EXTERIOR PRODUCT BUNDLE OVER COMPLEX ABSTRACT WIENER SPACE

TAKASHI NISHIMURA

(Received April 9, 1991)

1. Introduction

In this paper, we consider a complex abstract Wiener space (CAWS) (B, H, μ) , that is a triplet of a complex separable Banach space B, a complex separable Hilbert space H which is densely and continuously imbedded in B and a Borel probability measure μ on B such that

$$(1.1) \quad \int_{B} \exp(\sqrt{-1} \operatorname{Re}_{B}\langle z, \varphi \rangle_{B^{*}}) \, \mu \, (dz) = \exp(-\frac{1}{4} ||\varphi||_{H^{*}}^{2}) \quad \text{for } \varphi \in B^{*} \subset H^{*}.$$

Moreover, we assume that a strictly positive self-adjoint operator A on H^* is given and $B^* \subset C^{\infty}(A) = \bigcap_{n=1}^{\infty} \text{Dom}(A^n)$. Then we can define $D_A p(z) = (\sqrt{A} \oplus \sqrt{A}) Dp(z)$ for $p \in \mathcal{P}(B:E)$, E-valued polynomial functional on B.

H-derivative D is a fundamental tool in Malliavin's calculs ([6]), but here we consider D_A instead of D, because we keep quantum field theoretical models in mind. In fact, $\frac{1}{2}D_A^*D_A=d\Gamma(A\oplus \bar{A})$, a free Hamiltonian for a complex Bose field (and its anti-particle field).

Following [3] and [4], we regard B as an infinite dimensional manifold with cotangent space $(H_R^*)^c$ on each $z \in B$. Consequently its exterior product bundle becomes $B \times \Lambda(H_R^*)^c$ and the space of its L^2 -sections becomes $L^2(B, \mu : \Lambda(H_R^*)^c)$, i.e. the space of $\Lambda(H_R^*)^c$ -valued L^2 -functions on B or $L^2(B, \mu) \otimes \Lambda(H_R^*)^c$, a tensor product of the Bosonic Fock space and the Fermionic Fock space. On this space we define an exterior derivative d_A using D_A . Then $\frac{1}{2}(d_A^*d_A + d_A d_A^*) = d\Gamma(A \oplus \bar{A}) \oplus d\Lambda(A \oplus \bar{A})$, a free Hamiltonian for an N=2 supersymmetric quantum field.

As in the finite dimensional case, d_A is decomposed as $d_A = \partial_A + \overline{\partial}_A$, and Laplace-Beltrami operators \Box_A and $\overline{\Box}_A$ are defined as $\Box_A = \partial_A^* \partial_A + \partial_A \partial_A^*$ and $\Box_A = \overline{\partial}_A^* \overline{\partial}_A + \overline{\partial}_A \partial_A^*$, respectively. Since $\overline{\partial}_A^2 = 0$, $\overline{\partial}_A$ defines an elliptic complex and $\overline{\partial}_A$ -cohomology groups can be defined as $\mathcal{D}_A^{p,q}(B) = \operatorname{Ker}(\overline{\partial}_A | \Lambda_2^{p,q}(B)) / \operatorname{Im}(\overline{\partial}_A | \Lambda_2^{p,q-1}(B))$, where $\Lambda_2^{p,q}(B) = L^2(B, \mu: \Lambda_2^{p,q}(H_R^*)^c)$, the space of square in-

234 T. Nishimura

tegrable (p, q)-forms.

First we show that de Rham-Hodge-Kodaira's decomposition for $\Lambda_2^{p,q}(B)$ holds, that is

$$(1.2) \qquad \Lambda_a^{p,q}(B) = \operatorname{Im}(\overline{\partial}_A | \Lambda_2^{p,q-1}(B)) \oplus \operatorname{Im}(\overline{\partial}_A^* | \Lambda_2^{p,q}(B)) \oplus \mathfrak{h}_A^{p,q}(B)$$

where $\mathfrak{h}_{A,}^{p,q} = \operatorname{Ker}(\overline{\square}_A | \Lambda_2^{p,q}(B))$, the space of harmonic (p,q)-forms (our discussion is restricted to the L^2 -case). From this we conclude that $\mathfrak{D}_A^{p,q}(B) = \mathfrak{h}_A^{p,q}$ and it will be shown by using the expression $\frac{1}{2}\overline{\square}_A = d\Gamma(\bar{A}) \oplus d\Lambda(\bar{A})$, that $\mathfrak{h}_A^{p,q} = \{0\}$, if $q \leq 1$ and $\mathfrak{h}_A^{p,0} = \operatorname{Hol}^2(B: \Lambda^{p,0}(H_R^*)^c)$, where $\operatorname{Hol}^2(B: \Lambda^{q,q}(H_R^*)^c)$ is the set of square integrable holomorphic forms.

We start with a complex separable Hilbert space H, but we regard this as a real separable Hilbert space (this space is denoted by H_R) and consider $(H_R^*)^c$, a complexification of its adjoint space H_R^* . $(H_R^*)^c$ is decomposed as $(H_R^*)^c = H^* \oplus \overline{H}^*$, but the inner product of H^* induced from $(H_R^*)^c$ is slightly different from original one. We sum up these algebraic fundamentals in Appendix A. In Appendix B we state some elementary facts about the Wick product for a complex Gaussian system.

Finally, the author would like to thank Professor I. Shigekawa for help and encouragement.

2. Complex abstract Wiener space

In this section we define a modified Ornstein-Uhlenbeck operator on a CAWS and show that it equals to the free Hamiltonian.

Let (B, H, μ) be a CAWS as in the section 1 and A be a strictly positive self-adjoint operator on H^* . Then it can be easily shown that $\{Z_{\theta} | \theta \in B^*\}$ is a complex Gaussian system satisfying

(2.1)
$$E[|Z_{\theta}|^2] = ||Z_{\theta}||_{H^*}^2 \quad \theta \in H^*,$$

(2.2)
$$E[Z_{\theta}\bar{Z}_{\eta}] = (\theta, \eta)_{H^*} \quad \theta, \eta \in H^*,$$

where Z_{θ} is a complex random variable on B defined as $Z_{\theta}(z) = {}_{B}\langle z, \theta \rangle_{B^{*}}$, \bar{Z}_{η} is a complex conjugate of Z_{η} and E stands for the integration under μ .

We assume that $B^*\subset C^\infty(A)$ without loss of generality. In fact, let α be a Hilbert-Schmidt operator on H^* and set $K=e^{-A}\alpha$. We define $(u,v)_B=(Ku,Kv)_H$, $||u||_B^2=(u,u)_B^{1/2}$ for $u,v\in H$ and denote the completion of H with respect to $||\cdot||_H$ as B. Then $(B,||\cdot||_B)$ becomes a complex Banach space and there exists a Borel probability measure μ on B such that

$$(2.3) \quad \int_{B} \exp(\sqrt{-1} \operatorname{Re}_{B}\langle z, \varphi \rangle_{B^{*}}) \ \mu(dz) = \exp(-\frac{1}{4} ||\varphi||_{H^{*}}^{2}) \quad \text{for } \varphi \in B^{*} \subset H^{*}.$$

and moreover $B^* \subset e^{-A}\alpha(H) \subset C^{\infty}(A)$.

