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0. Introduction

In the theory of transformation groups, it is an important problem to dis-
tinguish whether or not a group action is linear. In this paper we would like
to consider linearity of homotopy representations of finite groups in the G-
homotopy category.

Since the study of homotopy representations of finite groups G due to tom
Dieck-Petrie [6], it is known that there exist many homotopy representations
which are not linear (i.e., not G-homotopy equivalent to linear G-spheres).
On the other hand, in [5], tom Dieck proved that any homotopy representation
of a cyclic p-group C ,» is linear under a restricted situation. For its proof, tom
Dieck used the stable theory of homotopy representations.

We first consider the following problem under the general setting. We use
the unstable theory of homotopy representations.

Problem. When is a homotopy representation of G linear?

If a homotopy representation is linear, its dimension function must be
linear at least. Therefore we mainly discuss homotopy representations with
linear diemsnion functions. (For the linearity of dimension functions, see [1],
(2], {31, [6])

In Section 1 we recall some definitions and well-known results, in particular,
the unstable Picard group Pic(G;#) and Laitinen’s invariant ([7]), which are
the main tools in this paper.

In Section 2 we introduce subgroups jO(G; n) and Pic/(G; n) of Pic(G; n)
for any linear dimension function #, and put

LH=(G;n) = Pic(G; n)[jO(G; n),
LH(G; n) = Pic/(G; n)/jO(G; n) .

For any homotopy representation X with dimension function #, we define a
G-homotopy invariant /(X) in LH*=(G;n) by using Laitinen’s invariant, and
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anwser the problem above.

Theorem 0.1. A homotopy representation X with linear diemsnion func-
tion n is linear if and only if (X)) vanishes in LH*(G; n).

In Section 3 we compute LH=(G; n) and LH(G; n) for any abelian group
G. We also show the following result by using Theorem 0.1.

Theorem 0.2. Let G be an abelian group. The following are equivalent.
(1) Any (finite) homotopy representation of G with linear dimension func-

tion n is linear.
(2) LH=(G;n) (LH(G; n)=1.

In Section 4 we determine finite abelian groups such that LH*(G;n)
(LH(G; n))=1 for any linear dimension function n. We show

Theorem 0.3. Let G be an abelian group.

(1) LH=(G;n)=1 for any linear dimension function n if and only if G is
isomorphic to Cym(p: prime), Cs or CyX C,, where C,, denotes a cyclic group of ovder
m.

(2) LH(G;n)=1 for any linear dimension function n if and only if G 1 iso-
morphic to Cym, Gyabelian 2-group), Gy(abelian 3-group) or (C,)"x(C3)™ (n=1,
m>1).

Since the dimension function of any homotopy representation of G is linear
if and only if G is a p-group ([6], [3]), we get the following corollary which in-
cludes tom Dieck’s result mientioned above.

Corollary 0.4. Let G be an abelian group.

(1) Any homotopy representation of G is linear if and only if G is a cyclic
p-group Cm(m=>0) or C; X C,.

(2) Any finite homotopy representation of G is linear if and only if G is Cm,
G, (abelian 2-group) or (G, (abelian 3-group).

1. Homotopy representations and Picard groups

In this section, we recall some definitions and well-knonwn results from
(61, [71, [9]-

DrerFINITION. A finite dimensional G-CW complex X is called a homotopy
representation of G if, for any subgroup H of G, the H-fixed point set X# is
homotopy equivalent to a (dim X#)-dimensional sphere or empty. Furthermore
if X is G-homotopy equivalent to a finite G-CW complex, it is called finite, and
if X is G-homotopy equivalent to a linear G-sphere (i.e., a sphere of a real re-
presentation of G), it is called linear.
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Let S(G) denote the set of subgroups of G and ¢(G) the set of conjugacy
classes of subgroups of G. The dimension function is defined by

Dim X(H) = dimX#+-1.
We call a dimension function Dim X Zlnear if there exists a linear G-sphere
S(V) such that Dim X=Dim S(V).
Let V=(G) be the homotopy representation group of G, which is defined by
the Grothendieck group of G-homotopy types of homotopy representations of
G under join operator. Similarly V(G) and JO(G) are defined for finite and

linear homotopy representations respectively. It is known ([6]) that there are
the natural inclusions

