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Introduction. This is a continuation of Part I, which appears in the same
Journal.

In the previous paper we take a Grassmann bundle G,(TM) over a compact
simply connected irreducible riemannian symmetric space M and consider a
G-orbit €V in G(TM) by the isometry group G of M. For each €} we can
define a class of submanifolds in M, so is called, a CV/-geometry. We more-
over assume that €} is a G-orbit which contains an s-dimensional strongly
curvature-invariant subspace. Then €V corresponds to a PSLA (g, o, 7) of com-
pact semisimple Lie algebra g and two commutative involutions o, 7. PSLA’s
are algebraicaly divided into those of inner type and those of outer type.

Our aim in this article is to prove the following

Main Theorem. Let M be an irreducible compact simply connected rieman-
nian symmetric space and <V a G-orbit of inner type. Then the Lie algebra g of
Killing vector fields on M is compact simple and the following hold for g of classical
type:

(1) Let g be the Lie algebra of type A;, 1>1. In this case the CV-geometry
admits non-totally geodesic CV-submanifolds if and only if it is one of the V-
geometries in Example 2, (1).

(2) Let g be the Lie algebra of type B;, 1>2. In this case the CV-geometry
admits non-totally geodesic <V-submanifolds if and only if it is one of the V-
geometries in. Example 1 (m : even and r : even).

(3) Let g be a Lie algebra of type C,,1>3. In this case the <V-geometry
admits non-totally geodesic <VV-submanifolds if and only if it is one of the CV-
geometries in Example 3, (2).

(4) Let g be the Lie algebra of type Dy, 1>4. In this case the CV-geometry
does not admit non-totally geodesic CV-submanifolds.

Examples appeared here are known ones as ¢{/-geometries in rank one sym-
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metric spaces of classical type: The Cl/-geometries in Example 2, (1) are the
classes of complex submanifolds in the complex projective space; The V-
geometries in Example 1 are the classes of even-dimensional submanifolds in the
even-dimensional sphere; The €I/-geometries in Example 3, (2) are the classes
of half-dimensional totally complex submanifolds in the quaternion projective
space. (For details see Part I.)

The claims (1), (2) have been proved in Part I and the claims (3), (4) will be
proved in the present Part II. The procedure is similarly done to Part I;
In these cases we first classify the PSLA’s of inner type and then for each PSLA
we apply the representation-theoretic method which is prepared in §§1, 2, Part I.

We retain the definitions and notations in Part I. Main notations are here
described:

(1) %, p mean the (J1)-eigenspaces by o and . (resp. b.) mean the (4-1)-
eigenspaces in f (resp. ) by 7;

(2) Take a suitable maximal abelian subspace § in £,. Then §€ is a Cartan
subalgebra of Lie algebras £¢, g°. The set A (resp. A,,) means the set of roots
for g€ (resp. f) and the sets A,_, A,, mean the sets of weights for f,-modules
£, vg;

(3) II(resp. II,) means a fundamental root system for g€(resp. the semisi-
mple part of £¢). The vectors {H;} (resp. {K;}) mean the dual vectors of IT
(resp. IL,). The notations ;, 8;; mean the following involutions:

0: = expad (v Iz H), 0= expad (v—In(H,+Hy).

Moreover compare §1, Part I for the homomorphism p associated with a
PSLA, §2, Part I for the notion “‘decomposable’’, and §3, Part I for the notion
“the equivalence of first or second type”.

5. The PSLA’s with Lie algebra g of type C,

Let g be the Lie algebra of type C,, />3, that is, the Lie algebra 8p(J) of
skew symmetric matrices of degree [ over quaternions. Then the Dynkin dia-
gram of the fundamental root system II is given as follows:

O—0O—+—0<«0 —ay = 2044200+ + 20,

a  Qa a1 0 +a
Put 0;, 0 as in §3 and let C;, 1< <], C;;, 1< j<i<l, C;; g, 1< j<i<k<l, be
the families which contain the PSLA’s (g, 6,, 9;), (g, 0i, 9,), (8, 0:, 0,3), respec-
tively.

Lemma 5.1. A PSLA (g, o, ) of inner type is equivalent to a PSLA which
belongs to one of the families C;, C;; or C;, ji, by an inner automorphism of g.

Proof. We may assume that o=6@;. We divide into the following cases:
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(1) 1<i<], (2) 1=1.
Case (1): 1<i<l. Then f={, and the Dynkin diagram of II, is given as
follows:

0=0—+—0 O0—0—=—0<«0

a, a Ui-1 Oiq1 Qg -, Q

If we put 7=exp ad (/— 1z K), the following cases are considerable: (1) K=
K;,0<j<i—1,(2) K=K, i+1<k<],(3) K=K;+K,, 0<j <i—1,i+1<k<L
By Lemma 1.2 (1) we may moreover suppose the following: j+0 for (1); k=+/
for (2); (a) j=0, k=! or (b) j =0, k=1 for (3). As above, we represent the vec-
tors K, by the vectors H, ---, H;. For Case (1) it follows that K;=—H,;+H;
and thus the PSLA (g, o, 7) belongs to C;;. For Case (2) it follows that K,=H,
—H; and thus the PSLA (g, o, 7) belongs to C;;. For Case (3) (a), it follows
that K+ K,=—H;+H, and thus the PSLA (g, o, 7) belongs to ;. For Case
(3) (b), it follows that K;+K,=H;—2H;+H, and thus the PSLA (g, o, 7) be-
longs to C; ; j.

Case (2): 7=I. Then t=cPt, and the Dynkin diagram of II, is given as
follows:

0O—0——0

a o (27581

Put 7=exp ad (/— 17 K;), 1< j<I, and represent the vectors K; by H,, «--, H;.
Then K;=H;+aH, for some a€ R and thus the PSLA (g, o, 7) belongs to
C;. O

From the above proof, we can see that the subalgebras £, for C;, C;;,C; ;
are different and thus these families are never equivalent to each other.

We first see the equivalences among the families C;; and the equivalences
among the PSLA’s which belong to each C;;.

Put V'=+/—1Y and take an orthonormal basis {e,, -:-, ¢;} which satisfies that
o;=e;—e;y, for 1<i<I—1, and a;=2¢,;. Then it holds that H;=e,+--+¢; for
1<i<l and H,=(1/2) (e;++:-+e¢;). The Weyl group W(A) is generated by the
permutations of e, «:-, ¢, and the mappings w;y, 1<i<I: wi(e;)=—e; and
wi(e;)=e; for j=i. Define elements w§(1<k<I) and wi*(j, k=1, j+k<I) in
W(A) in the same way as in §3. Then it similarly follows that

H—H,;, (1<i<k<l),
wh(H;) = { 2H,—H,; (i<k=1),
H, (k<i<l),
H;w—H, (=}, J+k<I),
wi(H;) = {ZHI—H,, (E=j, jtk=1),
H, (+E<Zi<I).
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Let @t, pi*, 7 be inner automorphisms of g induced by w, wi*, w7, respectively.
For a family C;; put i=j+k and /=i4r. Then j, k,7r>1 and the follow-
ing holds.

Proposition 5.2. Two families C;;, C;; are equivalent to each other if and
only if the triples (j, k,7), (j', k', r") coincide except order.

By virtue of this proposition we may consider only the families C;; with
triple (J, k, r) such that j <k<r. Such a family is said to be a proper family of
type CI and a family without the above condition is said to be simply a family of
type CI.

Proposition 5.3. Let C;; be a proper family of type CI with triple (j,k,7)
and set (g, o, 7)=(g, 0;, 0;). Then the following hold :

(1) If j<k<r, all the PSLA’s in C;; are non-equivalent to each other ;

(2) If j=k<r, only the equivalences of first type hold;

(3) If j<k=r, only the equivalences of second type hold ;

(4) If j=k=r, all the PSLA’s in C;; are equivalent to each other.

Proposition 5.2, 5.3 can be proved in the same way as Propositions 3.2, 3.3.

We next see the equivalences among families C;; ;, and the equivalences
among the PSLA’s which belong to each C;, j,.

For a family C;,; put j=a,i=j+b, k=i+c,I=k4d. Then a,b,c,d>1
and the following hold.

Proposition 5.4. Two families C;; j;, Cy; jw are equivalent to each other if
and only if the quadruples (a, b, c, d), (a’,b’, ¢’ d') coincide except order.

By virtue of this proposition we may consider only the families C;; ; with
quadruple (@, b, ¢, d) such that a<b<c<d. Such a family is said to be a proper
family of type CII and a family without the above condition is said to be simply
a family of type CII.

Proposition 5.5. Let C;, ;, be a proper family of type CII with quadruple
(a,b,c,d) and set (g, o, 7)=(g, 0;, 0;s). Then the following hold :

(1) If a<b<c<d, all the PSLA’s in C;, ;, are non-equivalent to each other ;

(2) If a=b<c<d or a<b<c=d, only the equivalences of first type hold ;

(3) If a<b=c<d, only the equivalences of second type hold ;

4) If a=b=c<d, a<b=c=d, or a=b=c=d, all the PSLA’s in C; ;; are
equivalent to each other.

Propositions 5.4, 5.5 can be proved in the same way as Propositions 3.4, 3.5.

We last see the equivalences among families C; and the equivalences among
the PSLA’s which belong to each C;.
For a family C; put /=j+k. Then j, k>1 and the following holds.
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Proposition 5.6. Two families C;,C; are equivalent to each other if and
only if the pairs (j, k), (', k') coincide except order.

Proof. Consider the PSLA’s (g, 8,, 0,), (8, 6;, 8;-). Then the semisimple
part of £, (resp. £}) is the sum of Lie algebras of type 4;_, (resp. 4;._,) and type
Ay (resp. Ay-y).

Suppose that C; is equivalent to C;». Since f, is isomorphic to ¥}, it fol-
lows that pairs (7, k), (j', k') coincide except order.

To prove the converse we may prove the following equivalence: C;==C;

where C, has the pair (k,j). This is given by @¢. [

By virtue of this proposition we may consider only the families C; with
pair (j, k) such that j<k. Such a family is said to be a proper family of type
CIII and a family without the above condition is said to be simply a family of
type CIII.

Proposition 5.7. Let C; be a proper family of type CIII with pair (], k)
and set (g, o, 7)=(@a, 0, 0;). Then only the equivalences of second type hold.

Proof. The equivalences of second type are obtained by the following
inner automorphism: @=g¢j,1**@7. We next note that

E=8p(j)/u(j) ® ep(R)/u(k), b.=su())/8(u(j)Pu(k)).

Hence, as f,-modules, £_ is not isomorphic to p.. This implies the non-
equivalences of the other pairs. [

We now see the injectivity of the £,-homomorphism p for each PSLA in the
families of types CI, CII, CIII.
Similarly to in §3, fix a positive integer » and set

a b c

Rl—{:}:(o 01 10-0)e2’; a>0,5>0,c>0} ,

C

Rz—{:t(() 01 12+ 2.2)€Z"; a>0,b>0, >0},

(.

R} = {;{:(0 01 -12.. 21)EZ' a>0,6>0, >0},
R—RluRZ’ R’ _‘RIURZa
R*= {(); a,BER}, R”?={(8); a,BER"}.

Moreover let R*[(5),], R*[(5);, (5),], Ri[*] be subsets of R? defined as in §3. The

subsets R?[(5),], R*[():, (5),], R{*[*] may be also defined similarly. Then we can
check the following lemma by a usual argument.