A (complex-valued) polynomial functional on B is a mapping $p: B \rightarrow C$ written as

$$p(z) = P(Z_{\theta_1}(z), \dots, Z_{\theta_n}(z), \bar{Z}_{\theta_1}(z), \dots, \bar{Z}_{\theta_n}(z))$$

where $n \in \mathbb{N}$, $\theta_1, \dots, \theta_n \in \mathbb{B}^*$, P is a polymomial of 2n-arguments with complex coefficients. If p is written in the form

$$p(z) = P(Z_{\theta_1}(z), \dots, Z_{\theta_n}(z))$$

p is called a holomorphic polynomial functional on B.

We denote by $\mathcal{P}(B:C)$ and $\mathcal{P}_h(B:C)$ the set of polynomials and holomorphic polynomials on B, respectively. Moreover, for a complex separable Hilbert space E, we set $\mathcal{P}(B:E) = \mathcal{P}(B:C) \otimes E$, $\mathcal{P}_h(B:E) = \mathcal{P}_h(B:C) \otimes E$ (algebraic tensor product) and call them the space of E-valued polynomial functionals and E-valued holomorphic polynomial functionals, respectively. For $p \in \mathcal{P}(B:E)$, its H-derivative at $z \in B$ is defined as follows

(2.6)
$$\langle Dp(z), h \rangle = \frac{d}{dt} p(z+th)|_{t=0} \quad \text{for } h \in H.$$

Dp(z) is an element of $(H_R^*)^c \otimes E$. Since $(H_R^*)^c \otimes E = (H^* \otimes E) \oplus (\bar{H}^* \otimes E)$, we set $\nabla p(z)$ to be an $H^* \otimes E$ component and $\nabla p(z)$ to be an $\bar{H}^* \otimes E$ component.

As mentioned in the section 1, we use slightly modified derivative instead of H-derivative as follows,

(2.7)
$$D_A p(z) = (\sqrt{A} \oplus \sqrt{A}) Dp(z) \qquad p \in \mathcal{L}(B; C).$$

For the definition of \sqrt{A} see (A.6). We have chosen B so that $B^* \subset C^{\infty}(A)$, so $Dp(z) \in C^{\infty}(A)$ and $(\sqrt{A} \oplus \sqrt{A})Dp(z)$ is well defined. $D_AP(z)$ is decomposed as $D_Ap(z) = \nabla_Ap(z) \oplus \overline{\nabla}_Ap(z)$ where $\nabla_Ap(z) = \sqrt{A} \nabla p(z)$, $\overline{\nabla}_Ap(z) = \sqrt{A} \overline{\nabla}_Ap(z)$. We denote adjoint operators of ∇_A and $\overline{\nabla}_A$ in $L^2(B, \mu; E)$ by ∇_A^* and $\overline{\nabla}_A^*$, respectively. Their explicit formulas for Wick polynomials are given as follows.

Proposition 2.1. For $\theta_1, \dots, \theta_n, \eta_1, \dots, \eta_m, \zeta \in B^*$, it holds that

$$(2.8) \qquad \nabla_A: Z_{\theta_1} \cdots Z_{\theta_n} \overline{Z}_{\eta_1} \cdots \overline{Z}_{\eta_m} := \sum_{j=1}^n : Z_{\theta_1} \cdots \widehat{Z}_{\theta_j} \cdots Z_{\theta_n} \overline{Z}_{\eta_1} \cdots \overline{Z}_{\eta_m} : \sqrt{A} \theta_j$$

$$(2.9) \overline{\nabla}_{A}: Z_{\theta_{1}} \cdots Z_{\theta_{n}} \overline{Z}_{\theta_{1}} \cdots \overline{Z}_{\eta_{m}}: = \sum_{j=1}^{m} : Z_{\theta_{1}} \cdots Z_{\theta_{n}} \overline{Z}_{\eta_{1}} \cdots \widehat{Z}_{\eta_{j}} \cdots \overline{Z}_{\eta_{m}}: \overline{\sqrt{A}\theta_{j}}$$

$$(2.10) \qquad \nabla_{A}^{*} \colon Z_{\theta_{1}} \cdots Z_{\theta_{n}} \bar{Z}_{\eta_{1}} \cdots \bar{Z}_{\eta_{m}} \colon \zeta = 2 \colon Z_{\vee_{\overline{A}} \zeta} Z_{\theta_{1}} \cdots Z_{\theta_{n}} \bar{Z}_{\eta_{1}} \cdots \bar{Z}_{\eta_{m}} \colon$$

$$(2.11) \quad \overline{\nabla}_{A}^{*}: Z_{\theta_{1}} \cdots Z_{\theta_{n}} \overline{Z}_{\eta_{1}} \cdots \overline{Z}_{\eta_{m}}: \overline{\zeta} = 2: \overline{Z}_{V \overline{A} \zeta} Z_{\theta_{1}} \cdots Z_{\theta_{n}} \overline{Z}_{\eta_{1}} \cdots \overline{Z}_{\eta_{m}}:$$

Proof. As in the real case, it can be easily shown that

$$egin{aligned}
abla_A P(Z_ heta ar{Z}_ heta) &= \sum\limits_{j=1}^n rac{\partial P}{\partial z_j} \left(Z_ heta ar{Z}_ heta
ight) \sqrt{A} heta_j \
abla_A P(Z_ heta ar{Z}_ heta) &= \sum\limits_{j=1}^n rac{\partial P}{\partial ar{z}_j} \left(Z_ heta ar{Z}_ heta
ight) \overline{\sqrt{A}} heta_j \
abla_A^* P(Z_ heta ar{Z}_ heta) &= -2 \sum\limits_{j=1}^n rac{\partial P}{\partial z_j} \left(Z_ heta ar{Z}_ heta
ight) (\zeta, \sqrt{A} heta_j)_{H^*} + 2 \ Z_{V ar{A} \zeta} P(Z_ heta ar{Z}_ heta) \
abla_A^* P(Z_ heta ar{Z}_ heta) &= -2 \sum\limits_{j=1}^n rac{\partial P}{\partial ar{z}_j} \left(Z_ heta ar{Z}_ heta
ight) (\sqrt{A} heta_j, \zeta)_{H^*} + 2 ar{Z}_{V ar{A} \zeta} (P(Z_ heta ar{Z}_ heta))
abla_A^* P(Z_ heta ar{Z}_ heta) &= -2 \sum\limits_{j=1}^n rac{\partial P}{\partial ar{z}_j} \left(Z_ heta ar{Z}_ heta
ight) (\sqrt{A} heta_j, \zeta)_{H^*} + 2 ar{Z}_{V ar{A} \zeta} (P(Z_ heta ar{Z}_ heta))
abla_A^* P(Z_ heta ar{Z}_ heta) &= -2 \sum\limits_{j=1}^n rac{\partial P}{\partial ar{z}_j} \left(Z_ heta ar{Z}_ heta
ight) \left(\sqrt{A} heta_j, \zeta
ight)_{H^*} + 2 ar{Z}_{V ar{A} \zeta} (P(Z_ heta ar{Z}_ heta))
abla_A^* P(Z_ heta ar{Z}_ heta) &= -2 \sum\limits_{j=1}^n rac{\partial P}{\partial ar{z}_j} \left(Z_ heta ar{Z}_ heta
ight) \left(\sqrt{A} heta_j, \zeta
ight)_{H^*} + 2 ar{Z}_{V ar{A} \zeta} (P(Z_ heta ar{Z}_ heta))
abla_A^* P(Z_ heta ar{Z}_ heta) &= -2 \sum\limits_{j=1}^n rac{\partial P}{\partial ar{z}_j} \left(Z_ heta ar{Z}_ heta
ight) \left(\sqrt{A} heta_j, \zeta
ight)_{H^*} + 2 ar{Z}_{V ar{A} \zeta} \left(P(Z_ heta ar{Z}_ heta)
ight)
abla_A^* P(Z_ heta ar{Z}_ heta) &= -2 \sum\limits_{j=1}^n rac{\partial P}{\partial ar{z}_j} \left(Z_ heta ar{Z}_ heta
ight) \left(Z_ heta ar{Z}_ heta
ight) \left(Z_ heta ar{Z}_ heta
ight)
abla_A^* P(Z_ heta ar{Z}_ heta) = -2 \sum\limits_{j=1}^n rac{\partial P}{\partial ar{z}_j} \left(Z_ heta ar{Z}_ heta
ight) \left(Z_ heta ar{Z}_ heta
ight) \left(Z_ heta ar{Z}_ heta
ight)
abla_A^* P(Z_ heta ar{Z}_ heta)
abla_A^* P(Z_ heta ar{Z}_ heta) = -2 \sum\limits_{j=1}^n rac{\partial P}{\partial ar{z}_j} \left(Z_ heta ar{Z}_ heta
ight) \left(Z_ heta ar{Z}_ heta
ight)
abla_A^* P(Z_ heta ar{Z}_ heta)
abla_A^$$

