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1. Introduction

In this paper, we consider a complex abstract Wiener space (CAWS) (B, H, ),
that is a triplet of a complex separable Banach space B, a complex separable
Hilbert space H which is densely and continuously imbedded in B and a Borel
probability measure x on B such that

(1.1) SBexp(\/——l Rexz, <p>3*)p,(dz)=eXp(—%HcpH?{*) for peB*C H*.

Moreover, we assume that a strictly positive self-adjoint operator A on H*
is given and B*CC~(4)= 6 Dom(4"). Then we can define D, p(2)=

(VA @VZT)Dp(z) for p€P(B: E), E-valued polynomial functional on B.
H-derivative D is a fundamental tool in Malliavin’s calculs ([6]), but here
we consider D, instead of D, because we keep quantum field theoretical models

in mind. In fact, %D;"DA=dI‘(AEBﬂ), a free Hamiltonian for a complex Bose

field (and its anti-particle field).

Following [3] and [4], we regard B as an infinite dimensional manifold with
cotangent space (H%)" on each z=B. Consequently its exterior product bundle
becomes B X A(H%)" and the space of its L*-sections becomes L*(B, u: A(H¥%)"),
i.e. the space of A(H¥)'-valued L’-functions on B or LiB, u)QA(H%), a
tensor product of the Bosonic Fock space and the Fermionic Fock space. On

this space we define an exterior derivative d, using D,. Then %(d}‘d atdad¥)

=dT(ADA)DIAN(ADBA), a free Hamiltonian for an N=2 supersymmetric
quantum field.

As in the finite dimensional case, d, is decomposed as d,=8,+08,, and
Laplace-Beltrami operators [], and 4 are defined as [],=0%0,+0,0% and
1,=0%0,+0,0%, respectively. Since 95=0, 0, defines an elliptic complex
and 3,-cohomology groups can be defined as %% B)=Ker(0,|A}*(B))/
Im(3,| A3*"Y(B)), where AYYB)=L*B, p: A”%(H%)"), the space of square in-
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tegrable (p, ¢)-forms.
First we show that de Rham-Hodge-Kodaira’s decomposition for A%%(B)
holds, that is

(12) AY(B) = Im(B,] A4*-(B))DIm (3| AL (B)) ®H4*

where h%¢=XKer([J,| A»%(B)), the space of harmonic (p, g)-forms (our discussion
is restricted to the L?-case). From this we conclude that %% B)=5b%? and it

will be shown by using the expression %Ifl 1=dT(A)DdA(A), that b%*= {0}, if

¢<1 and %4 °=Hol*(B: A?°(H%)"), where Hol’(B: A>%(H%)") is the set of square
integrable holomorphic forms.

We start with a complex separable Hilbert space H, but we regard this as
a real separable Hilbert space (this space is denoted by Hp) and consider (H%)",
a complexification of its adjoint space H¥. (H%)" is decomposed as (H¥)'=
H*@®H*, but the inner product of H* induced from (H%)° is slightly different
from original one. We sum up these algebraic fundamentals in Appendix A.
In Appendix B we state some elementary facts about the Wick product for a
complex Gaussian system.

Finally, the author would like to thank Professor I. Shigekawa for help
and encouragement.

2. Complex abstract Wiener space

In this section we define a modified Ornstein-Uhlenbeck operator on a
CAWS and show that it equals to the free Hamiltonian.

Let (B,H, 1) be a CAWS as in the section 1 and A be a strictly positive self-
adjoint operator on H*. Then it can be easily shown that {Z,|§ €B*} is a com-
plex Gaussian system satisfying

2.1) E[|Zy|"] = || Zll7= 0 H¥,
(2'2) E[ZOZTI] == (9) 77)1{* 0’ WEH* )

where Z, is a complex random variable on B defined as Zy(2)= <2, 0 s, Z, is
a complex conjugate of Z, and E stands for the integration under .

We assume that B*C C=(4) without loss of generality. In fact, let @ be a
Hilbert-Schmidt operator on H* and set K=e™4a. We define (u, v);=(Ku,
Ko)y, |lulls=(u, u)¥* for u,vEH and denote the completion of H with respect
to ||+|lz as B. Then (B,||+||z) becomes a complex Banach space and there
exists a Borel probability measure x on B such that

(2.3) SB exp(v'—1 Res<z, @Dpe) p(dz) = exp(—% llpllz) for peB*C H*.
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and moreover B*¥*Ce 4a(H)C C=(4).
A (complex-valued) polynomial functional on B is a mapping p: B—C writ-
ten as

(2.4) P(z) = P(Zo(2), s Za,(2), Zoy(3), s Zo,(2))

where nEN, 6,, -+, 0,EB*, P is a polymomial of 2n-arguments with com-
plex coefficients. If p is written in the form

(2.5) P(2) = P(Zo(2); **, Zo,(2))

p is called a holomorphic polynomial functional on B.