Lemma 5.8. Let \ be an r-tuples in Z'. Then the following hold :
(1) The following each set has at most 2 elements :
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R R @) R () RAIMw (25
Ri[(g)l) (é)r]» R)z\[(})b (‘2’),], R;Lz[(})ly (ll))r] ;

(2) For the following sets Lemma 4.6 (2) through (7) hold :

RIG)1 Ry (7)) R 6)1 RIAG) G)] 5
R (7)1, RUAG)L RG] RIAG) 5
(3) The set R{*[(7")1, (3'),] has at most 1 elememt if \=(2-+-21), and has just

r—1 elements with form
(_1 o —1 —20 —2 —1
1 1 0.« 0 0

z:fh:(z...zl);
a b
(4) The set R*[(3'), (21),] has at most 1 elememt if 7\.=¥=(1 100 -0) (a>0,
b>0), and has just r—1 elements with forms
b

( —1 22 2. -2 1
0 .. L1 =2 —2 —1)>
:z b
<_1 e —1 e —1 —2..—2 1
0 oo 0 —T1eee—1 —2.e—2 1

b

if A= (1 -10---0);

a b

(5) The set R*[(3)1, (3),] has at most 1 element if x:i=(l 1221 -21) (a>0,
b>0), and has just r—1 elements with forms

a
A

S
1w -1-1.-10-00
0 «« 0 1 «« 1 2-.21)?

(_1 e —10-+00--+0 0)
12,

a b
if A= (1 1521 -21);
(6) The set R{[(1),] has at most 2 elements if A=(0---0), and has just 2r—2

elements with forms
(1...10...00 11221
1.10--00/)>\1:v12.221

if A=(0-+-0) and r=*1;
(7) The set R{*[(7'),] has at most 2 elements if A=(2---21), and has just
2r—2 elements with forms
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G'rat ) G s
if A=(2--21);
a b c d

(8) The set Ri[(7'),] has at most 2 elements if le:(O 0112233 -3)
(@=0,5>0, c>0,d>0), and has just 3 elements with form

u b I3

/—A—\/—A—P——g—
<0 00000 —1-- —1
001012202 2 ... 2 )

b

a b c d
if A=(0--0 11 2::2 3.-3);
(9) The set R[(3')y, (3'),] has at most 2 elements if
a b c

d
A1 1223-3442) (a>0,5>0,c>0,d>0),

and has just 3 elements with forms
a b
A Al ——— —

(_1 oo —1 —1eee —1 —1 oo —1 —200o —2 1
0 «« 0 1 «+1 2«2 2 w2 1)

i)
_

ra
-
ro

b d
(_1 e —1 1 —1 =200 —2 Z 2.2 1
0 -« 0 1 «-1 1 1 2 o2 1)

d

(_1 e —1 2 i 2 2 e 2 D ... _22 _11)

o

>

0 «+ 0 0 «+ 0 1 v 1 2 -
ISR SR SR S
if Aa=(1-e1 22 33 4---42);
(10)  The set R} 2[("‘)1, (21),] has at most 2 elements if
a b d
7&=|=(1 100 —1—1 —2:.—2-1) (a>0,6>0,¢c>0,d>0),
and has just 3 elements with forms

— e

/—_"\__\
1..-10-00 0 0 -0 0
0 «oe 0 Qee0 —1 e —1 —2.00—-2 —1)°

a b ¢

a b ¢ d
A

AL

1 1-1..-10 -0 00 0
0 ¢ 0 —1ee —1 —1 v —1 —2.0e =2 —1)°
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a b ¢ d
—1ee—1 —1+ee—1 —1 e —1 0 -« 0 0
0 oo 0 —1eee —1 —2e0 —2 —20 -2 1
b 3 d

A e e A
if A= (1 T 100 1o —1 20 —2 1),

In the following we represent a root of type C; by a linear combination of
the fundamental root system IT and identify it with an /-tuple of coefficients.

Case CI: The families C;; with triple (j, %, 7)

Put =0, and r=6;. Then, for each PSLA in (;;, the corresponding sym-
metric space M and the totally geodesic ¢I/-submanifold N are given as follows:
(N is locally described.)

(a) V=(g, o, 7): M=Sp(l)/Sp(j+k) X Sp(r). In this case

N=8p(j+7)/8p () B3P (7);

(b) V=(g, o, or): M=Sp(l)/Sp(j+k)x Sp(r). Inthis case

N=8p(k-+7)/8p(k)D8p(7);

(c) V=(g,7,0): M=Sp(l)|Sp(j) X Sp(k-+r). In this case

N=8p(j-+7)/8p(j) BEp(7);

(d) V=(g,7,or): M=Sp(l)/Sp(j) X Sp(k-+7). In this case

N=8p(j+H)/8p(j)Dsh (4);

(e) V=(g, or,a): M=Sp(l)/Sp(k) X Sp(j+7). In this case

N=8p(k+7)/8p (k) D (1);

(f) V=(g, o7, 7): M=Sp(l)|Sp(k) x Sp(j+7). In this case

N=ap(j-+F)/ap(j) Db (k).

For the PSLA (g, o, 7), the subsets Af,» AL, Ay, Ay of A™ are given as follows:

(5.1) A}, = {8€AT; 8, =8;=10,2}
(0-++01+++10-+-0-+-0--0)
(0-"6---01 10...6...0)
=4{8€At;$ (0-'-0--'0---01 O...()) g
(0---01.- 12...2...2...21)
(0-+0-++01-++12--:2.+-21)
(0-..6...6...01...12...21)
= {8€A*;8,=10,2,8; = 1}
— {3EA+; 5 — (o...o1...;...10...(5...0) f ,
(0---01-+-1-++12..2...21)
A, = {8€A%;8,=1,8;=0,2}
{SGA+ 5 — (0...(2...01...1:...10...0) }
(0---0---01-+-1-++12.--21)
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Ay = {8eA*;8,=8; =1}

= {dEA"; 8 =

Moreover the dominant weights in Ars Ap,, Ay are given by (5.2), (5.3),
(5.4), respectively:

(5.2) (1...i2...2...21) ,
(5.3) (0-+-01.++12.+:21),
(54) (1o1-120:21) .

We now see the injectivity of p for Case (a): <V=(g, o, 7). Then p is a
homomorphism of (p€)*RQ¥C to A%(PE)*QPS. The minus multiple of dominant
weight in A, and the dominant weight in A,_ are given by (a1), (81), respec-
tively:

(al) _(1...f...f2...21), (81) (1...{2...2...21),

Case (1): [(u)=1. Represent u as follows: u=a »,®X,. Then the pair
(o, B) is given by ((a1), (81)). Applying Lemma 2.3, we obtain that p(x)=0.

Case (2): /(u)=2. In this case there exists no decomposable u and thus
we suppose that « is indecomposable. We consider such the triples (&, 8'; )
as in §3, Case (2). Consider the following elements in A, :

j i j i
(pl) (10-:0--0--0),  (w2) (2-+2--21) (j=1).
Then such the triples are given in the following:

(1) ((e1), (BL); (w1)), 522,  (2) ((@1),(B1);(u2)),j=1.

Lemma 2.4 is available for (1) and Lemma 2.2 is available for (2). Hence it fol-
lows that p(u)==0.

Case (3): /(u)>3. Note that ¢%/. Then, by the same way as Case (3)
for Case BI §4, we see that p(u)=+0.

Summing up the above arguments, we have the following result for the
PSLA of Case (a); the homomorphism p is always injective. Similarly for the
other cases p is always injective.

Theorem 5.9. Let €UV be the G-orbit which corresponds to a PSLA in a
family of type CI. Then the CV-geometry does not admit non-totally geodesic V-
submanifolds.

Case CII: The families C;; ;, with quadruple (q, b, ¢, d)

Put 0=0; and 7=0;,. Then, for each PSLA in C;; , the corresponding
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symmetric space M and the totally geodesic ¢//-submanifold N are given in the
following: (NN is locally described.)
(a) V=(g, o, 7): M=2Sp(])/Sp(a-+b)x Sp(c+a).
In this case N=38p(a--c)/8p(a)D3p(c) © 8p(b+d)/3p (b)D3p(d);
(b) V=(g, o, o7): M=Sp()/Sp(a-+b) X Sp(c-+d).
Tn this case N—=8p (b-+¢)/3p (8) ©2b (¢) © 89 (a--d)[3b (a) DEH(d);
(c) V=(g, 7, 0): M=5p(l)|Sp(b+c)x Sp(a-+d).
In this case N=38p(a+c)/8p(a)D8p(c) D 8p(b+d)/3p (b)P3p(d);
(d) V=(g, , or): M=Sp(l)/Sp(b+c) X Sp(a+d).
In this case N=38p(a+b)/8p(a)P3p (b) D 3p(c+d)/3p(c)D8p(d);
() V=(g, ot, 0): M=Sp(l)/Sp(a+c) X Sp(b+d).
In this case N=38p(b+c)/8p(b)D8p(c) D 8p(a+d)/3p(a)D8p(d);
(f) V=(g, o7, 7): M=Sp(l)|Sp(a-+c) X Sp(b+d).
In this case N=38p(a+b)/8p(a)P3p (b) P 8p(c+d)/8p(c)P8p(d).
For the PSLA (g, o, 7), the subsets At,» A;i of A* are given as follows.

(5.5) Af, = {6€A*;6,=0,2,(5;,8:) =(0,0),(0,2),(2,0),(1,1),(2,2)}
(09110()('30;0)
(0-+:0-+-01-++10---0---0--0)
(0...0...0...01 110-+-0---0)
_ 3EA+;8=(0 0 0 0 1011 -10---0) ’
(001 1222,2,,21)
(0-++0-+-01-- 12...2...%...21)
(0-+-0-+- 0...01 12.+2-.-21)

(0we-Dee0-e-0-+-01 -+ 12--:21)
Ap = {8€A*; 8, =0,2,(5; 8) = (0,1),(1,0), (1, 2), (2, 1)}

i (0...01...'1’...10..;0...()...0)
_Jsenrs— (0...0...0...01...1...10 .0)
(0...01...{...12..;2...2...21)

{ (0+++0++-0++01+-1-++12:+:21) |

A}L = {§€At; 8, =1, (8:" 81:) = (0: O)’ (O’ 2)’ (2’ 0)’ (17 1)) (2’ 2)}

- . ON.

—
o
&
S

L, —

——
—_
o
S
S

~

=<0€At; 8 =

~
?’
b
=
[
s e
. ‘:d .
N
&
)
p—
~

{ (0...01...{...
Ay ={8€A%; 8, =1,(8; 8) = (0,1),(1,0), (1,2), (2, 1)}



L1E ALGEBRA AND SUBMANIFOLD 11 701

(0911?1060)
_ lsear; s = 0-0-0111-10-0)

(0-+:01-++1oreT e 120-2-0.21)

(0-+-0+-01 41 - 1.012-21)

Moreover the dominant weights in A,_, A,,, A,_ are given by (5.6), (5.7),
(5.8), respectively:

j i k j i

(5.6) (0vr00er01-12-0:21), (1e++1200:2:0:2.0:21),
j i k j i

(5.7) (0e-01 000120030221, (Loweleneonn12:0:21),
j i k j i

(5.8) (0-e-01ee100012:0:21), (Lowslere120024:21)

We now see the injectivity of p for Case (a): V=(g, o, 7). Then p is a
homomorphism of (p€)*RIE to AX(PE)*RE.