where $P(Z_{\theta}, \bar{Z}_{\theta}) = P(Z_{\theta_1}, \dots, Z_{\theta_n}, \bar{Z}_{\theta_1}, \dots, \bar{Z}_{\theta_n}) \in \mathcal{P}(B; \mathbf{C}), \zeta \in B^*$ (see e.g. [6]). Combining this with (2.2) (B.3)~(B.6), we can prove (2.8)~2.11). \square

Therefore ∇_A^* and $\overline{\nabla}_A^*$ are densely defined operators, so ∇_A and $\overline{\nabla}_A$ are closable and we denote their closures by the same symbols.

Next we obtain the kernel of $\overline{\nabla}_A$.

Proposition 2.2. It holds that

(2.12)
$$\operatorname{Ker}(\overline{\nabla}_{A}) = \operatorname{Hol}^{2}(B : E)$$

where $\operatorname{Hol}^2(B; E)$ is the closure of $\mathcal{L}_h(B; E)$ in $L^2(B, \mu; E)$.

Proof. We give a proof for E=C. General cases can be proved similarly. First we introduce some notations. Let $\{\theta_n\}_{n=1}^{\infty}$ be an ONB of H^* .

$$\mathfrak{A} = \{n = (n_j)_{j=1}^{\infty} \in \mathbb{Z}_+^N \mid \sum_{j=1}^{\infty} n_j < \infty\}, \quad \mathbb{Z}_+ = \{0, 1, 2, 3, \cdots\},$$

$$W_{n,m} = \prod_{j=1}^{\infty} (n_j! m_j!)^{-1/2} \colon \prod_{j=1}^{\infty} \mathbb{Z}_{\theta_j}^{n_j} \bar{\mathbb{Z}}_{\theta_j}^{m_j} \colon, \quad n, m \in \mathfrak{A},$$

$$\mathfrak{A}_N = \{n = (n_j)_{j=1}^{\infty} \in \mathfrak{A} \mid n_j = 0 \quad \text{if} \quad j > N\},$$

$$L_N = [W_{n,m} \mid n, m \in \mathfrak{A}_N]^{-||\cdot||_2},$$

$$P_N \colon L^2(B, \mu) \to L_N \quad \text{orthogonal projection,}$$

$$p_N \colon \bar{H}^* \to [\theta_1, \dots, \theta_N] \quad \text{orthogonal projection,}$$

where $[\cdot]$ stands for the linear span and $-||\cdot||_2$ means the closure in $L^2(B, \mu)$. $\{W_{n,m}\}_{n,m\in\mathbb{N}}$ forms an ONB of $L^2(B,\mu)$, so P_N converges strongly to the identity and it holds that

$$(2.13) P_{N} \circ \nabla_{A}^{*} W_{n,m} \bar{\theta}_{j} = \sum_{k=1}^{N} 2(\theta_{k}, A\theta_{j})_{H^{*}} (m_{k} + 1)^{1/2} W_{n,m+2_{k}} n, m \in \mathfrak{A}_{N}$$

where $\mathcal{E}_k = (0, \dots, 0 \overset{k}{\downarrow}, 0, \dots) \in \mathfrak{A}$, and moreover $P_N \otimes p_N \circ \overline{\nabla}_A = \overline{\nabla}_A \circ P_N$. If $F \in \text{Ker}(\overline{\nabla}_A) = \text{Im}(\overline{\nabla}_A^*)^{\perp}$, then for $n, m \in \mathfrak{A}_N, j \in \{1 \dots N\}$,

$$0 = (\nabla_A F, W_{n,m} \overline{\theta}_j) = (P_N \otimes p_N \circ \nabla_A F, W_{n,m} \overline{\theta}_j)$$

$$= (\nabla_A \circ P_N F, W_{n,m} \overline{\theta}_j) = (F, P_N \circ \nabla_A^* W_{n,m} \overline{\theta}_j)$$

$$= 2 \sum_{k=1}^N (A\theta_j, \theta_k)_{H^*} (m_k + 1)^{1/2} (F, W_{n,m+\epsilon_k})$$

Since A is strictly positive, we have

$$(F, W_{n,m+\epsilon_k}) = 0$$
, $n, m \in \mathfrak{A}_N$, $k \in \{1 \cdots N\}$, $N \in N$.

Thus we have $F \in [W_{n,0}|n \in \mathfrak{R}]^{-||\cdot||_2} = \overline{\mathcal{L}_h(B:C)}^{||\cdot||_2} = \operatorname{Hol}^2(B:C)$ and hence $\operatorname{Ker}(\overline{\nabla}_h) \subset \operatorname{Hol}^2(B:C)$.

Conversely it is easy to see that $\operatorname{Hol}^2(B; \mathbb{C}) \subset \operatorname{Ker}(\overline{\nabla}_A)$. This completes the proof. \square

We set

$$(2.14) L_A = -\nabla_A^* \nabla_A L_{\bar{A}} = -\overline{\nabla}_A^* \overline{\nabla}_A^*.$$

Then L_A and $L_{\bar{A}}$ are negative self-adjoint operators on $L^2(B, \mu)$. Let us show that L_A and $L_{\bar{A}}$ -correspond to the Hamiltonian for complex Bosons and their antiparticles, respectively.

DEFINITION 2.3. Bosonic second quantized operator of A and \overline{A} on $L^2(B, \mu)$ is defined on the Wick polynomials as follows

$$(2.15) d\Gamma(A): Z_{\theta_1} \cdots Z_{\theta_n} \overline{Z}_{\eta_1} \cdots \overline{Z}_{\eta_m} := \sum_{i=1}^n : Z_{\theta_1} \cdots Z_{A\theta_j} \cdots Z_{\theta_n} \overline{Z}_{\eta_1} \cdots \overline{Z}_{\eta_m} :$$

$$(2.16) d\Gamma(\bar{A}): Z_{\theta_1} \cdots Z_{\theta_n} \bar{Z}_{\eta_1} \cdots \bar{Z}_{\eta_m}: = \sum_{j=1}^m : Z_{\theta_1} \cdots Z_{\theta_n} \bar{Z}_{\eta_1} \cdots \bar{Z}_{A\eta_j} \cdots \bar{Z}_{\eta_m}:$$

where $\theta_1, \dots, \theta_n, \eta_1, \dots, \eta_m \in B^*$. $d\Gamma(A)$ and $d\Gamma(\bar{A})$ are essentially self-adjoint on the space of the Wick polynomials and we denote its closure by the same symbol (see e.g. [2]).

