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0. Introduction

For a closed curve y(s) in a riemannian manifold M we define its energy
E(γ) by | |γ | |2. The first variation formula of E is given by —2<δγ, Z>;γ>
Therefore, its Euler-Lagrange equation is Dy<γ=0> the equation of geodesies.
We consider the corresponding parabolic equation

(EP) j - 7

This is locally expressed as

d t Y ds2 J d s 9 *

which is a semi-linear heat equation.
This equation was studied by Eells and Sampson [ES], in higher dimen-

sional case. They proved that if the manifold (Myg) is compact and has non-
positive sectional curvature, then a solution γt exists for all time, and a subse-
quence yt. converges to a geodesic. And it is not so difficult to show that if
the manifold (M,g) has negative sectional curvature, then the solution yt itself
converges to the geodesic.

Physically, equation (EP) represents the equation of motion of a rubber
band in high viscous liquid. Therefore, it seems that the above curvature
restriction is not necessary. More precisely, we have the following

Conjecture A. If the manifold M is compact then Cauchy problem (EP)
has a unique solution <γt for all time.

Conjecture B. The solution j t converges to a geodesic when t—> <>°.

In this paper we will show that this conjecture holds "almost always", with
"a few" exceptions.

Theorem A. If the manifold M is compact then Cauchy problem (EP)
with C°° initial data has a unique solution γt for all time.
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Theorem B. Moreover, if the riemannian manifold (M,g) is real analytic,
then the solution rγt converges to a geodesic when t-* oo.

Thoerem C. There exists a compact riemannian manifold (M, g) such that
for certain C°° initial data the solution γt of Cauchy problem (EP) does not con-
verge.

1. Preliminaries

Throughout in this paper, we use the following notations. The parameter
of a curve γ is denoted by s and the velocity vector dγ/ds is denoted by γ or v.
We treat curves % depending on time t and denote by 7* or vf their velocity vec-
tors. But we usually omit the subscript t in them.

The riemannian covariant derivation is denoted by D. The norm I * | ,
the L2 norm | |* | | and the L2 inner product <*, *> are defined by | * | 2 = £ ( * , *),
<*> *>=f£(*> *)ds and | |* | | 2 —<*, *>.

We start from results in [ES].

Theorem 1.1. [ES, Theorem 10A, 10B] For any closed C1 curve y0,
there is a positive constant T depending only on the energy density \vo\

2 such that

(EP) has a unique solution γt on 0<t<T.

Let T be the largest number such that a solution with initial data γ 0 exists
on 0<t<T, and suppose that the energy density \vt\

2 is bounded on i(s,i)} =

S1x[09 T). Then by Theorem 1.1 there exists a positive number Tx such
that any γt can be continued as a solution onto the interval (tf ί+TΊ). This
implise that T is infinite. Therefore, the proof of Theorem A is reduced to the
following

Proposition 1.2. Let γt be a solution of (EP) on 0<t<T, where T is a
finite positive number. Then the energy density \vt\

2 is bounded from above by
a constant C on {(s,t)} = S1χ[0, T). Here, the constant C dependends only on
the initial data γ0 and the time T.

To prove this, we need some basic inequalities. As usual, we use symbols
Dt—Dd/dt and Dv=Dd/ds. First, for a solution j t on 0 < K Γ w e see

d ,
„_„• = 2<v, Dtv> = 2Sv, ZVpy > = 2<v, D2

υv> = -2\\Dυv\\2.
at \ at /

It implies that ||z>|| is non-increasing. Therefore, we have a positive constant
Cx such that IMI^Cj on 0<t<T.

Lemma 1.3. For any vecotr field ξ along y, we have
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Proof.

<2( | |£ | | 2 +| |£ | | \\Dvξ\\)

Q.E.D.

Lemma 1.4. For any positive integers p<q, we have a constant C2 de-
pending only on (the constant Cλ and) p and q such that

\\mv\\<Lc2\\mvψ<.

Proof. Since

we see that the function log | |Z)^ | | is concave with respect to ̂ >>0. Therefore,

Q.E.D.

Lemma l.S. For any non-negative integers p<q, we have a constant C3

depending only on [Cx and) p and q such that

max

Proof. From Lemma 1.3, we know

max

By Lemma 1.4, the right hand side

< c o n s t - { + \ \ v \ f )

Q.E.D.

2. Proof of Theorem A

Now we have to see more closely equation (EP). For the solution yt on
0<t<T, we see

DtDvv = R(—y, v)v+DJ)tv = D3

vv+R(Dvv, v)v .
dt

Therefore, by induction, we get for
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DtD
n

v-
ιv = i ? ( — γ , v)Dn

υ'
2v+DvDtD

n

υ"
ιv

at

= Zϊ +H + Σ * Aijkl(DiR)(Div, Dk

ΰv)Dι

vv ,

where -4's are universal constants and the sum Σ Λ is taken over all i, k> />0,
y > l with i+j+k-^l=n—\. This holds also for n=l, taking A—0. Thus,
we get

= φl-1*, D»*v+^A Aijkl(DiR)(Divy Dk

υv)Dι

υvy .