The minus multiple of dominant weights in A, _ are given by (1), (@2) and
the dominant weights in A,_ are given by (81), (82):

<,

j i k i k
(al)——(.()---.(])l---1---12---21), (@2)—(1+++10++12+4:2:4:21) ,
j i k j i k
(81) (0-:0--01.++120-:21) ,  (82) (L++1204:20:20:21) .
Case (1): [(u)=1. Represent u as follows: u=a w,Q®Xz. Then the pair
(at, B) is one of the following pairs: ((ar)), (8s)), where r,s=1,2. Applying
Lemma 2.3, we obtain that p(x) =0 for all the pairs.
Case (2): /(u)=2. In this case there exists no decomposable z and thus we
suppose that « is indecomposable. Consider the following elements in A, :

(1) (0...61.0...6..."...0), (12) (0...6....,6.'..0”10...0),
(13) (0...6.2'...'2’@...21) G =j+1), (ud) (10"j6"j6"'6"'0)’
(15) (0...(’)...61...6...0), (16) (_0...’...65...21) (k= i+1),

j i k .
(WT) (20++20+:2+-:21) (j=1).
Then such the triples (&, 8’; u) as in §3, Case (2) are given in the following:

(1) (@), (B2); (ul)), i—i=2,  (2) (@), (B1); (u2),

(3) (), (82); (w3)), i=j+1, (4) (@2),(82); (uh), j>2,

(5) ((@2), (BL); (w5)), k—i=2, (6) (@2), (81); (u6)), k=i+1,
(7) (@2), (B2); (w7)), j=1.

Lemma 2.4 is available for all cases and thus it follows that p(u)=-0.
Case (3): J(u)>3. By the same way as Case (3) for Case BII §4, we see
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that p(x) #0.

Summing up the above arguments, we have the following result for the
PSLA of Case (a); the homomorphism p is always injective. Similarly for the
other cases p is injective.

Theorem 5.10. Let CV be the G-orbit which corresponds to a PSLA in a
family of type CII. Then the CV-geometry does not admit non-totally geodesic
CY-submanifolds.

Case CIII: The families C; with pair (j, k)

Put =0, and 7=6;. 'Then, for each PSLA in C;, the corresponding sym-
metric space M and the totally geodesic ¢/-submanifold NN are given as fol-
lows: (N is locally described.)

(a) V=(g, o, 7): M=Sp(l)]U(l). In this case N=38u(l)/8(u(j)Pu(k));

(b) V=(g, o, o7): M=Sp(l)/U(l). In this case

N=8p(j)/u(j) ® 80 (k) (k);

(c) V=(g,T,0): M=Sp(l)/Sp(j)x Sp(k). In this case

N=sgu(l)/8(u(j)Du(k)).

For the the PSLA (g, 0, 7), the subsets A, Ay, Ay, Ay of A™ are given as
follows:

(5.9) A = {8€A*; 8, =0,5; = 0,2}
{aey 5 — (001 10---0-.-0)}
(0+++0++-01--+10---0)
= {8€A*;8,=0,8;=1}
- {35A+;3= (0...01...i...10...d)},
Ay = {8eA*; 8, =1,5,=0,2}
!
B {8EA+' 5 (0...0...01...12...21)}
- » ¥ J ’
(0-++01+-+12-+-2..:21)
A= {0€A*; 6, =8, =1}
j 1
- {SEA‘"; 5= (0---01---1---12---21)} .

Moreover the dominant weights in A,_, Ap., A,_ are given by (5.10), (5.11),
(5.12), respectively:

(5.10) (1ooeQene 0), —(0---010-- 6),

(5.11) (0--- 2 21), (2...2.--21),
—(©-0--01), —(0--03---21),
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(5.12) (112.0:21), —(0---01---1).

We first see the injectivity of p for Case (a): <V=(g,0,7). Then p is a
homomorphism of (p€)*RE to AX(PS)*®pS. The minus multiple of dominant
weights in Ay _ are given by (1), (¢2) and the dominant weights in A,_ are given

by (81), (82):
(al)—(1- 1’2 20y,  (a2) (- 01 1),
Bl (1-1-10),  (82)—(0--010---0).

Case (1): /(u)=1. Represent u as follows: ¥=a »,®Xs. Then the pair
(a, B) is one of ((ar),(Bs)), where r,s=1,2. Applying Lemma 2.3 for each
pair, we obtain that p(x)=0.

Case (2): /(u)=2. In this case there exists no decomposable z and thus we
suppose that u is indecomposable. Consider the following elements in A, :

(wl) (10"'0'"0) (u2) (0- 010 0),
(43) (0--010--0),  (ud) (0---0---010).

Then such the triples (o, 8'; w) as in §3, Case (2) are given in the following:

(1) ((a1), (BD); (w1)), j22,  (2) (@1),(B2); (k1)) j=2,

(3) ((a1), (B1); (u2)), I—j =2, (4) ((al),(B2); (2)), I=2,

() ((@2), (B1); (u3)), j=2,  (6) ((a2),(82); (n3)), j=2,

(7) (@2), (B1); (u4)), 1=j =2, (8) ((a2),(82); (u4)), I—j =2.
Lemma 2.4 is available for the cases (1), (4), (6), (7) and Lemma 2.2 is available
for the other cases. Hence it follows that p(x)==0.

Case (3): /(#)>3. We see the weight spaces with dim>3. Let A be a
weight in A and let @, 8 be weights such that A=—a+ 8, where aE A,_ and
BEA,.. Denote by a,, by, A, the k-th components of a, 8, \, respectively.
Since ¢,=+-1 and §,=0, it follows by (5.9) that A,=-1.

Consider the case that A;=1. (For the case that \;=—1 we can similarly
do the argument mentioned below.) Then it follows by (5.9) that A ;=0, 2.

Suppose that ;=0 (resp Aj=2). Then the pair (g) has the form:
j

l
( :i —0 ) (resp. < 11 —(—)1>) If the weight space for A has the dimension
more than 3, it follows by Lemma 5.8 that
j 1 j 1
— (0-++0-++01++12++-21) (resp. A = (0-+-01-+-12+--2.-.21))

and the pair (g) has either of the forms
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1

G13) g 0 e e =1 —1 e —1 —2 e —2 _.1)
(0...0_1..._1 wee1 0 -0 00 0)
(0 e 0T e 21 eee —1 —2 e =2 —2 e —2 _11)
0eeO-1eee —1ereel —2e0e—1 0 -+ 0 0

resp.

j 4
(0 e 0 —T e —1 — 1 eee e —1 —2 oo —2 —1
00 00 11wl 00 0)
0
0

(() o0 T oee =1 =T eee —1eee =1 —2 0o 2 _1)

0«0 1 1 1 e+ 1 1 0.0 0

Hence for a maximal vector # in this weight space, it follows by Lemma 2.2
that p(u)=0.

We next see the injectivity of p for Case (c): CV/=(g, 7, o). Note that in
this case p is a homomorphism of (PC)*@pS to A*(PC)*@EE. The minus multi-
ple of dominant weights in A,,_ are given by (1), (¢2) and the dominant weights
in A, are given by (81)~(84):

j 1 j 1
(@l)—(1-12.--21),  (a2) (0---01---1),

j 4 j 1
(B1) (0-02-21),  (82) (22-20),

j ! j 1
(33)_(0...’ -01), (84)—(0-+-02---21).

Case (1): [(u)=1. Represent u as follows: u=a w,®Xz. Then the pair
(at, B) is one of ((ar), (Bs)), where r=1,2 and s=1, 2, 3,4. Applying Lemma
2.3 for each pair, we obtain that p(#)=0 only for the following cases: ((«1), (81))
(j=1), (1), (82)) (j=1-1), («2), (B3)) (j=1), (@2), (B4)) (j=I-1).

Case (2): [(#)=2. In this case there exists no decomposable # and thus
we suppose that # is indecomposable. Consider the following elements in A, :

(1) (10-G-0),  (u2) (©-010--0),
(43) (0--010---0),  (ud) (0---0---010).

Then such the triples (e, B8'; w) as in §3 (Case (2) of type AI) are given in the
following:

(1) (1), (B2); (n1)), j=2, 2) (e1), (B4); (p1)), j=2,

() ((a1), (BY); (u2)), I=j=2, (4) ((«1),(83); (u2), I=j= 2,

() ((@2),(B2); (u3)), j=2,  (6) ((@2),(B4); (w3)), 722,

(7) ((@2), (B1); (u4)), I—=j =2, (8) ((a2), (B3); (u4)), I—j=2.
Lemma 2.2 is available for the cases (2), (4), (5), (7), while Lemmas 2.2 and 2.4

are not available for the other cases. But for the cases that j=1 in (3), (8) and the
cases that j==/—1 in (1), (6), we see that Propostion 2.1 (1) does not hold and
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thus p(#)#0. By virtue of Case (1), we do not need to see the remaining cases
that j=1,/—1.

Case (3): I(u)>3. We see the weight spaces with dim>3. Let A be a
weight in A and let &, @ be weights such that A=—a+-8, where aEA,,_ and
BEA,.. Since ¢y=+1 and b;=4-1, it follows by (5.9) that n,=0, £2.

We first consider the case that a,=2. (For the case that A,=—2 we can
similarly do the argument mentioned below.) Then it follows by (5.9) that
A=1,3.

Suppose that an;=1 (resp. A;=3). Then the pair (g) has the form
j 1 j 1
<0____01 _11) (resp. ( —21"_2_11)). If the weight space for A has the dimen-

sion more than 3, it follows by Lemma 5.8 that

1
A = (0-+0Ler10-1200123.0.34---42)
a b
j 1
(resp. A= (0...01...12...23...§...34...42))
a b

where >0, >0, and the weight space has just dimension 3. Then the pair
(g) has one of the following forms:

j 1
(5.14) (0...0 e e 21 e 1 —1 e —1 —2 e —2 1
0ee) 0 v 0 oo 0 1 oo 1 2 e 2 2 wu 2 1)»
(0 0 ] oo e 1 L] —2 e =D D2 1
0eee O o+ 0 v 0 1 w0 1 1 e 1 2 w2 1)
j 1
<0...0 e 2l ] 2D D e D D D ]
0000 0 v 0 v 0 0 v 0 1 oe 1 2w 1
00000 er00eer0 —1eee —Teee —1 —2 000 —2 _'1)
0ee0 112002 2 w0 2 e 2 2 e 2 1)
<‘0...0 000 —1 eve —1 T eve Lo =1 —2 e —2 _'1)
eSP- (gD 1ee1 1 v¢ 1 2 w0 2 v 2 2 e 2 1)
j 1]
00e 0 —1eee —1 —Teee —1 —Twee Qe —1 —2eee 2 __1>
0ee) 0 v 0 1 e 1 2 o0 2 e 2 2 w2 1

Hence for a maximal vector # in this weight space, it follows by Lemma 2.4
that p(u)==0.

We next consider the case that \;=0. Then it follows by (5.9) that A ;=
+1.

Suppose that A;=1. (For the case that A;=—1 we can similarly do the

argument mentioned below.) Then the pair (g) has either of the forms
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j

i 1 :
<0_"_01 :%),( ;2 %) If the weight space for A has the dimension

more than 3, it follows by Lemma 5.8 that
j l
A = (0+--01+-1+++10-+-0)

and the pair (g) has one of the following forms:

(5.15) _ 1
(0 ...... 0 —1cee e 21 eee —1 —2eee —2 —2eee —2 —2 e 2 1
0 -ve e 0 0 e eee 0 v 0 —1ev—1 -2 2 —2eee—2 1)
j !
(0 ...... 0 — 1w Lo 1 —T e —1 =1 —1 —20e —2 —1
0 er one 0 0 oov oo 0 v 0 0 oo 0 —1ee—1 —24e-2 1)
(0 e Qe QQeel) 1oer]onnoee 12 oo 2{)
Qe Qere Torel 2ere2eenonn 22 21)
(0...01 T 1eel 1ee] oo onn 12 o zi>
DD 112022002 unnn 22 e e 21

Hence for a maximal vector « in this weight space, it follows by Lemma 2.2
that p(u) #=0.