JO(G)cV(G)cV=(G).
We define subgroups v=(G), v(G), jO(G) as follows.
2°(G) = {X—YeV>(G)|DimX = DimY},
9(G) = {X—YeV(G)|DimX = DimY},
jO(G) = {X—Y € JO(G)|DimX = DimY}.
Theorem 1.1 ([6]). The subgroups v=(G), v(G), jO(G) are the torsion sub-

groups of V=(G), V(G), JO(G) respectively, and v=(G) is isomorphic to the
Picard group Pic(G). B

The Picard group Pic(G) is defined as follows. Let C(G) be the set of in-
teger-valued functions on ¢(G) and A4(G) the Burnside ring of G. We regard
A(G) as a subring of C(G) by the usual way. We define finite rings

C:(G) = C(G)/1G|C(G),
A(G) = AG)IGICG).
and denote their unit groups by C(G)*, A(G)*.
DerINITION ([4], [6]).
Pic(G) = C(G)*/C(G)* A(G)* .

Homotopy representation groups and Picard groups play important roles
in the stable theory for homotopy representations.

E. Laitinen introduced the unstable Picard group to study the unstable
theory for homotopy representations. For any dimension function z=Dim X,
the following lemma holds.

Lemma 1.2 ([7, Lemma 2.1]). For any subgroup H, there exists a unique
maximal subgroup H including H such that n(H)=n(H). B
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If n(H)>0 and H=H, then H is called an essential isotropy subgroup. We
denote by Iso(n) the set of essential isotropy subgroups.

DrerFINITION ([7]). We say that a function d €C(G) satisfies the unstabi-
lity conditions for # if d satisfies the following conditions:

(1) d(H)=1 when n(H)=0,

(2) d(H)=-—1,0,1 when n(H)=1,

(3) d(H)=d(H) for any (H)€$(G).

We call d € C(G) invertible if d(H) is prime to |G| for any (H) The Picard
group Pic(G; n) is defined as follows Let C(G;n) (resp. A(G;n)) denote the
subset of C(G) (resp. A(G)) which consists of all functions satisfying the unstabi-
lity conditions. Let C*(G;n) (resp. A*(G;n)) denote the subgroup of C(G)*
(resp. A(G)*) which consists of all elements represented by invertible functions
in C(G; n) (resp. A(G;n)). Similarly C*(G; n) cC(G)* is defined.

DEeNINITION ([7]).
Pic(G; n) = C*(G; n)/C*(G; n)A*(G; ) .

Laitinen’s invariant that distinguishes G-homotopy types of two homo-
topy representations is defined in Pic(G;#z). For convenience we recall this
here.

Let X, Y be homotopy representations with the same dimension function
n. There is a G-map f: Y—X such that deg f# is prime to |G| for any H. If
we choose orientations of X and Y in the sense of Laitinen, the degree function
d(f) defined by d(f)(H)=degf? is well-defined, and satisfies the unstability
conditions. Laitinen defines the invariant by

Dy(X, Y) = [d(f)]Pic(G; n) .

Theorem 1.3 ([7]). X and Y are G-homotopy equivalent if and only if
Dy(X, Y)=1in Pic(G;n). R

2. The groups jO(G; n) and LH*(G; n)

We assume that # is linear throughout this section.

We first introduce jO(G; ), which is considered as the unstable version of
JO(G). We define jO(G;n) as the subset of Pic(G;n) which consists of all
D#(S(V), S(W)) for linear G-spheres S(V'), S(W) with dimension function z.

We need the following lemma in order to show that jO(G; n) is a subgroup
of Pic(G; n).

Lemma 2.1. For any x< jO(G;n) and for any S(V') with dimension func-
tion n, there exists S(W) with diemension function n such that D.(S(V), S(W))=x.
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Proof. Take linear G-spheres S(7T') and S(U) with dimension function z
such that Da(S(T), S(U))=x. We set y=Du(S(V), S(U)). Let
U=US--pU,

be the irreducible decomposition. Since S(V') and S(U) have the same dimen-
sion function, by [14, Proposition 1.11]

V = ghU,@- Dyt U,

for some &y, +-+, k, €Z which are prime to |G|, where % are the Galois con-
jugations. We may assume that k;=1 (4) since J*=+"* on RO(G). By [14,
Theorem 4.1], there exists a G-map f;: S(y* U,;)—S(U;) such that

d(f,)(H) = k‘,[(lfz)DimS(U,-)(H)] ,

where [ ] indicates integer part. It is easy to see that d(f;) is invertible and
satisfies the unstability conditions for #,=Dim S(U;). Hence D, (S(U)), S(y*4U,))
=[d(f;)]. Similarly
T = phU,@- By U, ,

for some t,, -, t,€Z, (¢, |G|)=1, t;=1 (4), and

D, (S(U)), S(¥'iUy)) = [d(8:)] »

d(g;) = t[MDDImSW)] |
We set

W = yMaU, @ Pyt U,
= PV D DYV, (V, = YhU,) .
Since Dim S(U;)=Dim S(V;), it follows that
D,((S(V3), SW'sV1)) = D, (S(Uy), S(¥“:Uy)) -
Therefore
Du(S(V), S(W)) = I &y, (D (S(V2), SWHV))