Theorem 2.4. It holds that

(2.17)
$$L_A = -2d\Gamma(A) \qquad L_{\bar{A}} = -2d\Gamma(\bar{A}).$$

Proof. To prove (2.17), it is enough to show that

$$L_A p = -2 d\Gamma(A) p$$
 $L_{\bar{A}} p = -2 d\Gamma(\bar{A}) p$

for a Wick polynomial $p = : Z_{\theta_1} \cdots Z_{\theta_n} \bar{Z}_{\eta_1} \cdots \bar{Z}_{\eta_m} :$. By Proposition 2.1,

$$\begin{split} &= -\sum\limits_{j=1}^{n} \nabla_{A}^{*} \colon Z_{\theta_{1}} \cdots \hat{Z}_{\theta_{j}} \cdots Z_{\theta_{n}} \bar{Z}_{\eta_{1}} \cdots \bar{Z}_{\eta_{m}} \colon \sqrt{A}\theta_{j} = -2\sum\limits_{j=1}^{n} \colon Z_{A\theta_{j}} Z_{\theta_{1}} \cdots \hat{Z}_{\theta_{j}} \cdots Z_{\theta_{n}} \bar{Z}_{\eta_{1}} \cdots \bar{Z}_{\eta_{m}} \colon \\ &= -2 \, d\Gamma(A) \colon Z_{\theta_{1}} \cdots Z_{\theta_{n}} \, \bar{Z}_{\eta_{1}} \cdots \bar{Z}_{\eta_{m}} \colon . \end{split}$$

238 T. Nishimura

The latter can be proved similarly. \square

3. An exterior product bundle

Let us define an exterior product bundle over a CAWS. To do this, let $\Lambda(H_R^*)^c = \bigoplus_{n=0}^{\infty} \Lambda^n(H_R^*)^c$ where $\Lambda^n(H_R^*)^c$ is an anti-symmetric part of *n*-tensor product of $(H_R^*)^c$ and its inner product is given by

(3.1)
$$(\omega, \eta) = \frac{1}{n!} (\omega, \eta)_{\bigotimes^n (H_R^*)^c} \quad \text{for } \omega, \eta \in \Lambda^n (H_R^*)^c,$$

where $(\cdot)_{\bigotimes^n(H_R^*)^c}$ is the natural inner product on $\bigotimes^n(H_R^*)^c$. We define an exterior product of $\omega \in \Lambda^n(H_R^*)^c$ and $\eta \in \Lambda^n(H_R^*)^c$ by

(3.2)
$$\omega \wedge \eta = \frac{(n+m)!}{n!m!} \mathcal{A}_{n+m} \omega \otimes \eta$$

where \mathcal{A}_{n+m} is an (n+m)-th normalized anti-symmetrization defined by

$$\mathcal{A}_n(\omega_1 \otimes \cdots \otimes \omega_n) = \frac{1}{n!} \sum_{\sigma \in \mathfrak{S}_n} \operatorname{sgn}(\sigma) \omega_{\sigma_1} \otimes \cdots \otimes \omega_{\sigma_n}.$$

We set $\Lambda^{p,q}(H_R^*)^c = \Lambda^p H^* \wedge \Lambda^q \bar{H}^*$. Then

(3.4)
$$\Lambda^{n}(H_{R}^{*})^{c} = \bigoplus_{k=1,2,\ldots,n} \Lambda^{p,q}(H_{R}^{*})^{c}.$$

Exterior derivative $d_A = \partial_A + \overline{\partial}_A$ on polynomial functionals is defined as follows

$$(3.5) d_{A}\omega = (n+1) \mathcal{A}_{n+1} D_{A}\omega$$

$$\partial_{A}\omega = (n+1) \mathcal{A}_{n+1} \nabla_{A}\omega$$

$$\hat{\partial}_{A}\omega = (n+1)\,\mathcal{A}_{n+1}\overline{\nabla}_{A}\omega$$

for $\omega \in \mathcal{L}(B; \Lambda^n(H_R^*)^c)$. We denote adjoint operators of ∂_A and $\overline{\partial}_A$ in $L^2(B, \mu; \Lambda(H_R^*)^c)$ by ∂_A^* and $\overline{\partial}_A^*$, respectively. Then it holds as in the real case ([3])

$$(3.8) \quad \partial_A f(z) \theta_1 \wedge \cdots \wedge \theta_p \wedge \bar{\eta}_1 \wedge \cdots \wedge \bar{\eta}_q = \nabla_A f(z) \wedge \theta_1 \wedge \cdots \wedge \theta_p \wedge \bar{\eta}_1 \wedge \cdots \wedge \bar{\eta}_q$$

$$(3.9) \quad \overline{\partial}_A f(z) \theta_1 \wedge \cdots \wedge \theta_p \wedge \overline{\eta}_q \wedge \cdots \wedge \overline{\eta}_q = \overline{\nabla}_A f(z) \wedge \theta_1 \wedge \cdots \wedge \theta_p \wedge \overline{\eta}_1 \wedge \cdots \wedge \overline{\eta}_q$$

$$(3.10) \quad \partial_{A}^{*}f(z)\theta_{1}\wedge\cdots\wedge\theta_{p}\wedge\bar{\eta}_{1}\wedge\cdots\wedge\bar{\eta}_{q} = \sum_{j=1}^{p} (-1)^{j-1}\nabla_{A}^{*}(f(z)\theta_{j})\theta_{1}\wedge\cdots\wedge\theta_{j}\wedge\\ \wedge\theta_{p}\wedge\bar{\eta}_{1}\wedge\cdots\wedge\bar{\eta}_{q}$$

$$(3.11) \quad \overline{\partial}_{A}^{*}f(z)\theta_{1}\wedge\cdots\wedge\theta_{p}\wedge\overline{\eta}_{1}\wedge\cdots\wedge\overline{\eta}_{q} = \sum_{j=1}^{q}(-1)^{p+j-1}\overline{\nabla}_{A}^{*}(f(z)\overline{\eta}_{j})\theta_{1}\wedge\cdots\wedge\theta_{p}$$

$$\wedge \overline{\eta}_{1}\wedge\cdots\wedge\widehat{\overline{\eta}}_{j}\wedge\cdots\wedge\overline{\eta}_{q}$$

where $f \in \mathcal{P}(B: C)$, $\theta_1, \dots, \theta_p, \eta_1, \dots, \eta_q \in B^*$. Thus ∂_A^* and $\overline{\partial}_A^*$ are densely defined operators and so ∂_A and $\overline{\partial}_A$ are closable. We denote their closures by the same symbols. Then we easily have the following.