We last see the injectivity of p for Case (b): <V=(g, o, or). Note that in
this case p is a homomorphism of (p)*@p¢ to A*PS)*QIC. Hence we may
regard roots @, @ in this case as roots —@, —a in Case (c), respectively. We
retain the notations in Case (c).

Case (1): /(u)=1. The pair (,g) is one of (—(Bs), —(ar)), where s=
1,2,3,4 and r=1,2. By Lemma 2.3 it follows that p(u)==0 for all cases.

Case (2): [(u)=2. In this case there eixsts no decomposable #. Suppose
that # is indecomposable. Then the triples (a, B’; ) are given as follows:

(1) (—(82), —(al); (u1)), (2) (—(B4), —(al); (1)),
(3) (=(B1), —(al);(12)), (4) (—(B3), —(B1); (k2),
() (—(82), —(@2); (#3)), (6) (—(B4), —(a2); (13)),
(7) (=(B1), —(a@2); (u4)), (8) (—(B3), —(a2); (u4)) -

Lemma 2.2 is available for the cases (2), (4), (5), (7) and Lemma 2.4 is available
for the other cases. Hence it follows that p(x)=0.

Case (3): /(u)>3. Similarly to Case (3) for Case (c), we have the cases
which correspond to (5.14), (5.15). Lemma 2.4 is available for the former
case and Lemma 2.2 is available for the latter case. Hence it follows that
p(u)=+0.

Summing up the above arguments, we have the following result for PSLA’s
in C;; the homomorphism p is not injective only for Case (c),j=1,/—1. These
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cases imply the cases of Example 3, (2) in §1.

Theorem 5.11. Let €V be the G-orbit which corresponds to a PSLA in a
family of type CIII. Then the CV-geometry admits non-totally geodesic CV-
submanifolds if and only if it is one of the CV-geometries in Example 3, (2).

6. The PSLA’s with Lie algebra g of type D,

Let g be the Lie algebra of type D;, />4, that is, the Lie algebra 80(2/) of
real skew symmetric matrices of degree 2/. Then the Dynkin diagram of the
fundamental root system II is given as follows:

O—0—w—=0—0

a A, | o — 0y = ay+20a,++2a;-,
O +oaytay
a;

Put 4;, 6, as in §3 and moreover put
04 = exp ad(v/—17(H;+H,+H,))

for ISjSkerl. Let g),,(lﬁj<i£l), Q,- H ,k(13j<i<k£l), Ql—z:j,l—l,l
(1<5<1-3), D;-3,1-1,; be the families which contain the PSLA’s (g, 6;, 6;),
(8 0:5 01), (8, 01-2, 0,1-1,1) (8, 013, 6,-1,1), respectively.

Lemma 6.1. A PSLA (g,0,7) of inner type is equivalent to a PSLA
which belongs to one of the following families, by an inner automorphism of g:

(1) D,;,1<j<i<I-2, @) Dy 1<j<I-2,
() D, 1<5<1-2, 4 Dii-1s

(5) D;; o 2< j<i<k<I—2, (6) Dy;1 4oy, 2<i<I—2,
(7) D;i10 2<i<I—2, 8) Dy, 3<k<I—2,

(9) g)l—zzj.l—l.h 2£j$l—3 ’ (10) Qz;ma I=4 )
(11) Dyy: 41

Proof. We may assume that o=0;. We divide into the following cases:
(1) i=1; (2) i=2 (I=5); (3) 2<i<i—2 (1=6); (4) i=I—-2 (I=5); (5) i=I—1;
(6) i=1; (7) i=2 (I=4).

Case (1): i=1. Then t=c+¥, and the Dynkin diagram of II, is given as
follows:
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Hence we may assume that the restriction 7 of r is given as follows:
T=exp ad (/— 1z K;), where 2<j<I. 'Then it follows that K,=aH,+H; for
some aE€ R, and thus the PSLA (g, o, 7) belongs to 9);,.

Case (2): i=2 (I>5). Then t=%, and the Dynkin diagram of I, is given as
follows:

O 0 0—0—==0—0
Q a; o ay Q- | (2758
O
a;

If we put 7=exp ad(r/— 1z K), the following cases are considerable: K=K,;
K=K,; K=K,, 3<k<l; K=K,+K,; K=K,+K,, 3<k<l; K=K,+K,, 3<k
<Il; K=Ky+K,+K,, 3<k<I. By Lemma 1.2 (1), the following cases more-
over have involutive extensions of 7: (i) K=K, 3<k<I—2; (ii) K=K, +K;
(i) K=K,+K;;; (iv) K=K+K;; (v) K=K,+K,_; (vi) K=K,-+K;; (vii)
K=K+K,+K;, 3<k<I—2. We represent the vectors K, by the vectors
H, -, H,.

For Case (i) it follows that K,=—H,+ H, and thus the PSLA (g, o, 7) be-
longs to 9,. For Case (ii) it follows that K,+K,=H,—H, and thus the PSLA
(g, o, ) belongs to 9,. For Case (iii) it follows that K,+K,_,=H,_,—H, and
thus the PSLA (g, o, 7) belongs to 9,_,,. For Case (iv) it follows that K+ K|
=H,—H, and thus the PSLA (g, o, 7) belongs to 9,,. For Case (v) it follows
that K,+ K, ,=H,+H,_,—H, and thus the PSLA (g, o, 7) belongs to 9,;;;-;.
For Case (vi) it follows that K,+K,=H,+H,—H, and thus the PSLA (g, o, 7)
belongs to 9,,;. For Case (vii) it follows that K4 K,+K,=H,—H,+H, and
thus the PSLA (g, o, 7) belongs to 9, ; ;.

Case (3): 2<i<</—2 (I=6). Then =%, and the Dynkin diagram of II, is
given as follows:

O—0—w—=0 O—=0—w=0—0
(241 | o, oy Qg Oy Aoy | (27581
O O
a, o

If we put 7=exp ad(r/— 1z K), the following cases are considerable: K=K},
0<j<i—1; K=K,, i+1<k<l; K=K;+K,;, 0<j<i—1, i+1<k<Il. By
Lemma 1.2 (1), the following cases moreover have involutive extensions of 7:
() K=K, 2<j<i—1; (ii) K=K, i+1<k<I-2; (iii) K=K+ K;-;; (iv) K=
K+K;; (v) K=K,+K,_,; (vi) K=K,+K;; (vii)) K=K;+K}, 2<j<i—1, i+1
<k<Il—2. We represent the vectors K, by the vectors H, -+, H,.

For Case (i) follows that K;=—H;-+H; and thus the PSLA (g, o, ) belongs
to @;;. For Case (ii) it follows that K;=—H;+H, and thus the PSLA (g, o, 7)
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belongs to 9),;. For Case (iii) it follows that K,-+K,_,=H,_,—H, and thus the
PSLA (g, o, 7) belongs to 9; ,-,. For Case (iv) it follows that K,+K,=H,—H;
and thus the PSLA (g, o, 7) belongs to 9);. For Case (v) it follows that
K,+K, ,=H,+H, ,—H; and thus the PSLA (g, o, 7) belongs to 9, ;,,-;. For
Case (vi) it follows that K,+K,=H,+H,;—H; and thus the PSLA (g, o, 7) be-
longs to 9;;,;. For Case (vii) it follows that K;+K,=H;—2H;+H, and thus
thePSLA (g, o, 7) belongs to 9); ; ;.

Case (4): i=1—2 (I=>5). Then t=%, and the Dynkin diagram of II, is given
as follows:

0—0—+—0 O O
a | o, -3 Oy O
@)
Q

Put 7=exp ad(/— 1z K). Similarly to Case (2), the following cases have invo-
lutive extensions of 7: (i) K=K, 2<j<I-3; (ii) K=K+ K;_,; (iii) K=K+
K;; (iv) K=K,+K,-; (v) K=K,+K;; (vi) K=K,_,+K;; (vii)) K=K, ,+K,+
K; 2<j<I-3.

For Case (i) the PSLA (g, o, 7) belongs to 9,_, ;. For Case (ii) the PSLA
(g, o, 7) belongs to 9),_, ;-,. For Case (iii) the PSLA (g, o, 7) belongs to 9, ,_,.
For Case (iv) the PSLA (g, o, 7) belongs to 9,_,;,,-;. For Case (v) the PSLA
(g, 0, 7) belongs to 9,_,,,,. For Case (vi) the PSLA (g, o, 7) belongs to
Dy—3; -1, For Case (vii) the PSLA (g, o, 7) belongs to D;_,; ;-1

Case (5): i=I—1. Then t=c+¥, and the Dynkin diagram of II, is given as
follows:

O—0Q0—+—0—0
a, o Qi-, Q
Put F=exp ad(\/— 1z K), where j=1, ---,/—2,1. Similarly to Case (1), the
PSLA (g, o, 7) belongs to 9),_, ; (1< j<I—2) or Dy ;.
Case (6): t=I. Then ?=c+!, and the Dynkin diagram of II, is given as
follows:
O—0O0—=—0—0
a A Ay Q-
Put 7=exp ad (/= 1z K;), where 1 <j<I—1. Similarly to Case (1), the PSLA
(@, o, 7) belongs to 9, ;.
Case (7): i=2 (I=4). Then =t, and the Dynkin diagram of II, is given as
follows:

o O O O

oy o o3 oy
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Put #=exp ad(v/— 17 K). Similarly to Case (2), the following cases have in-
volutive extensions of 7: (i) K=K,+K;; (ii) K=K, +K;; (iii) K=Ky+K,; (iv)
K=K,+Kj;; (v) K=K,+K,; (vi) K=K;+K,; (vii) K=K+ K,+K;+K, We
represent the vectors K, by the vectors H,, ---, H,.

For Case (i) the PSLA (g, o, 7) belongs to 9),. For Case (ii) the PSLA
(g, o, 7) belongs to 9, For Case (iii) the PSLA (g, o, 7) belongs to 9,,. For
Case (iv) the PSLA (g, o, 7) belongs to 9),,,;. For Case (v) the PSLA (g, o, 7)
belongs to 9,;,,. For Case (vi) the PSLA (g, o, 7) belongs to 9),,;. For Case
(vii) the PSLA (g, o, 7) belongs to 9, 5. [

Pur V=+/_1} and take an orthonormal basis {e, -:-, ¢;} which satisfies
that a;=e;—e;,, for 1<i<I—1, and a;=¢;-;+¢,. Then it holds that

H; = e+ +¢ for 1<i<I-2,
Hy = (1/2) (es+ -+ +e1-5+e1-1—e)
H, = (1]2) (ey++--+e1-o+e1-1+e) .
The Weyl group W(A) is generated by the permutations of e, :*-, ¢, and the fol-
lowing mappings w;: Let é&=(&(1), --+, £(/)), where &(7)=4-1and IT}., £(?)=1.
Then w; (e;)=& () ¢; for all .
Define elements wi(1 <k<1I) and wi*(j, k>1, j+k<I) in W(A) in the same
way as in §3. 'Then the following similarly hold:

H,—H,_, (1<i<k<lI—1),
S H_+H—H,,, (1<i<k=I-1),
wi(H,) = 2H,—H,_, (I<i<k=1),
l H,—H,_, (1 =i<k=1),
H, (1<k<i<I).
H;,—H, (G =j,j+k<i—1),
J Hi_+H—H, (i=jj+k=I1-1),
wi*(H;) = 1 2H,—H, G=j,j+k=1LkE<I-2),
H—H,, (i:j:j+k=l:k=l—1),
H, (j+R<i<I).

