd prime, q a prime such that # ^ 5 . Let G be
Q 8 x Zp, T* x Zq, or O* x Zq, where Q8, T*, and O* denote the quaternionic
group, the binary tetrahedral group, and the binary octahedral group
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respectively. Then we see that SKΪ(Z[G]) = Z2 and any G-A-cobordism

W between a free G-homotopy sphere X of dimension \n — 1 ̂  7 and

itself must be G-diffeomorphic to Xxly because kerc = 0.

4. Proof of Theorem D

Let G be a compact Lie group of positive dimension which can act

freely on a sphere. Then by [3; p. 153, Theorem 8.5], G must be

isomorphic to S1, *S3 or NS1 the normalizer of S1 in S3. If G is S\

the dimension of a sphere on which G acts freely is 2n —1(«^1). If

G is NS1 or AS3, it is An — l(w^l) because G has a subgroup which is

isomorphic to Q8. Now we recall the equivariant Whitehead group which

is defined by S. Illman. By [4; Corollary 2,8],

0 where m = 2n-ί^7y

WhNSl(Xm)^Wh(Z2) = 0 where m = 4w-1^7,

Whs3(Xm)^Wh(\) = 0 where m = 4n-\^lί.

Thus (W;XyX') is a G-s-cobordism in the sense of [1]. The conclusion

now follows from the conditions about the dimension of the homotopy

sphere by using[l; Theorem 1].

5. Appendix

Let G be a finite solvable group. Then G has a fixed point free

complex representation if and only if G is of type I, II, III, IV below,

with the additional condition: if d is the order of r in the multiplicative

group of residues modulo m, of integers prime to m, then n/d is divisible

by every prime divisor of d.

TYPE I. A group of order mn that is generated by the elements of

the from A and B, and that has relations:

where myn and r satisfy the following conditions:

m>lyn>ly(n(r— l),ra) = l,rw= l(ra).

TYPE II. A group of order 2mn that is generated by the elements

of the form Ay B and Ry and that has relations:

R2 = Bn/2

y RAR~1=A\
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in addition to the relations in I, where m, n> r> I and k satisfy the following
conditions:

P Ξ / ^ Ξ I W , k=-l(2u)y

in addition to the conditions in I.

TYPE III. A group of order Smn that is generated by the elements
of the form A,ByP and 0, and that has relations:

= QA,

BPB~1=Qy

 i

in addition to the relations in I, where m, n and r satisfy the following
conditions:

"=1(2), n = 0(3)

in addition to the conditions in I.

TYPE IV. A group of order Iβmn that is generated by the elements
of the form A,B,P,Q and R, and that has relations:

R2=P2, RPR~1=QPf RQR-i = Q-\

RAR~1=Aι, RBR~1=Bk

in addition to the relations in III, where m, «, r, k and / satisfy the
following conditions:

in addition to the conditions in III.
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