Proposition 3.1. It holds that

$$(3.12) d_A^2 = 0$$

and

(3.13)
$$\partial_A^2 = 0 \qquad \overline{\partial}_A^2 = 0 \qquad \partial_A \overline{\partial}_A + \overline{\partial}_A \overline{\partial}_A = 0$$

Laplace-Beltrami operators \square_A and $\overline{\square}_A$ are defined as follows

$$(3.15) \qquad \Box_{A} = \partial_{A}\partial_{A}^{*} + \partial_{A}^{*}\partial_{A}, \quad \overline{\Box}_{A} = \overline{\partial}_{A}\overline{\partial}_{A}^{*} + \overline{\partial}_{A}^{*}\overline{\partial}_{A}.$$

Then \Box_A and $\overline{\Box}_A$ are positive self-adjoint operators on $\text{Dom}(\partial_A \partial_A^*) \cap \text{Dom}(\partial_A^* \partial_A)$ and $\text{Dom}(\overline{\partial}_A \overline{\partial}_A^*) \cap \text{Dom}(\overline{\partial}_A^* \overline{\partial}_A)$, respectively ([1]). We will show that \Box_A and $\overline{\Box}_A$ correspond to the free Hamiltonian of supersymmetric particle field and its antiparticle field, respectively.

DEFINITION 3.2. Fermionic second quantized operators of A and \bar{A} respectively, on $\Lambda(H_{\bar{A}}^*)^c$ are defined as follows

(3.16)
$$d\Lambda(A)\theta_1 \wedge \cdots \wedge \theta_p \wedge \overline{\eta}_1 \wedge \cdots \wedge \overline{\eta}_q = \sum_{j=1}^p \theta_1 \wedge \cdots \wedge \theta_j \wedge \cdots \wedge A\theta_p \wedge \overline{\eta}_1 \wedge \cdots \wedge \overline{\eta}_q$$

(3.17)
$$d\Lambda(\bar{A})\theta_1 \wedge \cdots \wedge \theta_p \wedge \bar{\eta}_1 \wedge \cdots \wedge \bar{\eta}_q = \sum_{j=1}^q \theta_1 \wedge \cdots \wedge \theta_p \wedge \bar{\eta} \wedge \cdots \wedge \bar{\eta}_q \wedge \bar{\eta}_j \wedge \bar{\eta}_j \wedge \cdots \wedge \bar{\eta}_q \wedge \bar{\eta}_j \wedge$$

where $\theta_1, \dots, \theta_p, \eta_1, \dots, \eta_q \in B^*$. Then $d\Lambda(A)$ and $d\Lambda(\bar{A})$ are essentially self-adjoint on $\bigoplus_{n=0}^{\infty} \Lambda^n(B^* \oplus \bar{B}^*)$ (algebraic sense) ([2]). We denote their closures by the same symbols.

Theorem 3.3. It holds that

$$\square_A = -L_A + 2 d\Lambda(A) = 2(d\Gamma(A) + d\Lambda(A))$$

$$(3.19) \qquad \qquad \overline{\square}_{A} = -L_{\bar{A}} + 2 d\Lambda(\bar{A}) = 2(d\Gamma(\bar{A}) + d\Lambda(\bar{A}))$$

Proof. To prove (3.18), it is enough to show that

$$\Box_A: Z_{\theta_1} \cdots Z_{\theta_n} \bar{Z}_{\eta_1} \cdots \bar{Z}_{\eta_m}: \omega_1 \wedge \cdots \wedge \omega_p \wedge \bar{\xi}_1 \wedge \cdots \wedge \bar{\xi}_q$$

$$= 2(d\Gamma(A) + d\Lambda(A)): Z_{\theta_1} \cdots Z_{\theta_n} \bar{Z}_{\eta_1} \cdots \bar{Z}_{\eta_m}: \omega_1 \wedge \cdots \wedge \omega_p \wedge \bar{\xi}_1 \wedge \cdots \wedge \bar{\xi}_q$$

240 T. Nishimura

for
$$\theta_1, \dots, \theta_n, \eta_1, \dots, \eta_m, \omega_1, \dots, \omega_p, \xi_1, \dots, \xi_q \in B^*.$$

$$\partial_A \partial_A^* : Z_{\theta_1} \dots Z_{\theta_n} \overline{Z}_{\eta_1} \dots \overline{Z}_{\eta_m} : \omega_1 \wedge \dots \wedge \omega_p \wedge \overline{\xi}^1 \wedge \dots \wedge \overline{\xi}_q$$

$$= \partial_A \sum_{j=1}^{p} (-1)^{j-1} \nabla_A^* (: Z_{\theta_1} \dots Z_{\theta_n} \overline{Z}_{\eta_1} \dots \overline{Z}_{\eta_m} : \omega_j) \omega_1 \wedge \dots \wedge \omega_j \wedge \dots \wedge \omega_p \wedge \overline{\xi}_1 \wedge \dots \wedge \xi_q$$

$$= \partial_A \sum_{j=1}^{p} (-1)^{j-1} 2 : Z_{\nabla_{\overline{A}\omega_j}} Z_{\theta_1} \dots Z_{\eta_n} \overline{Z}_{\eta_1} \dots \overline{Z}_{\eta_m} : \omega_1 \wedge \dots \wedge \omega_j \wedge \dots \wedge \omega_p \wedge \overline{\xi}_1 \wedge \dots \wedge \overline{\xi}_q$$

$$= 2 \sum_{j=1}^{p} : Z_{\theta_1} \dots Z_{\theta_n} \overline{Z}_{\eta_1} \dots \overline{Z}_{\eta_m} : \omega_1 \wedge \dots \wedge A\omega_j \wedge \dots \wedge \omega_p \wedge \xi_1 \wedge \dots \wedge \xi_q$$

$$+ \sum_{k=1}^{n} (-1)^{j-1} : Z_{\nabla_{\overline{A}\omega_j}} Z_{\theta_1} \dots \widehat{Z}_{\theta_k} \dots Z_{\theta_n} \overline{Z}_{\eta_1} \dots \overline{Z}_{\eta_m} : \sqrt{A} \theta_k \wedge \omega_1 \wedge \dots \wedge \omega_p \wedge \dots \wedge \omega_p$$

$$\wedge \xi_1 \wedge \dots \wedge \xi_q$$

$$+ \sum_{k=1}^{n} (-1)^{j-1} : Z_{\nabla_{\overline{A}\omega_j}} Z_{\theta_1} \dots \widehat{Z}_{\theta_k} \dots Z_{\theta_n} \overline{Z}_{\eta_1} \dots \overline{Z}_{\eta_m} : \sqrt{A} \theta_k \wedge \omega_1 \wedge \dots \wedge \omega_p \wedge \dots \wedge \omega_p$$

$$\wedge \xi_1 \wedge \dots \wedge \xi_q$$

$$= \partial_A^* \sum_{k=1}^{n} : Z_{\theta_1} \dots \widehat{Z}_{\theta_k} \dots Z_{\theta_n} \overline{Z}_{\eta_1} \dots \overline{Z}_{\eta_m} : \sqrt{A} \theta_k \wedge \omega_1 \wedge \dots \wedge \omega_p \wedge \xi_1 \wedge \dots \wedge \xi_q$$

$$= \sum_{k=1}^{n} \nabla_A^* (: Z_{\theta_1} \dots \widehat{Z}_{\theta_k} \dots Z_{\theta_n} \overline{Z}_{\eta_1} \dots \overline{Z}_{\eta_m} : \sqrt{A} \theta_k \wedge \omega_1 \wedge \dots \wedge \omega_p \wedge \xi_1 \wedge \dots \wedge \xi_q$$

$$+ \sum_{k=1}^{n} \sum_{j=1}^{p} (-1)^j \nabla_A^* (: Z_{\theta_1} \dots \widehat{Z}_{\theta_k} \dots Z_{\theta_n} \overline{Z}_{\eta_1} \dots \overline{Z}_{\eta_m} : \omega_j) \sqrt{A} \theta_k \wedge \omega_1 \wedge \dots \wedge \omega_j \wedge \dots \wedge \omega_p$$