Let @, i* be inner automorphisms of g induced by w¢, wi*, respectively.

Moreover let 4Jr, be an automorphism of g induced by the following Dynkin
automorphism v, of II: vy(a,)=a(1<i<I—1), v(@;-1))=0a,, and vy(@)=a;-y,
Le., v(e;) =¢;(1<i<l—1) and v,(e;)=—e,. For £€=(1:-1 —11..-1—1) put
v7=w, 7, and let 7 (1<¢<I—1) be automorphisms of g induced by 7. Then
the following equivalences moreover hold:

(1) D-,,;=9,;1<j<I-2)and D, ;,,;-1=D; ;1,1

These are obtained by +r;
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2) 9;;u=9,,-;(2<j<I-2). This is obtained by r, @};
Q) Dpi1;=Di2i1-ju-14 3L j<I=2), Dy=D)_5;4-1, and D=, ,.,.
These are obtained by .
Hence we may consider only the families of the following cases:

() D,(A<j<i<i-2); () D (1<j<I-2);

3) 9D u(2<j<i<k<l-2o0r 1 =j<i=2<k<I-2); “4) 9D,;
From the proof of Lemma 6.1, we can see that the subalgebras £, for Cases
(1), (2), (3), (4) are different from each other. Hence these families are never
equivalent to each other.

We first see the equivalences among the families 9);;(1< j<7<I—2) and the
equivalences among the PSLA’s which belong to each family. For a family 9);;
put i=j+k and [=i+r. Thenj, k>1, r>2 and the following holds.

Proposition 6.2. Two families 9;;, D,;; are equivalent to each other if
and only if the triples (j, k, 1), (j', k', r") coincide except order.

Proof. The proof is done in the same way as that of Proposition 3.2. Con-
sider the PSLA’s (g, 6;, 9;), (g, 6, 0;7). Then it follows that dim f_=4jk,
dim p, =4kr, dim p_=4jr, and that dim {.=4;'%’, dim P, =4k'r’, dim p. =457’
(See (6.1) later.) If 9);; is equivalent to 9, the triples (j&, kr, 7j), (&', k'r’,
r'j') coincide except order and so the triples (j, &, 7), (j', k', 7") coincide except
order.

To prove the converse we may recall the proof of Proposition 3.2. Then
the following equivalences similarly hold:

(1) Q,,gg),k,_]Zl,kZerZ, (2) g)ijggr+k,n kZl,]Zl,rZZ.

Using these equivalences we see that the family 9);; is equivalent to a family
with triple to which the triple (j, &, 7) is rearranged in smaller order. Hence,
if triples (%, j, k), (', j', k") coincide except order, the family 9),; is equivalent to
the family 9,.;. [J

By virtue of this proposition we may consider only the families 9);; with
triple (j, &, r) such that j <k<r. Such a family is said to be a proper family of
tpye DI and a family without the above condition is said to be simply a family of
type DI. 'The following proposition can be proved in the same way as Propo-
sition 3.3.

Proposition 6.3. Let 9;; be a proper family of type DI with triple (j, k, 1)
and set (8, o, 7)=(g, 6;, ;). Then the following hold :

(1) Ifj<k<r, all the BSLA’s in 9;; are non-equivalent to each other ;

(2) If j=k<r, only the equivalences of first type hold;

(3) If j<k=r, only the equivalences of second type hold ;

(4) If j=k=r, all the PSLA’s in 9);; are equivalent to each other.
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We next see the equivalences among families 9);; ; (1< j<i<k<I—2) and
the equivalences among the PSLA’s which belong to each family. For a family
D; ; j put j=a, i=j+b, k=i+c,l=k+d. Thena,b,c>1, d>2 and the follow-
ing holds.

Proposition 6.4. Two families D; ; ;, Dy ; yw are equivalent to each other if
and only if the quadruples (a, b, ¢, d), (a’,b’, c’, d’) coincide except order.

Proof. This is done in the same way as that of Proposition 3.4. Consider
the PSLA’s (g, 6;, 0;1) (8, i, 0;4). Then it follows that dim =4 (ab+cd),
dim p,=4 (bc+ad), dim p_=4 (ac+bd) and that dim .=4 (a¢'d’+c'd’) dim b=
4(b'c'4-a'd’), dim p.=4(a’c’+5b'd"). (See (6.5) later.) If D, ;u, Dy, ju are
equivalent to each other, the triples (ab+cd, bc+ad, ac+bd), (a’b’+c'd’, b'c’+
a'd’,a’c’+b'd") coincide except order. Noting that a+b-+c+d=a'+b'+c'+d’
=1, we see that the quadruples (a,b,c, d), (a’,b’,¢’,d’) also coincide except
order.

To prove the converse we may recall the proof of Proposition 3.4. Then
we similarly have the following equivalences:

(1) Qi;jkgg)i:bk’ 13]<i<k£l——2,

(2) g),- ; jkggk—j s k=i kb 1S]<l<k£l—2,

B) D j=Disc; ayavess 2L J<i<k<ZI-2.

Using these equivalences we see that 9, ; is equivalent to a family with quad-
ruple to which the quadruple (a, b, ¢, d) is rearranged in smaller order. Hence,
if quadruples (a, b, ¢, d), (a’, b’, ¢’, d’) coincide except order, the family 9);; ; is
equivalent to the family @;/; ;. O

By virtue of this proposition we may consider only the families 9);; ;; with
quadruple (a, b, ¢, d) such that a<b<c<d. Such a family is said to be a proper
family of type DII and a family without the above condition is said to be simply
a family of type DII. The following proposition can be proved in the same
way as Proposition 3.5.

Proposition 6.5. Let 9);; ;, be a proper family of type DII with quadruple
(a,b,c,d) and set (g, o, 7)=(a, 0;, 0;1). Then the following hold :

(1) If a<b<c<d, all the PSLA’s in 9); , ; are non-equivalent to each other ;

(2) If a=b<c<d or a<b<c=d, only the equivalences of first type hold ;

(3) If a<b=c<d, only the equivalences of second type hold ;

4) If a=b=c<d, a<b=c=d, or a=b=c=d, all the PSLA’s in 9);,j
are equivalent to each other.

We next see the equivalenecs among families 9;; (1<;j<I/—2) and the
equivalences among the PSLA’s which belong to each family. In the following
the families 9);; are denoted by ;. For a family 9; put /=j+k. Then j>1,
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k=2 and the following holds.

Proposition 6.6. Two families 9;, 9, are eqivalent to each other if and
only if the pairs (j, k), (j', k') coincide except order.

Proof. This is done in the same way as that of Propostion 5.6. Con-
sider the PSLA’s (g, 6,, 8;), (8, 0;, 0;). 'Then the semisimple part of ,(resp. ¥})
is the sum of Lie algebras of types A;_; (resp. A;_;) and A;_; (resp. Ay-,).

Suppose that 9); is equivalent to 9;,. Since £, is isomorphic to £/, it fol-
lows that pairs (j, &), (j', ") coincide except order.

To prove the converse we may recall the proof of Propostion 5.6. - Then the
following equivalence similarly holds: 9;=9),, 2<j<I—2. Using this equiva-
lence we see that 9); is equivalent to a family with pair to which the pair (j, &) is
rearranged in smaller order. Hence, if pairs (j, k), (', k") coincide except
order, the family 9); is equivalent to the family 9,. [

By virtue of this proposition we may consider only the families 9); with
pair (7, k) such that j<k. Such a family is said to be a proper family of type
DIIT and a family without the above condition is said to be simply a family of
type DIII.

Proposition 6.7. Let 9); be a proper family of type DIII with pair (j, k)
and set (3, o, 7)=(a, 0, 8;). Then the following hold :

(1) If1=5 or I=4, j=2, only the equivalences of second type hold ;
(2) If I=4, j=1, all PSLA’s in 9, are equivalent to each other.

Proof. For general / the equivalences of second type are obtained by
et Yri—1 Yrp. (See the proof of Proposition 5.7.) We also note that

t = su(i—1)B@(j)@u(k—1)), P.= So(Z)u(j) ® s0(2k)u(k) .

(1) In this case, as f,-modules, f_ is not isomorphic to p,. This implies
the non-equivalence of the other pairs.

(2) In this case, f_, p, are isomorphic to each other as f,-modules. We
may show the equivalence: (g, o, 7)=<(g, 7, o). Since /=4, we moreover have
the following Dynkin automorphism v, of II; vy(a))=ay, vy(a,)=a;, and
vy(a;)=a; for i=2,3,. Let 4, be an automorphism of g induced by v,,. Then
the equivalence is given by +r,. [

We last see the equivalences among PSLA’s which belong to 9, ;5. This
is said to be the family of type D,.

Proposition 6.8. All PSLA’s in the family of type 9, are equivient to each
other.
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Proof. Set (g, o, 7)=(g, 05, 013). We may show the following equiva-
lences:

(1) (@o,7)=(ag0,07) and (2) (g,0,7)==(g,07,7).
The equivalences (1) and (2) are obtained by @i' and (@i')™! i @i', respec-
tively. [

We now see the injectivity of the f,-homomorphism p for each PSLA in
the families of types DI, DII, DIII, D, Similarly to in §3, fix a positive
integer 7 and set

a b c

R, = {+(0--0 01 10 )27 420, 520,20},

e, r—1 7

= {i(o 01 10--0[0 0)eZ"; a>0,5>0, c>0}

——r=17

U{i(O 0T 1|1 0 2’; a>0,b>0}
u{i(o 01 11'611')ez' a>0, b>0}
r—17r

U {+(0--0 01 1)1 l)eZ’ a>0,b>0},

b

R, = {:}:(0 01 12 Z)EZ’ a=>0,6>0,c>0},

{001 122(1 )eZ"; a0, 620, c>0} ,
R =R,UR,, R”=R{'URY
R* = {(g); o, BER} ’ R = '{(ﬂ); «, BERH} .
Moreover let R[(5),], R*[(5):» (§);], Ri[*] be subsets of R? defined asin §3. The

subsets R"*[(5),], R"*[(5);, (5);], Ri"*[*] may be also defined similarly. Then we
can check the following lemma by a usual argument.