Here the term Dι

ϋR is expanded into

Σ * Bi

mPl...Pm(DmR)(Dtw,.-, ZJί-v),

where JS'S are universal constants and the sum Σ * is taken over all tn,pl9 •••,/>„
> 0 with

L e m m a 2.1. ΓA^r^ /> <a: positive constant C4 depending only on Cγ and

non-negative integer n such that

Proof. Let n be a positive integer. From the above equality and Lemmas
1.4, 1.5, we see

BLPl-.Pm(DmR)(Dζ*v, ....

1 " ^ ) ) \\Dn

vv\\i'Λ\\D1'υv\\{n-l)/''

< const,

where Σ c * denotes Σ ^ Σ 5 * ) and q runs in the set {plt "^pm, k, /}. Q.E.D.

Proof of Theorem A. Lemma 2.1 and Lemma 1.3 imply that we can es-
timate each Cn norm of the solution <γt only by the initial data y0. This com-
pletes the proof of Proposition 1.2, hence Theorem A holds by the remark
above Proposition 1.2. Q.E.D.

Before proceeding to Theorem B and C, we derive the following
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Lemma 2.2. For any positive integer n, the integral /~ ||Z)Jί;||2<ft is finite,
and ||Z)Jz;||-»O when £-><χ>.

Proof. Since -J- 4-|M|2=-|IA>*ΊI2> we see
2 at

' \\D9v\\2dt = - y [IHΠo-^y IKII2<°°

Combining it with Lemma 2.1, we get the result for n = l . Suppose that the
assertion holds for any positive integer less than n. Note that q<n—2 in the
third line of the inequality in the proof of Lemma 2.1. Therefore, by Lemma
1.3, all max, | Dq

υv | are already bounded by a constant. Thus,

\\Drv\\^\\Dvvλ at

where the sum is taken for 1 <j <n— 1. By integration, we see

Σ \"\\Div\\ \\D:-
Jo

V2

Thus, /JP | |Z)^ | | 2 Λ is finite by the assumption of induction. Combining it
with Lemma 2.1, we get the result for n. Q.E.D.

3. Proof of Theorem B

The next Lemma is a direct consequence of a result of [S, Theorem 3],

Lemma 3.1. Let (M,g) be a real analytic riemannian manifold and η a
closed geodesic. Then there are positive constants μ^(0, 1), 0^(0, 1/2), and a
C2+tι neighbourhood U of η such that if a closed curve y is in U, then

\\DM\>\E(Ύ)-E(V)\ 1-θ

Again, let γ be a solution of equation (EP) . If the manifold M is compact,
then yt are C° bounded and Lemma 2.2 implies that yt are C4 bounded, and so
has a C3 convergent subsequence. Let γ.* be its limiting closed curve. Since
IIAΛII~*0> %» i s a closed geodesic. We apply Lemma 3.1 to 97=700. Fix a
geodesic coordinate system around a point 7oo(s0). Take sufficiently large T so
that Dυtvt is sufficiently small for any t> T. If tx> T and ytι(s0) is close to 7oo(s0)>

then (—)27ί1(ί) is sufficiently small in the coordinate. It means that if tλ>T
ds

and ytι is close to γ«> in L2 topology, then they are close in C3 toplogy. Thus,
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Lemma 3.1 can be rewritten as the following

Lemma 3.2. Let (M, g) and %» be as above. Then there are positive con-
stants 0G(O, 1/2), T and an L2 neighbourhood V of γ*, such that if t>T and

7, then

Proof of Theorem B. Suppose that on a time interval (tu t2), 7t is in V
and satisfies the above inequality. Then, for γt,

y ll2 II TΛ 112 II TΛ II \\ U

Δ at \\dt

Therefore,

dt

*-1 -^ (\W\2-\\v~\\2)

Thus, we get

Let Br be the L2 ball in V centered at 7«, with radius r. If γt enters in Br/2

at t=tx and leaves from Br at t==t2y we have /Jj \\d^\dt\\dt>r\2. Thus, if j t

repeats entering and leaving infinitely many times, we get / 7 \\drγjdt\\dt=ooy

where I={t;yt^Br}. This contradicts to the above inequality. Therefore,
there exists a time T so that γt stays in Br on t > T. Since r can be taken arbi-
trarily small, we conclude that j t converges to γeo in L2 topology. Thus, γt con-
verges to γoo in C°° topology by the remark below Lemma 3.1. Q.E.D.

4. A counter example

We recall Theorem 1.1. The uniqueness of the solution implies that if all
initial data are invariant under a group action, then so is the solution yt.

Let /be a C°° function on R2 defined by the polar coordinate (r, θ) as

ΓO

We take a point //„ outside the circle r=ί. Then the integral curve ht of the
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gradient vector field —grad/ closes to the circle r=\ when t->ooy but does not
converge. This example is suggested by Professor O. Kobayashi.

We define a C°° riemannian metric £ on the manifold S1xR2= {(u>x, y)} as

\ dy) = ι ,

I g(du, 9.) = 1 +φ(x, y) (φ(x, y) = f(r, θ)).

We solve equation (EP) with initial data Ύo(s)=(s, a, ft), where a and b are con-
stants satisfying d*-\-b2>l. Since the initial data are S 1 invariant, so is the
solution γt. It means that the solution γ, behaves like the integral curve ht.
In fact we easily compute that the solution Ύt(s)=(s, x(t),y(t)) is given by a solu-
tion of the equation: —(x,y) = — — gradφ. We can easily relpace the mani-

dt 2

fold S1XR2 by a compact manifold, say S1χT2.
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