$$\wedge \xi_1 \wedge \dots \wedge \xi_q$$

$$= 2 \sum_{k=1}^{n} : Z_{\theta_1} \dots Z_{\theta_k} \dots Z_{\theta_n} \overline{Z}_{\eta_1} \dots \overline{Z}_{\eta_m} : \omega_j) \sqrt{A} \theta_k \wedge \omega_1 \wedge \dots \wedge \omega_j \wedge \dots \wedge \omega_p$$

$$\wedge \xi_1 \wedge \dots \wedge \xi_q$$

$$= 2 \sum_{k=1}^{n} : \sum_{j=1}^{p} (-1)^j \nabla_A^* (: Z_{\theta_1} \dots \widehat{Z}_{\theta_k} \dots Z_{\theta_n} \overline{Z}_{\eta_1} \dots \overline{Z}_{\eta_m} : \omega_j) \sqrt{A} \theta_k \wedge \omega_1 \wedge \dots \wedge \omega_j \wedge \dots \wedge \omega_p$$

$$\wedge \xi_1 \wedge \dots \wedge \xi_q$$

$$+ 2 \sum_{k=1}^{n} \sum_{j=1}^{p} (-1)^j : Z_{\nabla_{\overline{A}\omega_j}} Z_{\theta_1} \dots \overline{Z}_{\eta_m} : \omega_1 \wedge \dots \wedge \omega_p \wedge \xi_1 \wedge \dots \wedge \xi_q$$

$$+ 2 \sum_{k=1}^{n} \sum_{j=1}^{p} (-1)^j : Z_{\nabla_{\overline{A}\omega_j}} Z_{\theta_1} \dots \overline{Z}_{\eta_m} : \omega_1 \wedge \dots \wedge \omega_p \wedge \xi_1 \wedge \dots \wedge \xi_q$$

$$\wedge \xi_1 \wedge \dots \wedge \xi$$

Thus (3.20) holds. (3.19) can be proved similarly. \square

4. $\bar{\partial}_A$ -cohomology group of a complex abstract Wiener space

In this section we shall define $\bar{\partial}_A$ -cohomology group and determine their structure. First we shall define (p,q)-harmonic forms and prove de Rham-Hodge-Kodaira's decomposition. From this decomposition it is clear that $\bar{\partial}_A$ -cohomology groups are isomorphic to the spaces of harmonic forms and so their structure can be determined completely.

Definition 4.1. We set

$$\mathfrak{h}_{A}^{p,q} = \operatorname{Ker}(\overline{\square}_{A}^{p,q})$$

and call its element a harmonic (p, q)-form, where $\Box_A^{p,q}$ is the restriction of \Box_A to $\Lambda_2^{p,q}(B) = L^2(B, \mu: \Lambda^{p,q}(H_R^*)^c)$.

We shall determine the structure of $\mathfrak{h}_A^{b,q}$

Proposition 4.2.

(4.2)
$$\mathfrak{h}_{A}^{p,q} = \begin{cases} \{0\} & \text{for } q \ge 1, \\ \text{Hol}^{2}(B \colon \Lambda^{p,0}(H_{R}^{*})^{c}) & \text{for } q = 0. \end{cases}$$

Proof. For $q \ge 1$, from (3.19),

$$\Box_A^{p,q} = -L_A + 2 d\Gamma(A)_a$$
.

Thus $\Box_A^{b,q}$ is a strictly positive definite self-adjoint operator and $Ker(\Box_A^{b,q}) = \{0\}$. For q=0, from (3.19) and (2.12)

$$\operatorname{Ker}(\square_A^{p,q}) = \operatorname{Ker}(L_A) = \operatorname{Ker}(\nabla_A) = \operatorname{Hol}^2(B, \mu : \Lambda^{p,0}(H_R^*)^c). \quad \square$$

Now we can show de Rham-Hodge-Kodaira's decomposition. It is easy to show the following lemma, so we omit the proof.

Lemma. Let \mathcal{H} be a complex separable Hilbert space, A be a self-adjoint operator on \mathcal{H} and $\sigma(|A|)$ be the spectrum of |A|. If $\sigma(|A|)\setminus\{0\}\subset[m,\infty)$ for a positive constant m, then A has a closed range.

Theorem 4.3. $\Lambda_2^{p,q}(B)$ is orthogonally decomposed as follows

$$\Lambda_{2}^{p,q}(B) = \operatorname{Im}(\overline{\partial}_{A}^{p,q-1}) \oplus \operatorname{Im}(\overline{\partial}_{A}^{p,q}) \oplus \mathfrak{h}_{A}^{p,q}$$

where $\partial_A^{p,q}$ is the restriction of ∂_A to $\Lambda_2^{p,q}(B)$ and $\partial_A^{*p,q}$ is the restriction of ∂_A^* to $\Lambda_2^{p,q+1}(B)$. We set $\operatorname{Im}(\partial_A^{p,q-1}) = \{0\}$ if q = 0.

Proof. From Theorem 3.3, $\sigma(\overline{\square}_A^{p,q})\setminus\{0\}\subset[m,\infty)$ where $m=\inf \sigma(A)>0$. Thus from the above lemma,

$$\Lambda_2^{\flat,q}(B)=\mathrm{Ker}(\overline{\square}_A^{\flat,q})\oplus\mathrm{Im}(\overline{\square}_A^{d,q})=\mathfrak{h}_A^{\flat,q}\oplus\mathrm{Im}(\overline{\square}_A^{\flat,q})\,.$$

For q=0, $\Box_{A}^{p,0}=\overline{\partial}_{A}^{*p,0}\overline{\partial}_{A}^{p,0}$, thus $\operatorname{Im}(\Box_{A}^{p,0})\subset\operatorname{Im}(\overline{\partial}_{A}^{*p,0})$. On the other hand, since $\Lambda_{2}^{p,0}(B)=\operatorname{Ker}(\overline{\partial}_{A}^{p,0})\oplus\overline{\operatorname{Im}(\overline{\partial}_{A}^{*p,0})}$ and $\operatorname{Ker}(\Box_{A}^{p,0})=\operatorname{Ker}(\overline{\partial}_{A}^{p,0})$, we have $\operatorname{Im}(\Box_{A}^{p,0})=\overline{\operatorname{Im}(\overline{\partial}_{A}^{*p,0})}$. Therefore, $\operatorname{Im}(\overline{\Box}_{A}^{p,0})=\operatorname{Im}(\overline{\partial}_{A}^{*p,0})$ and $\Lambda_{2}^{p,0}(B)=\mathfrak{h}_{A}^{p,0}\oplus\operatorname{Im}(\overline{\partial}_{A}^{*p,0})$.