Lemma 6.9. Let )\ be an r-tuples in Z". Then the following hold :
(1) The following each set has at most 2 elements :

R)z‘[(_ll)r] ’ R)Z\[(_ll)l’ (g)r] ’ R)z\[(_ll)ls (32)1] ’ R)Z\[((l’)h (_21)7] ’
RIDwn 01, RIGu ()1, RIG), @), RI(E),-n ()] 5
(2) For the following sets Lemma 4.6 ((2) through (7)) and Lemma 5.8, (8)
hold :
RIG)T, RAD ()1, RADL O, RIG G,
RiI(w ()1, RG], RG], RIGH,
R 5
(3) The set R{"*[(%')y, (Z1),] (resp. RY*[(3)1, (3),]) has at most 1 element if \
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1s none of r-tuples

a b
(1--+1[10), (1..-1,0---0100)

b

(resp. (1--+1]01), (1 122 -2]11))
where a>>0, b>0.
If A=(1---1]10) (resp. (1:+-1|01)), the set has just r—2 elements with form

i ity

(e (2" %" 92018 9)
e b —— e

If A= (1 ‘10 OIOD) (resp. (1 122 *2|11)), the set has just r—1 elements
with forms
a b

<_1 o —1 =2 =2 220 =2 | =1 —1
0 v 0 —T1ee—1 =2 -2 —1 _1>’

a b
(—1 =1 T =1 2 —2] —1 —1
O ««+- 0 —1..—1 —2... __2| —1 __1)’

a b

(—1 =1 21 =110 —1)
0 - 0 —1e—1]0 —1

b
-1+ —1—1+-—=10-0]00 ;
resp. 0 - 0 1 1 2-.2|11)

(oot )

(4) The set R"™[(3'),-1, (Z1),] (resp. R{*[(6),-1, (3),]) has at most 1 element if
A is none of the r-tuples
a b

00 1-1]10) (resp. (0---0]—11))

where a >0, bZO.
b

If \= (0 01.- 1|10) (resp. (0++-0| —1 1)), the set has just r—1 elements with
forms
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(0 0 —1—1 "2 —2|—1 _1>
00 —1wv—1 —1ee—1] 0 —1)°

S S S
00 21 —1 —2-- —1 —1)
0 —1

—2|
00 0 oo 0 —1e—1]
0. 10
(- (0201 71107)):
(5)  The set R{"*[(7")1, (3'),-1, (3'),] kas at most 1 element if A is not the r-

tuple (2---2|11).
If A=(2---2|11), the set has just r—2 elements with form

( —1 —2 c—2] —1 —1),
1 - 0] 0 0)°
(6) The set R{"’[(7').] (resp. R{*[(1)1]) has at most 2 elements if \ is not the r-
tuple
(2++-2]11) (resp. (0---0]00)) .
If Ax=(2:--2|11) (resp. (0---0|00)), the set has just 2r—2 elements with forms

(T,

(—1-.- —1 2. —2] —1 —1)
w1 0 01]0 0)

(-1 e —110 —1> (—1 o —1]—1 0)
11]J10)\1 1701

—

(7) The set R{[(‘ol)l, (7),] has at most 2 elements if \ is none of the r-tuples

b c d

(1122373 44) (@>0,6>0,c>0,d>0),

and it has just 3 elements with forms

a b ¢ d

(_1 e —1 Qe —1 —1 oo —1 —2 _éz>’

0 0 1 1 2 2 2.
a b ¢ d
(ml..._l 1 —1 2 —2 2. 2
0 -0 1 -1 1 1 2 o 2)
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e b ¢ d

<_1 e —1-2wc 2 °92...-2 —2... __2)
0«0 0 0 1 -1 . 2

a b c d
if a=(1+++12::-23-..34..-4);
(8) The set R [(), (74),] (resp. RY*[(0)1, (3),]) has at most 2 elememts if N
is none of r-tuples

b c

(1 12 23 3112) (@>0,5>0, c>0),

t‘

(1 12 23 3 4. 4|22) (>0, >0, c>0,d>0)

C

(C1 =100 01 1]01) (a>0,5>0,c>0),
resp. s
(— 1 11001122 2111) (a>O b>0, c>0,d>0)

a b c a c

If v=(1-- 11223 3|12) (resp. (— 1o =100 01 1|01) the set has just 3 ele-
ments with forms

a b c
(1 100 0..-010())
0--00--01--1]01)

P S SR S
resp(l +11+10--0[00
0-01-e11..1]01)"

a ¢
(1 11 -11---1[10)
0-01...12...2[11

a b c d a b 1: d

If A= (1 122534 4|/22)(resp( 1—10.01-12-- 2|11) the
set has just 3 elements with forms

a b c d

T A aS1ead2 2 -1 —1
0 v 0 1 ool 2 02 2 2|
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— —Ae

(1 10 -00..-00---0]00
0.+00---01- -12---2 11)’
a d
1- l
0-.0
a b d
(l 1 1- 1 0 0100
Q.0 1 -1 2 22-22]11
(9) The set R{”’[(%'),-1, (7'),] has at most 2 elements if \ is none of the r-
tuples

b
{10060 00) ;
fol1122]11)

resp. (

a b c d
(O 0112233 3112) (a=0,5>0,c>0,d>0).
a b c d
If \= (0 0112253 -3112), the set has just 3 elements with forms
a I: ¢ d

(0.--0 00 —1—1 22| -1—1
00121 1 o1 1 1] 0 1

a b ¢ d

00 "1 —1 11 22..22]—1 _1)
00 0 w0 1 o1 1..1]0 1)

b ¢ d
(() i =1 —1 =200 —2 =20 =2 —1 _1>
00 0 0 0 -.0 1 ..1]0 1)

In this lemma, if we change a subset R{’[*, (3),] for a subset R'[*, (§),-,], we
can get the elements in R}’[*, (§),-,] from the elements in R}’[#, (3),], by chang-
ing the r-term for the (r—1)-term.

In the following we represent a root of type D; by a linear combination
of the fundamental root system IT and identify it with an /-tuple of coefficients.
Note that the I-tuples +(0---0]11) are not roots.

Case DI: The families 9); with triple (j, k,7)

Put ¢=0; and r=0,. Then, for each PSLA in 9, j» the corresponding sym-
metric space M and the totally geodesic <I/-submanifold N are given as follows:
(IV is locally described.)

(a) V=(g, o, 7): M=80(21)/|SA(2j+2k) x SO(2r).

In this case N=38o(2j-27)/80(2j)P30(2r);

(b) V=(g, o, o7): M=S0(21)[SO(2j+2k)x SO(2r).
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In this case N=28b(2k+-27)/80(2k)P80o(27);
() V=(g,,0): M=SO(2])[SO(2j) X SO(2k+2r).
In this case N=2380(2j+27)/30(2j)P80(2r);
(d) V=(g, T, 07): M=S0(2])/SO(2j) X SO(2k+2r).
In this case N=80(2j+2k)/30(2j) P30 (2k);
(e) V=(g, 0T, 0): M=SO((2l)/|SO(2k) X SO(2j+2r).
In this case N=280(2k-2r)/30(2k) P30 (2r);
() V=(g, or, 7): M=SQ(21)/SO(2k) X SO(2j+2r).
In this case N=80(2j+2k)/80(2j) D30 (2k).
For the PSLA (g, o, 7), the subsets A;‘+, A;'_, A;+, A;_ of A" are given as follows:

(6.1) A, = {8€A*; 8, =8, =0,2}

(0...Q1...10...0...6...(')|00)
(0-+-0--. Ql---lO---d---O[Oﬂ)
(0-+-0-+-0--- 01-+-10---0| 00)
01| 10)
<:01..-1]01)
+:01.-+1111)
1001200302002 11)
(0-++0+++01--+12-+:2.-:2| 11)
(0-+:0-+:0++:01+-12+:2| 11)
AF = {BEA*; 8, =0,2,5;= 1}

_ {86A+- 5 (()...01...i...m...d_...ol00)'
T (000l 101200020002 11)
Ay, = {8ea*;8,=1,8,=0,2}

j i

o

—~
¢
S Ow o .ON OO
T = T - T =1

< O«

(0-+-0--- 01:+-1---10---0| 00)
.--1]10)
~+1|01) »

<.

) 1
J
1

(0-+-0--- 01...1...11]11)
(0-++0--- 01...1-++12.-.2| 11)
A = {8€A*; 8, =8;=1}
(0-+-01--.
(0-++01.--
=40€A%;8 = (0...01...
(0-+-01---
(0-+-01...

-

...... 10---0{ 00)
-+-110)
«-1]01)
~11]11)
12.0:2[11)

e

P, e, b e, e,
LN N N S
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Moreover the dominant weights in A, , A,., A,_ are given by (6.2), (6.3), (6.4),
respectively:

(62) (1120222 11), (1-+10--0100) (i = j+1),
—(10-++0---0]00) (j=1), —(12---2|11) (j=1,i=2).

(6.3) (0--0112.:2[11),  —(0--010---0]00) (i = j+1).

64  (eledze2i11),  —(110-0[00) (i =1).

We now see the injectivity of p for Case (a): <V=(g, o, 7). Then p is a
homomorphism of (p€)* RS to A*(PE)*®p¢. The minus multiple of dominant
weights in A, _ are given by (1), (¢2) and the dominant weights in A,_ are given

by (B1)~(4):

(@)—(-dmize2(11), (@) (1-10-0100) (j=1),
B1) (1-122-2]10),  (82) (1-10--0]00) (i=j+1),
(83)—(10--0--0]00) (j=1), (84)—(122/11) (j=1,i=2).

Case (1): /(u)=1. Represent u as fololws: #=a »,@X,. Then the pair
(e, B) is one of ((a 1), (8 s)), where r=1, 2 and s=1,2,3,4. Applying Lemma
2.3 for each pair, we obtain that p(u)=0.

Case (2): /(v)=2. We first suppose that « is indecomposable. Consider
the following elements in A, :

(41) (10-:0-:0--0]00),  (u2) (12---2--2|11) (j=2).

Then such the triples (a, B8'; u) as in Case (2) of type AI are given in the fol-
lowing:

(1) (a1), (BY); (w1)), 22, (2) ((@1), (B2); (n1)), j 22,1 =j+1,
©) (@), (BY); (u2)), j =2, (4) (@1),(B2); (u2)), j=2,i=3.

Lemma 2.4 is available for all the cases and thus it follows that p(u)=0.
We next suppose that u is decomposable. Put #=a w,,® X5 +b w,,@X4,.
Then the weights A are roots and the following cases are possible:
(1) The pairs (a;, 8) are (1), (83)), (@2), (81)), where j=1
and A=(01---12.--2|11);
(2) The pairs (a;, 8;) are ((a1), (84)), («2), (B2)), where j=1, i=2
and A=—(010---0]00).
Lemma 2.2 is available for these cases and thus it follows that p(u) 0.
Case (3): /(u)>3. Note that </[—2. Then, by the same way as Case (3)
for Case BI §4, we see that p(x)=0.
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Summing up the above arguments, we have the following result for the
PSLA of Case (a); the homomorphism p is always injective. Similarly for the
other cases p is always injective.

Theorem 6.10. Let CV be the G-orbit which corresponds to a PSLA in a
family of type DI. Then the CUV-geometry does not admit non-totally geodesic
CY-submanifolds.