= 11 t,, /(D (ST, Sw4U,)

= Du(S(U), 8(T)) = =,

where a, ,: Pic(G; n,)—Pic(G; n) are the natural maps. - This shows Lemma

21. 1
Proposition 2.2. The subset jO(G, n) forms a subgroup of Pic(G; n).
Proof. Take any x,y€jO(G;n). By Lemma 2.1, there are S(V), S(W)
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and S(U) with dimension function z such that Du(S(V'), S(W))=x and Da(S(V),
S(U))=y. Using [11, Lemma 1.6],
xy™ = Du(S(V), S(W)Du(S(V), S(U))™*
— Du(S(U), SW)€jOG;n). W

We next define the group Pic/(G; n).
It is known ([6], [8]) that there exists the finiteness obstruction homomor-

phism

p: Pic(G)—«(G) := ga) K(ZWH) .
Here WH=NH|H and NH is the mormalizer of H in G. K(ZWH) denotes
the reduced projective group of ZWH. Let p, be the composite of p and

the natural homomorphism Pic(G; n)—Pic(G). We define Pic/(G; n) as Kerp,,.
Since a linear G-sphere is a finite homotopy representation, it follows that

JO(G; m)CPic/(G;n) .
We define groups LH*(G; n) and LH(G; n) for any linear dimension func-
tion n.
DEFINITION.
LH>(G; n) = Pic(G; n)[jO(G; n) ,
LH(G; n) = Pic/(G; n)/jO(G; m).
Let X be any homotopy representation with linear dimension function z.
We define {(X)eLH>(G; n) by
UX) = [Da(S(V), X)],
where S(V') is any linear G-sphere with dimension function #. This definition

is independent of the choice of S(V7). Indeed let S(W) be another linear G-
sphere with dimension function n. Then

Du(S(V), X)Du(S(W), X)™ = Du(S(V'), S(W)) € jO(G; n) .
We now prove Theorem 0.1.

Proof of Theorem 0.1. If/(X)=1, then Ds(S(V), X)€jO(G; n). By Lemma
2.1, we can take S(W) such that D,(S(V), S(W))=Du(S(V), X). This implies
that D.(S(W), X)=1. By Theorem 1.3, X is G-homotopy equivalent to S(I¥).
The converse is trivial. Wl

We state the following theorem which follows from [11, Theorem 2.1].

Theorem 2.3. Suppose that n satisfies the following condition (H).
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(H): n(H)=n(G) mod 2 for any HES, := {HE S(G)|n(H)<3}.

(1) For any a€LH>(G;n), there exixts a homotopy representation X with
dimension function n such that [(X)=a.

(2) Furthermore if a €LH(G; n), then X can be taken to be finite.

Proof. (1): Let x€Pic(G; n) be a representative of @. By [11, Theorem
2.1}, there exist X and S(}’) with dimension function #z such that D(S(V), X)=x.
(Note that conditions of [11, Theorem 2.1] are satisfied because of the condi-
tion (H) and linearity of ».) This implies that /(X)=a.

(2): Since the finiteness obstructions of x and S(V) vanish, the finiteness
obstruction of X also vanishes. Hence X is finite. Il

3. Computation of LH>(G; n) for abelian groups

Throughout this section, a dimension function # is linear and G is abelian.
We first compute jO(G; #) and Pic/(G; n). From [11], there is the following
commutative diagram.