Next we show (4.3) for $q \ge 1$. We note $\Box_A^{p,q} = \overline{\partial}_A^{p,q} \overline{\partial}_A^{p,q} + \overline{\partial}_A^{p,q-1} \overline{\partial}_A^{p,q-1}$ and hence $\operatorname{Im}(\Box_A^{p,q}) \subset \operatorname{Im}(\overline{\partial}_A^{p,q}) \oplus \operatorname{Im}(\overline{\partial}_A^{p,q-1})$. On the other hand, since $\Lambda_2^{p,q}(B) = \operatorname{Ker}(\overline{\partial}_A^{p,q}) \cap \operatorname{Ker}(\overline{\partial}_A^{p,q-1}) \oplus \overline{\operatorname{Im}(\overline{\partial}_A^{p,q})} \oplus \overline{\operatorname{Im}(\overline{\partial}_A^{p,q-1})}$ and $\operatorname{Ker}(\Box_A^{p,q}) = \operatorname{Ker}(\overline{\partial}_A^{p,q}) \cap \operatorname{Ker}(\overline{\partial}_A^{p,q-1})$, we have $\operatorname{Im}(\overline{\Box}_A^{p,q}) = \overline{\operatorname{Im}(\overline{\partial}_A^{p,q})} \oplus \overline{\operatorname{Im}(\overline{\partial}_A^{p,q-1})}$. Therefore, $\operatorname{Im}(\overline{\Box}_A^{p,q}) = \operatorname{Im}(\overline{\partial}_A^{p,q}) \oplus \operatorname{Im}(\overline{\partial}_A^{p,q-1}) \oplus \operatorname{Im}(\overline{\partial}_A^{p,q-1})$. \Box

We define ∂_A -cohomology group as follows

$$\mathfrak{P}_{A}^{t,q}(B) = \operatorname{Ker}(\overline{\partial}_{A}^{p,q})/\operatorname{Im}(\overline{\partial}_{A}^{p,q-1}).$$

From Theorem 4.3, $\operatorname{Ker}(\overline{\partial}_{A}^{p,q}) = \operatorname{Im}(\overline{\partial}_{A}^{p,q})^{\perp} = \operatorname{Im}(\overline{\partial}_{A}^{p,q-1}) \oplus \mathfrak{h}_{A}^{p,q}$. Therefore $\mathfrak{D}_{A}^{p,q}(B) = \mathfrak{h}_{A}^{p,q}$ and thus the following theorem can be obtained.

Theorem 4.4. It holds that

(4.5)
$$\mathfrak{F}_{A}^{p,b}(B) = \begin{cases} \{0\} & \text{for } q \ge 1, \\ \operatorname{Hol}^{2}(B: \Lambda^{p,0}(H_{R}^{*})^{c}) & \text{for } q = 0. \end{cases}$$

Appendix A The fundamentals concerning the complexification of a complex separable Hilbert space

Let H be a complex separable Hilbert space with inner product ()_H and $\{e_n\}_{n=1}^{\infty}$ be its ONB. The adjoint space of H, denoted by H^* , is a space of C-linear continuous functionals on H and becomes a complex separable Hilbert space with the following inner rpoduct:

(A.1)
$$(\theta,\eta)_{H^*} = \sum_{n=1}^{\infty} \langle \theta, e_n \rangle \overline{\langle \eta, e_n \rangle} \quad \text{for } \theta, \eta \in H^*.$$

H becomes a real separable Hilbert space with respect to the following inner product,

$$(A.2) (x, y)_R = \operatorname{Re}(x, y)_H.$$

We denote this real Hilbert space by H_R . H_R has a natural complex structure J defined by $Jx = \sqrt{-1}x$ for $x \in H_R$. Then it holds that $J^2 = -1$, J is skew-adjoint and $\{e_n, Je_n\}_{n=1}^{\infty}$ is an ONB of H_R .

The adjoint space of H_R , denoted by H_R^* , is a space of R-linear continuous functionals on H_R and becomes a real separable Hilbert space with respect to the following inner product:

(A.3)
$$(\varphi, \psi)_{H_R^*} = \sum_{n=1}^{\infty} \{ \langle \varphi, e_n \rangle \langle \psi, e_n \rangle + \langle \varphi, Je_n \rangle \langle \psi, Je_n \rangle \}$$
 for $\varphi, \psi \in H_R^*$.

A complex structure J' on H_R^* is defined by $\langle J'\varphi, x \rangle = \langle \varphi, Jx \rangle$ for $\varphi \in H_R^*$, $x \in H_R$.

Let $(H_R^*)^c = H_R \otimes C$, the complexification of H_R^* . An inner product on $(H_R^*)^c$ is given by $(\varphi \otimes z, \psi \otimes w)_{(H_R^*)^c} = (\varphi, \psi)_{H_R^*} z \overline{w}$ for $\varphi, \psi \in H_R^*$, $z, w \in C$, which is extended by the R-linearlity in each argument. Then $(H_R^*)^c$ becomes a complex separable Hilbert space with respect to this inner product. $(H_R^*)^c$ is naturally regarded as a space of C-valued R-linear functionals on H_R by $\langle \varphi \otimes z, x \rangle = \langle \varphi, x \rangle z$. Then its inner product is also given by

$$(A.4) \quad (\xi,\eta)_{(H_R^*)^c} = \sum_{n=1}^{\infty} \left\{ \langle \xi, e_n \rangle \overline{\langle \eta, e_n \rangle} + \langle \xi, Je_n \rangle \overline{\langle \eta, Je_n \rangle} \right\} \quad \text{ for } \quad \xi,\eta \in (H_R^*)^c.$$

R-linear operator J' can be extended to a **C**-linear operator on $(H_R^*)^c$ by $J'(\varphi \otimes z) = (J'\varphi) \otimes z$. We note that $J'^2 = -1$ and J' is skew-adjoint on $(H_R^*)^c$. Thus $(H_R^*)^c$ is orthogonally decomposed as a sum of $\mathrm{Ker}(J' - \sqrt{-1})$ and $\mathrm{Ker}(J' + \sqrt{-1})$, where $\mathrm{Ker}(J' - \sqrt{-1}) = H^*$, the space of **C**-linear continuous functionals on H_R and $\mathrm{Ker}(J' + \sqrt{-1}) = \overline{H}^*$, the space of anti **C**-linear continuous functionals on H_R .

Complex conjugate on $(H_R^*)^c$ is given by $\overline{\varphi \otimes z} = \varphi \otimes \overline{z}$. Then $\langle \overline{\varphi \otimes z}, x \rangle = \langle \varphi \otimes z, x \rangle$ for $x \in H_R$, so if $\theta \in H^*$, then $\overline{\theta} \in \overline{H}^*$ and vice versa.

We note difference between the inner product on H^* induced from $(H_R^*)^c$ and the original one. For κ , $\eta \in H^*$,

(A.5)
$$(\theta, \eta)_{(H_R^*)^c} = \sum_{n=1}^{\infty} \left\{ \langle \theta, e_n \rangle \overline{\langle \eta, e_n \rangle} + \langle \theta, Je_n \rangle \overline{\langle \eta, Je_n \rangle} \right\}$$

$$= 2 \sum_{n=1}^{\infty} \left\{ \langle \theta, e_n \rangle \overline{\langle \eta, e_n \rangle} \right\} = 2(\theta, \eta)_{H^*}.$$

Thus if $\{\theta_n\}_{n=1}^{\infty}$ is an ONB of H^* , then $\{\frac{1}{\sqrt{2}}\theta_n, \frac{1}{\sqrt{2}}\overline{\theta}_n\}_{n=1}^{\infty}$ becomes an ONB of $(H_R^*)^c$.

For an operator C on H^* , we define an operator \overline{C} on \overline{H}^* as follows:

(A.6)
$$\langle \overline{C}\zeta, x \rangle = \overline{\langle C\zeta, x \rangle}$$
 for $\zeta \in \overline{H}^*, x \in H_R$.

Complex conjugate defines anti-unitary isomorphism from H^* to \bar{H}^* . Thus C and \bar{C} are anti-unitarily isomorphic and if C is self-adjoint, then \bar{C} is also self-adjoint and they are isomorphic.