Case DII: The families 9); ; ;, with quadruple (a, b, ¢, d)
Put 0=0; and 7=0,,. Then for each PSLA in 9);, j, the corresponding

symmetric space M and the totally geodesic ¢¥/-submanifold IV are given in the
following: (N is locally described.)
(a) V=(g, o, 7): M=SO(2])[SO(2a+2b) X SO(2¢c+2d).
In this case N=(80(2a+2c¢)/80(2a)PD30(2c))P(80(2b-+2d)[80(2b) P80 (2d));
(b) V=(g,a, or): M=SO0(21)/|SO(2a+2b) X SO(2¢+2d).
In this case N=(80(2b+-2c)/80(2b)D30(2c)) P(80(2a+2d)/30(24) Do (2d));
(c) V=(g,,o): M=SO(2l)/|SO(2b+2c) X SO(2a+2d).
In this case N=(80(2a-+2c)/80(2a) D80 (2c))P(80(2b+2d)/30(2b)P80(2d));
(d) <V=(g, 7, or): M=SO(2l)/|SO(2b+2c) X SO(2a-+2d).
In this case N=(80(2a+-2b)/30(2a)P30(2b))P(80(2¢+2d)/80(2c) P80 (2d));
(e) V=(g, o7, c): M=S0O(2])|SO(2a+2c) X SO(2b+24d).
In this case N=(80(2b2¢)/80(2b)D30(2¢)) D (80(2a+2d)/30(2a) D30 (2d));
(f) V=(g, o7, 7): M=S0(21)|SO(2a-+2c) X SO(2b+2d).
In this case N=(80(2a-2b)/30(2a)P30)25b))P(80(2¢c+2d)/80(2c) P30 (2d)).
For the PSLA (g, o, 7), the subsets Ay,, Ay, of A* are given as follows:

(65) Af, = 848 =0,2,(3,3)=(0,0),(0,2),(2,0),(1,1), (2, 2)}

(001110 0-. 0 é .0]00)
(0++0-+:01.- 10...0...(3...0,()0)
(0+++0-++0-+- 01.++10-+0---0 | 00)
(0(’) ++01--+10.-.0 | 00)

(0...6. 01.-.1]10)

— 5 A*; 8 = (0.0 01.--1]01) :
(0-+0 0L.-11]11)

(0---01 12.. 2 2 % 2]11)
(0---0--- 01 12...2...2...2|11)
(0---0--- 0...01 12...2...2|11)

(0-+-0-+-0---0---01.--12..2| 11)
— {5€A*+; 5, = 0,2, (5; 8) = (0, 1), (1,0), (1, 2), (2, 1)}

onbeonoe

O&.. O O
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---01---1---10--—0'---6---0IOO)
ceQeeeQLere] oee 10---0]00)
ceQeeeleeeT oo 1]10)
OO0, O S 1]01)
cee0eee0]oee 11]11)
1oden1200:200:2.0:2 11)

j
i

k
c20+0e01 0.1+ 12-:2] 11)

33

—~~
e

~
-

—{8€A*;8 = (0.

Lt et ek Lt

N~
23

O 'O O O O O~

A;+ = {§€A"; 8; =1, (aj) 8k) = (0, 0)’ (0’ 2): (2’ 0)» (1’ 1)’ (2’ 2)}

k

(0...6...01 ...... 10--+0---000)
(0-+-01.++1 -0 ++10-+-0/00)

(0-++01ere1-v1.0 1441 10)
= {8€A*; 8 = (0-+01-1+1021.-1]01) L
i
1
J
1

.
P e
. .

(0---01-e-1-+01.o0 ...1£|11)
(0-+:0-+-01-+1.+:12..2...2| 11)
(0011 we12.-:2]11)

[ S e
. . .

. .
—

Ay = {8€A*; 8, =1,(5,;,8,) = (0, 1), (1,0), (1, 2), (2, 1)}

M
(0...91...i...:...10...6...0|00)
(0-+-0-+-01-++1--+1-++10---0] 00)
(0'"0'"01'"1.-'"}"'1|1O)

—JseAt;s = (0...9...01... [-+1.++1]01) L
(0001 w111 10)
(0...91...i...:...12...2...2“1)
(0-+0-+01 oo TeeeToe 1202 11)

Moreover the dominant weights in A, , A
(6.8), respectively:

p+» Op_ are given by (6.6), (6.7),

(0'01 'iz...2|11), (1-- iz.--é---z---2|11),

(66)  (1:++10-0---0]00) (¢ = j+1), —(0-.--’---6f0 .0]00) (k = i+1),
—(10-+-0-+-0---0{ 00) (=1, _(fé...z.-.2|11) (j=1,i=2).
(0...61...12...2...2|11), (1-..j...i---12 2|11),

(6.7) (Q...(’)l-.-lo 0[00) (k =i+1), —(0-- 61’0.--0-..0|00) (i =j+1),
—(deee 1o 10-0]00) (j=1), —(0--012--:2]11) (i = j+-1, b = i+1).
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(_0...61...{...{2...2|11), (1...1...{2...2...2|11)
1.1 :
(6.8) (1.--1-.-10---0100) (k=it1), —(0-01.--10--0[00) (i =j+1),
jor j ik
—(1--10-0--:0]00) (j=1), —(Ler1202]11) (j= 1, k= i+1).

We now see the injectivity of p for Case (a): <V=(g, o, 7). Then p is a
homomorphism of (pE)*QIC to A((PE)*@PS. The minus multiple of dominant
weights in A, _ are given by (al)~(a6) and the dominant weights in A,_ are

given by (81)~(86):

(at1)—(0-- Qe 12-2)11), (a2)—~(1~--i---i2---2---2|/11),

(a3)— (1---1---15 000) (k= i+1), (a#) (0-+01---10--000) (i =j+1),

@5) (1+10-:0--0100) (j=1),  (a6) ({-12- 2[1) (j=1,k=i+1),
(81) (0...‘....(')1...f2...2|11) B82) (1- iz...z...z...2|11)

(83) (1--10---0---0]00) (i = j+1), (34)—(0-.-6---610 .0]00) (k= i+1),

(85)—(10-+-0---0--0100) (j=1),  (86)—(12---2--2|11) (j=1,i=2).

Case (1): /(u)=1. Represent u as follows: u=a ws@X,; Then the pair
(a, B) is one of the pairs ((ar), (8s)), where r,5=1,2,3,4,5,6. Applying
Lemma 2.3 for each pair, we obtain that p(u)=0.

Case (2): /(u)=2. We first suppose that « is indecomposable. Consider
the following elements in A, :

(ul) (0- 010-..0-.-0-.-0|00),
(12) (0...0...0...010 -0]00), (0...0...0...()]10) (0...0...0...0|01)

i

(©3) (0-- 012---2---2| 11) G =j+2), (u4) (10 O -0-- O -0100),
k
(u5) (0...0...010...0...0|00) (u6) (12...2...2...2|11) (j=2),
(w7) (0---0---012 2|11) (k=1+2).
Then such the triples (a, 8'; 1) as in Case (2) of type Al are given in the fol-
lowing:

(1) (@1),(82); (u1)), i—j =2, 2) ((@1),(B5); (p1)),j = 1,123,

(3) ((al), (B1); (u2)), 4) ((al), (84); (u2)), B = i+1,
(5) ((al),(B2); (u3)),i—j=2, (6) ((al),(B5); (w3)),j=1,i=3,
(7) ((@2),(B2); (u4)), j =2, (8) ((@2),(B3); (u4)), j=2,i=j+1,

) ((«2),(B1); (uS)), k—i=2,  (10) ((a2),(B2);(ub)),j =2,
(11)  ((«2), (B83); (#6)), j = 2,1 =j+1,
(12) ((a2), (B1); (w7), k—i=2, (13) ((@3),(B2); (u4)), k = i+1,j=2,
(14) ((a3), (83); (u4), k =i+ 1,0 =j+1.j=>2,
(15) ((«3), (B2); (u6)), k= i+1,j =2,
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(16) ((a3), (83); (w6)),j = 2,i =3,k =4,
(A7) ((a4), (B1); (u2)), i—j = 1,

(18)  ((a4), (B4); (#2)), 1 = j+1, k= i+1,
(19) ((@5), (B1); (u5)),j =1, k—i =2,
(20) ((@5), (BL); (u7)), j=1,k—i=2.

Lemma 2.4 is available for all cases and thus it follows that p(x)==0.

We next suppose that u is decomposable. Put u=a 0,,®@Xp +b v,,@X;,.
Then the weight ) is a root and Lemma 2.2 is available for all the cases. Hence
it follows that p(x)==0.

Case (3): /(u)>3. By the same way as Case (3) for Case BII §4, we see
that p(u) +0.

Summing up the above arguments, we have the following result for the
PSLA of Case (a); the homomorphism p is always injective. Similarly for the
other cases p is always injective.

Theorem 6.11. Let €V be the G-orbit which corresponds to a PSLA in a
family of type DII. Then the CV-geometry does not admit non-totally geodesic
CY-submanifolds.

Case DIII: The families 9); with pair (7, k)

Put =0, and r=6;. Then, for each PSLA in 9);, the corresponding sym-
metric space M and the totally geodesic €}/-submanifold N are given as follows:
(N is locally described.)

(a) V=(g, o, 7): M=SO0(2])/U(l). In this case N=38u(l)/3(u(j)Du(k));

(b) V=(g,a,or): M=SO(2l)/U(l). In this case

N—80(2j)}2(j) @ 80 (2h)/u (R);
(c) V=(g,t,0): M=SO(2l)|SO(2j) X SO(2k). In this case
N=su(1)/8(u(j) @ ().
For the PSLA (g, o, 7), the subsets Aj,, Af, Ay, Ay of A* are given as fol-
lows:

(6.9) A} = {8€A*;5,=0,5,= 0,2}
(0...91...10...6...0100)
— {8€A*; 8 = (0-++0---01.-10--0]00) |,
(0-+-0---01-+-1] 10)
A = 8€A*; 8,=0,8,= 1}
J
_ {86A+;8 :(0...01...1i...10...o|00)},
(0-+-01-+1---1] 10)

A}, = {8€A*; 8, =1,8;=0,2}
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(0-++0---01.-1]01)
(0-++0-++01--1|11)
(0++0+:01-+12.:2[ 11) [’
(0--01-++12+.2-.:2] 11)
A= {8€A*; 8, =8;=1}

(0---01--+1---1]01)
J
= {SEA‘“; § = (0-+:01-+1---1]11)
]
(0-+-01-+-1-+-12.4:2 11)

Moreover the dominant weights in A, , A, A, _ are given by (6.10), (6.11),
(6.12), respectively:

(6.10) (1oorf--1]10), —(0--010---0]00).

61 { O~ d122011),  (122-2]11),
—(0-+0--- 0]01),  —(0---012...2|11).

(6.12) (1-12.-2[11), —(0--01.--1]01).

We first see the injectivity of p for Case (a): V=(g, o, 7). Then pis a
homomorphism of (p€)*R¥C to A¥(PE)*@PpS. The minus multiple of dominant
weights in A, _ are given by (al), (a2) and the dominant weights in A,_ are given

by (81), (82):
(al)—(1-12--2]11),  (a2) (0--01--1]01),
(81) (L--+1--1]10),  (82)—(0---010---0]00).

Case (1): [(u)=1. Represent u as follows: #u=a w,@X;. Then the pair
(at, B) is one of the pairs (@ 1), (8s)), where r,s=1,2. Applying Lemma 2.3
for each pair, we obtain that p(x) =0.
Case (2): /(u)=2. In this case there exists no decomposable # and thus
we suppose that u is indecomposable. Consider the following elements in A, :
(p1) (10--0--0]00),  (42) (0---010---0]00),

(13) (0--010--0[00),  (u4) (0---0---0]10).

Then such the triples (a, B'; ) as in Case (2) of type AI are given in the fol-
lowing:

1) (al), (B1); (ul)), j=2, 2) ((e1),(82); (n1)), j=2,
() ((a1),(B82); (u2)), I=j=3,  (4) ((@1),(B1); (u4)), j<I-2,
(G) (@1), (82); (uh), j =12, (6) ((@2),(B1);(n3)),j=2,
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(7) ((@2), (B2); (u3)), j=2, (8) ((@2), (B1); (u4)), j<I-2,

) (@2),(82); (u4)), I—j=2.

Lemma 2.4 is available for all the cases and it thus follows that p(x)=0.

Case (3): [(u)>3. We see the weight spaces with dim>3. Let A\ be a
weight in A and let &, 8 be weights such that A=—a-+ 3, where aEgAh,_ and
BEA, . Denote by a, b, s the k-th components of a, B, \, respectively.
Sinc a;=+-1 and b;=4-1, it follows that A ;=0, £2.

We first suppose that A;=0. Then it follows by (6.9) that n,=+1. We
suppose that v,=1. (For the case that A,=—1 we can similarly do the argument
mentioned below.) It moreover follows by (6.9) that A,-;=0, 4-1.