Pic(G; n) — Pic(G) £, «G)
l P |7 | PR
(L ZIGH ¥ 21— 11 Z[|G/H|*/ 1

Here Sg/u: Z||G/H | * | +1-K(Z[G/H]) is the Swan homomorphism and p is
the finiteness obstruction homomorphism. The maps % and s are isomor-
phisms which are defined as follows. The H-part u(H) of m([d]) is defined by
w(H)= Hsl;[SGd(K)“(” ‘K (or equivalently d(K)szH u(H)), where u(H, K) de-

H<e
notes the Mobius function on the subgroup lattice. The Moébius function is
characterized as integers satisfiying the equations:

H<KLL

{1, H=L
0, H=+L,

for any H, L (H<L). The isomorphism %, is defined as the restriction of
% to Pic(G;n). Hence we have

Proposition 3.1. The isomorphism s induces an isomorphism

Pic/(G;n) = TI KerSgy

HEIso(n)

O Z/IG/H|*|+1x I KerSys.
HeEIsoln) HelIso(n)
G/H : cyclic G/H : non-cyclic

Proof. Since S;=0 for a cyclic group G ([12]), the second equality fol-
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lows.

Let S(V') have the dimension function #. Let V(K) denote the direct sum
of irreducible subrepresentations of V' with kernel K. Then ¥V decomposes into

V= VKD DVK,).

for some K;.
Let K(n) denote the set of such K;’s. We notice that K(z) is independent
of the choice of V' with dimension function #. One can also see the following.

Lemma 3.2.

(1) If KEXK(n), then G/K is cyclic.

(2) H(n)CIso(n).

(3) For any set K={K,, -+, K.} of subgroups such that G|K,’s are cyclic,
there exists a linear dimension function n such that K(n)=K. B

We next show

Proposition 3.3.  The homomorphism s induces an isomorphsim

JO(G;m)y= TI Z[|G/K|*|+1.
KeHAl(n)

Proof. Let

V=VK)DDV(K,),

W= WK)® - eWK,),
where Dim S(V)=Dim S(W)=n. There are G-maps f;: S(V(K)))—S(W(K;))
such that (d(f;)(H), |G|)=1 for any H. Then the degree function d(f) of
f=fix---xf, represents Da(S(W), S(V')), and

Dy(S(W), S(V)) = [d(f)]-+[d(f)] -

It is seen that
d(f,)(1) if HLK;
1 otherwise.

) = |

Therefore
Bld(fODH) = TL_d(f) (1)

— d(f,-)(l)z"‘(H’K)
,_me>ﬁH=&
1 ifH=+K,.

It follows that
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E(JO(Gsm)c I1 Z[|G/K|*[+1.
KeK(n)

Next, take any (ax)€ II Z/|G/K|*/41. Let W be a representation
KeA(n)

of G with Dim S(W)=n. Then S(W(K)) has a free G/K-action and G/K is
cyclic. It is seen that there exists a G/K-map fr: S(Vi)—S(W(K)) (for some
V) such that deg fy=a,. Then ﬁﬂ(d(;l; fx))=(ax). Thus g, induces an iso-
morphism. W

Consequently we obtain
Corollay 3.4.
LH=(G; n)= I~ Z/|GH|*|+1,

HeIso(n)\H(n)
LH(G;n)=M(G;n)X(G; n),

where
M(G;n) = II Z||G/H|*|+£1,
He Iso(n)\H(n)
G/H:cyclic
N(G;n) = II KerS¢/y - |
HeIso(n)

G/H:non-cyclic

We now prove Theorem 0.2.

Proof of Theorem 0.2. (2)=(1): This follows from Theorem 0.1.

(1)=(2): Let X be a homotopy representation with linear dimension func-
tion . When # satisfies (H) in Theorem 2.3, this direction follows from Theo-
rem 2.3. When n does not satisfy (H), we put ’=n-+4. Then n’ is linear and
satisfies (H). Furthermore Iso(rn")=Iso(z) or Iso(n) U {G}, and K(n')=K(n) or
K(n)U {G}. Therefore, by Corollary 3.4, LH>)(G;n') and LH*)(G;n) are
isomorphic, and so LH*Y(G;n)=1. H

4. Abelian groups with LH>(G; n)=1

Throughout this section, a dimension function # is linear and G is abelian.
In this section, we prove Theorem 0.3.
In order to prove Theorem 0.3, we show several lemmas.

Lemma 4.1. For any HEIso(n), there exist K, E K(n) such that H= N K,.
In particular Tso(n)={N K, | K,E K(n), r>1}. '

Proof. Since n(H)>0, it is seen that there exists at least one K& K(n)
including H. Let H' be the intersection of subgroups in K{(z) including H.
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Then H' is in Iso(n) since Iso(n) is closed under intersection. Furthermore one
can see that n(H)=n(H'). In fact, let us choose V' such that z=Dim S(V).
Then
n(H)=dimV¥ = 3 dimV(K)
H<K
KeHA(n)
= 3 dimV(K)
H=ZK
KeA(n)
= dim V¥ = n(H').