Appendix B Complex Gaussian random variables and Wick product

Let $Z=X+\sqrt{-1}Y$ be a complex random variable with mean 0. We call Z a complex Gaussian random variable if X and Y are independent and identically distributed Gaussian random variables. This is equivalent to stating that $E[\exp(\sqrt{-1}\operatorname{Re}(aZ))]=\exp(-\frac{1}{A}|a|^2E[Z\bar{Z}])$ for any $a\in C$.

Complex random variables $Z_1 \cdots Z_n$ are called *jointly complex Gaussian random variables* if for any $\alpha_1 \cdots \alpha_n \in \mathbb{C}$, $\alpha_1 Z_1 + \cdots + \alpha_n Z_n$ becomes a complex Gaussian random variable.

Proposition B.1. Let Z_1, \dots, Z_n W_1, \dots, W_m be jointly complex Gaussian random variables. Then it holds that

(B.1)
$$E[Z_1 \cdots Z_n \overline{W}_1 \cdots \overline{W}_m] = 0 \quad \text{if} \quad n \neq m,$$

(B.2)
$$E[Z_1 \cdots Z_n \overline{W}_1 \cdots \overline{W}_n] = \sum_{\sigma \in \mathfrak{S}_n} E[Z_1 \overline{W}_{\sigma_1}] \cdots E[Z_n \overline{W}_{\sigma_n}] ,$$

where \mathfrak{S}_n denotes the permutation group on n letters.

For jointly complex Gaussian random variables $Z_1, \dots, Z_n, W_1, \dots, W_m$, we define their *Wick product*: $Z_1 \dots Z_n \overline{W}_1 \dots \overline{W}_m$: by induction with respect to (n, m) as follows,

(B.3)
$$:Z_1 \cdots Z_n \overline{W}_1 \cdots \overline{W}_m :$$

$$= Z_n : Z_1 \cdots Z_{n-1} \overline{W}_1 \cdots \overline{W}_m : - \sum_{i=1}^m E[Z_n \overline{W}_i] : Z_1 \cdots Z_{n-1} \overline{W}_1 \cdots \hat{\overline{W}}_j \cdots \overline{W}_m :$$

(B.4)
$$:Z_1 \cdots Z_n W_1 \cdots W_m :$$

$$= W_m : Z_1 \cdots Z_n \overline{W}_1 \cdots \overline{W}_{m-1} : - \sum_{k=1}^n E[Z_k \overline{W}_m] : Z_1 \cdots \widehat{Z}_k \cdots Z_n \overline{W}_1 \cdots \overline{W}_{m-1} :$$

where $\hat{\alpha}$ denotes α is deleted. From this definition we can show that for jointly complex Gaussian random variables $Z_1 \cdots Z_{\nu}$,

(B.5)
$$\frac{\partial}{\partial Z_i}: Z_1^{n_1} \cdots Z_{\nu}^{n_{\nu}} \bar{Z}_1^{m_1} \cdots \bar{Z}_{\nu}^{m_{\nu}} := n_j: Z_1^{n_1} \cdots Z_j^{n_j-1} \cdots Z_{\nu}^{n_{\nu}} \bar{Z}_1^{m_1} \cdots \bar{Z}_{\nu}^{m_{\nu}} :,$$

$$(\mathrm{B.6}) \qquad \frac{\partial}{\partial \bar{Z}_{j}} :\!\! Z_{1}^{n_{1}} \!\cdots\! Z_{\nu}^{n_{\nu}} \!\! Z_{1}^{m_{1}} \!\cdots\! Z_{\nu}^{m_{\nu}} \!\! := m_{j} :\!\! Z_{1}^{n_{1}} \!\cdots\! Z_{\nu}^{n_{\nu}} \!\! \bar{Z}_{1}^{m_{1}} \!\cdots\! \bar{Z}_{j}^{m_{j}-1} \!\cdots\! \bar{Z}_{\nu}^{m_{\nu}} \!\! :,$$

(B.7)
$$E[:Z_1^{n_1}\cdots Z_{\nu}^{n_{\nu}}\bar{Z}_1^{m_1}\cdots\bar{Z}_{\nu}^{m_{\nu}}:]=0$$

and moreover the following can be proven.

Proposition B.2. (a) For jointly complex Gaussian random variables $Z_1^{(1)}$, $\cdots Z_{n_1}^{(1)}, W_1^{(1)}, \cdots, W_{m_n}^{(1)}, Z_1^{(2)}, \cdots, Z_{n_p}^{(2)}, W_1^{(2)}, \cdots, W_{m_p}^{(2)}$

(B.8)
$$E[:Z_1^{(1)}\cdots Z_{n_1}^{(1)}\bar{W}_1^{(1)}\cdots\bar{W}_{m_1}^{(1)}::Z_1^{(2)}\cdots Z_{n_2}^{(2)}\bar{W}_1^{(2)}\cdots\bar{W}_{m_2}^{(2)}:]=0$$

if $n_1 \neq n_2$ or $m_1 \neq m_2$,

(b) For jointly complex Gaussian random variables Z_1, \dots, Z_{ν} such that $(Z_i, Z_j)_{L^2} = \delta_{i,j}$ for $1 \le i, j \le \nu$

(B.9)
$$(:Z_{1}^{n_{1}}\cdots Z_{\nu}^{n_{\nu}}\bar{Z}_{1}^{m_{1}}\cdots \bar{Z}_{\nu}^{m_{\nu}}:, :Z_{1}^{l_{1}}\cdots Z_{\nu}^{l_{\nu}}\bar{Z}_{1}^{k_{1}}\cdots \bar{Z}_{\nu}^{k_{\nu}})_{L^{2}}$$

$$= \delta_{n_{1},l_{1}}\cdots \delta_{n_{\nu},l_{\nu}}\delta_{m_{1},k_{1}}\cdots \delta_{m_{\nu},k_{\nu}}n_{1}!\cdots n_{\nu}!m_{1}!\cdots m_{\nu}!$$

where $(X, Y)_{L^2} = E[X \bar{Y}]$ for complex random variables X and Y.

The proof is similar to the real case. See [5].

References

[1] A. Arai: Path integral representation of the index of Kahler-Dirac operators on an infinite dimensional manifold, J. Funct. Anal., 82 (1989), 330-369.

- [2] M. Reed and B. Simon: Methods of Modern Mathematical Physics I, Academic Press, New York, 1972.
- [3] I. Shigekawa: De Rham-Hodge-Kodaira's decomposition on an abstract Wiener space, J. Math. Kyoto Univ. 26 (1986), 191-202.
- [4] I. Shigekawa: Ito-Wiener expansions of holomorphic functions on the complex Wiener space, in: Stochastic Analysis, ed. E. Mayer-Wolf et al, Academic Press, San Diego, 1991.
- [5] B. Simon: The $P(\varphi)_2$ Euclidean (Quantum) Field Theory, Princeton Univ. Press, Princeton, NJ, 1974.
- [6] S. Watanabe: Lectures on Stochastic Differential Equations and Malliavin's Calculus, Tata Institute of Fundamental Research, Springer-Verlag, Berlin-Heidelberg-New York, 1984.
- [7] R.O. Wells: Differential Analysis on Complex Manifolds, Springer-Verlag, Berlin-Heidelberg-New York, 1980.

Department of Mathematics Faculty of Science Kyoto University Kyoto 606, Japan