J
Case (i): N-1;=—1. Then the pair (g) has the form ( :%:% i _01 —01>

If the weight space for A has the dimension more than 3, it follows by Lemma
6.9 that

A = (0...6...0| —11)
and the pair (g) has the form

(0 i) —1 e _j1 e —11 0 _1>
00 —1ee —1we —1]—1 0 )

Hence for a maximal vector « in this weight space, it follows by Lemma 2.4
that p(u)=0.

Case (ii): A;-;=0. Then the pair (g) has either of the following forms:

(6.13)

i j
—1:-—1]0 —1 —1 —-1-—1 .
( _1 {0 0 ),( _1“__“1_1 0 ) If the weight space for A has the

dimension more than 3, it follows by Lemma 6.9 that
A = (0--0+--01--1]01)
and the pair (g) has either of the following forms:

j

(6.14) (0-..0-—1--- 1 =1 =1+ =110 —1)
0-e0—1w-—1we—1 0 - 0 [O O/
(0 e DT e =T e —1 —2 eee —2 [ —1 _1>
0wr0—1vr —1ee—1 —1wv—1]—1 0 )"

Hence for a maximal vector  in this weight space, it follows by Lemma 2.2
that p(x)=+0.

j
Case (iii): A;-;=1. Then the pair (g) has the form( :% ; —01 —(—)1>

If the weight space for A has the dimension more than 3, it follows by Lemma
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6.9 that
A= (0...0...01...12...2| 11)
and the pair (g) has either of the following forms:
(6.15) (,() e 0—1 - w1 21 1 —1 =2 =2 —1 —1
0. 0— .._1..._1 00 0010 0>’
0—

1.

1
0 eer 01 ver —1 eee —1 —2 eee —2 —2.—2] =1 —1
(0...0 1o —1ewe—1—1w-—1 0 -0 | 0 0)°

For a maximal vector u in this weight space, Lemma 2.2 is available if A is a
root and Lemma 2.4 is available if A\ is not a root. Hence it follows that
p(u) #0.

We next suppose that A;=2. (For the case that \;=—2 we can similarly
do the argument mentioned below.) Then it follows by (6.9) that A,=1 and
7\.1_1=0, 1, 2

Suppose that A;-;=0 (resp. A;-;=2). Then the pair (g) has the following

J J
form: ( _11"'_1 }8 —61> (resp. ( 1 el 11 _1)) By Lemma 6.9 the weight
space with this A has at most dlmensmn 2.

Suppose that n,;- 1—1 Then the pair (g) has either of the following forms:

< _—1"'*111(1)—()1) ( _11 :_01 '61) If the weight space for A\ has the di-
mension more than 3, it follows by Lemma 6.9 that

= (0---01--1 ...2...2|11)

0
(o
(o

(0...0 e ] e e —1 =2 -2 —1 _1>
00 0 -0 1 +-1+w1 0« 01]0 0)

(6.16) (0 8 (1)(1) _11 e ] e —1 e _11 = (1) 51>’
0
0
0
0

For a maximal vector # in this weight space, Lemma 2.2 is available if A is a
root and Lemma 2.4 is available if \ is not a root. Hence it follows that p(u)=0.
We next see the injectivity of p for Case (c): ¢V=(g, 7, ). Note that in
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this case p is 2 homomorphism of (p8)*@p¢ to A%(PE)*@EE. The minus multi-
ple of dominant weights in A, _ are given by (a1), (@2) and the dominant weights
in A, are given by (81)~(84):

(al)——(l---lj:z---2|11), (@2) (0.-.0i'.---1|01),
(B1) (0--012-:2]11),  (82) (12-+2--2(11),

(,83)—(0.--1.--0|01), (,84-)—(0-~-01é---2|11).
Case (1): /(u)=1. Represent u as follows: #=a w,Q®X;. Then the pair
(o, B) is one of the pairs ((a 1), (8s)), where r=1,2 and s=1, 2, 3,4. Apply-
ing Lemma 2.3 for each pair, we obtain that p(u)=0.
Case (2): (u)=2. We first suppose that u is indecomposable. Consider
the following elements in A, :

(u1) (10--0--0100),  (42) (0---010--0]00),
(13) (0--010--0]00),  (u4) (0--0--0]10).

Then such the triples (e, B’; w) as in Case (2) of type AI are given in the fol-
lowing:

(D) (a1), (84); (u1)), j=3, (2) ((a1),(B3); (n2)), j=1-3,
(3) (@2),(82); (13), j=3, (4 (@2),(B1);(u4)), j=1-3.

Lemma 2.2 is available for all the cases and thus p(x)=0.

We next suppose that « is decomposable. Put u=a w,, @ Xp,+b 0,,QXj,.
Then there exists one possible case when /=4, j=2, i.e., the pairs (a;, B;) are
((al), (B3)) and ((2), (B2)). In this case A is a root and Lemma 2.2 is also
available. Hence it follows that p(u)=0.

Case (3): /(u)>3. We see the weight spaces with dim>3. Let A be a
weight in A and let @, B be weights such that A=—a+#8, where a€A,_ and
BEA,,. Since a;=41 and 4;=0, +2, it follows by (6.9) that A;=-1, 4-3.

We first suppose that A ;=1. (For the case that A ;=—1 we can similarly do
the argument mentioned below.) Then it follows by (6.1) that A,=0, 2.

B

i ! j
(0‘___01 } :%), ( ;__.2}1 %) If the weight space for A has the dimension

more than 3, it follows by Lemma 6.9 that

Case (i): A;=0. Then the pair ( a> has either of the following forms:

x:(0...01...{...10...0|00), (0-+-01+-+1---1] 10).

For the former ) the pair (g) has one of the following forms:
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(6.17) (‘0 w0 —leee =1 —1 =200 =2 —2.e —2| —1 _1)
0.0 0 «+ 0 =+ 0 —1ee—1 —2.—2] —1 —1)7
(0-..0 dee 2l 1 —lee =1 20 =2 —1 —1
00 0 «« 0 v+ 0 —T1ee—1 —24e—2] -1 —1)°
(0---0—1 21 1210 —1
00 0 - 0 ~1---—1|0—1>’
(0...00...01...i...12..2|1 1)
0-+01-:12:2222:22[11)°
(,0...0 1ol 1eelel2. 2|11
0-01-122.222..2]11)"

Hence for a maximal vector u in this weight space, it follows by Lemma 2.2
that p(#)#0. For the latter \ it similarly follows that p(x)=0.
j 1
Case (ii): A;=2. Then the pair (g) has the form (0“.‘61 } —11) If the

weight space for A has the dimension more than 3, it follows by Lemma 6.9 that

. a b
A= (0--01+-1001 202373 12) or
. a b
(0--01e- 1001 2002 3023 4044 22)

where a>0, 5$>>0, and the weight space for this A has just dimension 3. For

the latter A the pair (g) has one of the following forms:

(6.18) |
<0 ) =T Sl 1 —1ee =1 —lew—1 =20 —2| —1 —1
00 0 en 0 +v 0 1 e 1 2 w02 202 |1 1>,
(0...0 el =T e =] —Leee =1 —2 e =2 2 —2 | —1 _1>
00 0 v 0 v 0 11 1l 22]1 1)
(0 e —Leee Sl ] 2 =2 2 =2 24 —2 | —1 _1)
000 0 v 0 v 0 0 o0 11 221 1)

Hence for a maximal vector # in this weight space, it follows by Lemma 2.4
that p(x)=0. For the former A it similarly follows that p(x)=0.
We next suppose that A;=3. (For the case that A;=—3 we can similarly

do the argument mentioned below.) Then, by (6.9), the pair (g) has the form

i
( —21 2|I 1 _11> If the weight space for A has the dimension more than 3, it

follows by Lemma 6.9 that
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a b ;
A= (0:-071w--12-+-23-+.3---3]12) or
a b .
(040 Teoe1 2002 3++-3++34-0.4| 22)

where a>0, 5$>>0, and the weight space for this A has just dimension 3. For

the latter A the pair < g) has one of the following forms:

(6.19)
(.0---00---00---0—1 c e =1 =2 =2 —1 ~1)
0«-01¢:12:.2 2 2 e 2 2 2 I 1 1 ’

(0 w000 —Tewe =1 —1 oo ZTwee —1 20 —2] —1 —1)
001l 1 w01 20202 22 ]1 1)
(0...0 1o —1 —1we—1 —T e —1eee =1 —2.0e —2| —1 —1
00 0 -+ 0 1 o1 222 221 1)

For a maximal vector u in this weight space, it follows by Lemma 2.4 that
p(u)=#0. For the former X it similarly follows that p(u)=0.

We last see the injectivity of p for Case (b): ¢{=(g, o, o7). Note that in
this case p is a homomorphism of (p)*QpC to AX(PS)*®EC. Hence we may
regard roots «, @ in this case as roots —@3, —a in Case (c), respectively. We
retain the notations in Case (c).

Case (1): /(x)=1. The pair ( g) is one of the pairs (—(B8 s), —(a r)), where
s=1,2,3,4and r=1,2. It follows by Lemma 2.3 that p(x)==0 for all cases.

Case (2): /(u)=2. We first suppose that « is indecomposable. Then the
triples (e, B’; u) are given as follows:

(1) (=(B4), =(a); (p1)) 5 (2) (=(83), —(al); (s2));
(3) (=(82), =(a2); (w3)) 5 (4 (=(B1), —(a2); (u4)) -

Lemma 2.2 is available for all the cases and thus it follows that p(x)=0.

We next suppose that # is decomposable. Then there exists one possible
case when /=4, j=2, i.e., Pairs (a;, 3;) are (—(83), —(al)) and (—(B2), —(a2)).
In this case A is a root and Lemma 2.2 is also available. Hence it follows that
p(u)=*0.

Case (3): /(u)>3. Similarly to Case (3) in Case (c), we have the cases
which correspond to (6.17), (6.18), (6.19). Lemma 2.2 is available for the former
one and Lemma 2.4 is available for the other cases. Hence it follows that
p(u) *0.

Summing up the above arguments, we have the following result for PSLA’s
in 9;; the homomorphism p is always injective.
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Theorem 6.12. Let CV be the G-orbit which corresponds to a PSLA in a

family of type DIII. Then the CV-geometry does not admit non-totally geodesic
Y -submanifolds.

Case 9);: The family 9, ;3.

In this case all PSLA’s in 4), are equivalent to each other. Then the
corresponding symmetric space M is SO(8)/SO(4)x SO(4) and the totally
geodesic €V/-submanifold N is locally four copies of 8u(2)/8(u(1)@u(1)).

Put ¢=0, and 7=0,,, and consider the PSLA (g, 5, 7). Then it holds that

A} = {(10]00), (00]10), (00|01), (12| 11)} ,
A;. = {(11]00), (01] 10, (01]01), (11| 1)}

and so a weight A in A is one of the following:

+£(0100), £(01/11), (11]01), (4=(11/10), 4-(01]20),
+(1-1]=10), £(1-1]0-1), £(11[-10),
(11]0—1), (01| 1—1), £(21]00), £(21]11),
+(11]21), £(01]02), 4-(11]12), £(23|11),
+(13]21), +(13]12), 4-(23|22) .
Suppose that % is a maximal vector in this weight space. If A is a root, Lemma

2.2 is available and thus p(x)=0. If A is not a root, the weight space has just
dimension 1. It follows by Lemma 2.3 that p(x)=0.

Theorem 6.13. Let €V be the G-orbit which corresponds to a PSLA in the

family D,. Then the CV-geometry does not admit non-totally geodesic CVV-subma-
nifolds.
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