Therefore H=H’'. B

Lemma 4.2. If K,, K;EK(n) and if G/K,NK, is a cyclic p-group, then
K\<K,or K, >K,. Inparticular K, N K,& K(n).

Proof. There are two subgroups K,/K; N K, and K,/K,NK, of G/K,;NK,.
Since G/K;NK; is a cyclic p-group, it follows that K,/K,N K,>K,/K,N K, or
K,/K,NK,<K,/K;NK, Hence K;<K,orK,>K, B

Corollary 4.3. If HEIso(n) and G[H is a cyclic p-group, then H < K(n).
In particular if G is a cyclic p-group, then Iso(n)=K(n).

Proof. This follows from Lemmas 4.1 and 4.2. Il

Proof of Theorem 0.3. (1): In the case where G=C,», LH*(G;n)=1 by
Corollaires 3.4 and 4.3.

In the case where G=Cj or C,x C,, LH*(G; n)=1 by Corollary 3.4.

In the case where G is cyclic and |G| is neither prime power nor 6, there
exists K such that G/K=<C,,, where p, q are distinct primes, and there exist
K,, K;>K such that G/K,=C, and G/K,=C,. By Lemma 3.2 (3), there exists
n such that K(n)={K,, K;}. Since K;NK,=K &Iso(n), it follows from Corol-
lary 3.4 that 1+Z/|G/K|*| +1CLH>(G; n).

In the case where G is neither a cyclic group nor C, X C,, let _L be the set of
subgroups K such that G/K are cyclic and 7 a the dimension function such that
K(n)=-L. Since 1&€Iso(rn)\K(n) by Lemma 4.1, it follows that 1=Z/|G|* |+
1cLH=(G; n).

(2): In the case where G=C,n, since LH(G;n)CLH>(G;n), it follows
that LH(G; n)=1.

In the case where G is G, or G, since Ker Sg/y=1 if G/H is cyclic ([10,
Lemmas 3.9 and 3.10]), it follows from Corollary 3.4 that N(G;n)=1. By
Corollary 4.3, M(G; n)=1. Therefore LH(G; n)=1.

In the case where G=(C,)" X (C5)", since Ker Sgp=1 if G/H is cyclic ([10,
Lemma 3.11]), it follows from Corollary 3.4 that N(G; n)=1. If G/H is cyclic,
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then G/H=1, C,, C; or C;. Therefore it follows that M(G; n)=1 and LH(G; n)
=1,

In the case where G is cyclic and |G| is neither prime power nor 6, by the
same argument as in (1), one can see that LH(G; n)=1.

In the case where G is a non-cyclic p-group (p==2, 3), by the same argument
as in (1), one can see that KerScCN(G;n). By [13], the order of Im.S; is
|G|/p. Hence |Z/|G|*|41]|>|ImS;| and so KerSg=1.

Finally we consider the case where G is neither cyclic nor of prime power
order and furthermore G is not (C,)" X (C3)". Assume that a prime p (>5) di-
vides |G|. Then there exists K such that G/K=2C,,(p, ¢ are distinct primes)
and there exist K;, K,>K such that G/K,=C, and G/K,=C,. As in (1) one
can see that LH(G;n)=1. Next assume that the order of G is 2"3". Since G
is not (C,)" X (Cy)", there exists K such that G/K=C,X C; or C;XC,. Assume
that G/K=C,X C;. 'Then there exist K;, K,>K such that G/K,;=C, and G/K,
=(; Take n such that K(n)={K,, K;}. Since K=K, N K,EIso(n)\K(n), if
follows that 1=Z/|G/K |*/+1CLH(G;n). In the case where G/K=<C,X C,,
by the same argument, one can see that LH(G; n)=+1.

Thus the proof is completed. l

Proof of Corollary 0.4. Since the dimension function of any homotopy re-
presentation (not necessarily finite) is linear if and only if G is a p-group ([6],
[3]). Therefore the first assertion is clear from Theorem 0.3. For the second
assertion, it suffices to show that there exists a finite homotopy representation
of (C5)" X (Cs)™ with nonlinear dimension function. By the theorem mentioned
above, there exists a homotopy representation X of C; with nonlinear dimension
function. Since the finiteness obstruction of a homotopy representation of a
cyclic group vanishes, the homotopy representation X is finite. We consider
X as a finite homotopy representation of (C,)" X (Cj)™ via a surjective homomor-
phism from (C,)" X (Cy)" to Cs. W
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