We denote by P(B: C) and Ly(B: C) the set of polynomials and holomor-
phic polynomials on B, respectively. Moreover, for a complex separable Hilbert
space E, we set P(B: E)=%P(B: C)QE, Py(B: E)=%,(B: C)QE (algebraic ten-
sor product) and call them the space of E-valued polynomial functionals and E-
valued holomorphic polynomial functionals, respectively. For pEP(B: E), its
H-derivative at 2 € B is defined as follows

(2.6) (Dp(z), h> = % pa+th)|,.e  for heH.

Dp(z) is an element of (H})'QE. Since (H})'QE=(H*QE)D(H*QE), we set
Vp(2) to be an H*®E component and Vp(2) to be an H*®E component.

As mentioned in the section 1, we use slightly modified derivative instead
of H-derivative as follows,

2.7) Dp(z) = (VASVA)Dp(z) pEP(B:C).

For the definiton of V' A see (A.6). We have chosen B so that B¥*C C>(4), so
Dp(z)EC=(A) and (VA @Vﬂ)Dp(z) is well defined. D,P(2) is decomposed as
D, p(2)=V 4p(3) DV (%) Where V45(2)=V'A V(3), Vap()=Y AV,4p(2). We
denote adjoint operators of V, and ¥, in LB, u: E) by V¥ and V¥, respectively.
Their explicit formulas for Wick polynomials are given as follows.

Proposition 2.1. For 0,, -+, 8, 9y, ***, 7w, £ EB*, it holds that
28) Vi ZgoZg Zn o Tyt = 2 : Zgyo- Loy Zg Zopivo Zon s /A0,

- -— m — ~

Zoy+Zogy: =3t Lo+ Zig Longr++Lonyo+ Lt N AB

= 1 n 1 J

(2.9) VA: Zgl'“Zo

n

mZ,,”Z_',,l---Z,,m: =12 sz;Zol--‘Za"Z,,l---Z,,m:
"'Zo,,Zn,'"Zn,,,t t=2: ZVZ:Zo,"'Za,,Zn,"'Zn,,,I

(2.10) Vv
@11) ¥

Proof. As in the real case, it can be easily shown that

A
:Zg

1

EX N

1
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V.P(ZeZs) = z‘. oL (Z,,Zo)\/Ae
ViP(ZoZs) = z oL (ZoZo)\/Ae.
VEP(ZoZo)t = —2 2 (ZoZo) (é’ VA6) 42 ZvacP(ZoZo)

VEP(ZoZo)E = —2 z: (Z,Zo) (VA ;, §)as+2Z5(P(ZeZ)

where P(Zy, Zg)=P(Zy,, -+, Zo,,, Zol, v+, Zy YEP(B: C), tEB* (see e.g. [6]).
Combining this with (2.2) (B.3)~(B.6), we can prove (2.8)~2.11). [J

Therefore V¥ and V% are densely defined operators, so V, and V, are
closable and we denote their closures by the same symbols.
Next we obtain the kernel of 7 ,.

Proposition 2.2. It holds that
(2.12) Ker (V,) = Hol’ (B: E)
where Hol>(B: E) is the closure of P(B: E) in L*(B, u: E).

Proof. We give a proof for E=C. General cases can be proved similarly.
First we introduce some notations. Let {0,}».. be an ONB of H*,

= (=)< 2Y | Bn,<co}, Z,=1{0,1,2,3,- },

H (n;!m; 1)~V HZ"JZ},"] i, n,meNU,
Ay = {n=@,)7.1€Aln; =0 if j>N},
LN = [Wn,mln)meal\l]_ll.”z:
Py: L¥(B, u)—Ly orthogonal projection,
pn: H*—[6,, -, 4] orthogonal projection,

where [-] stands for the linear span and —||+||; means the closure in LY B, u).
{W, u} ».men forms an ONB of L¥B, p), so Py converges strongly to the identity
and it holds that ‘

N
(2.13)  PyoViW, 40, = ,,2{ 2(0k, A0,) g (my+-1)"2 W, 1, n,mEWy

k
where €,=(0, ---, 01,0, --)€, and moreover Py® pyoV ,=V 40Py.
If FEKer(V,)=Im(V¥)™, then for n,meN,, j {1.--N},
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0= (vAFy Wn,mgj) = (PN®PN°VAF) Wn,mgj)
= (VA°PNF) Wn,mgj) = (F) PN°V§Wn,mgj)
N
=2 Z‘i (A¢9,., 0,,),,*(mk+1)1/2(F, W, mie,)

Since A4 is strictly positive, we have
(F, Wy mie,) =0, n,med,, ke{l---N}, NEN.

Thus we have FE[W,,|neR]1"l2=Py(B: C)""!'2=Hol*(B: C) and hence
Ker (V,)C Hol? (B: C).

Conversely it is easy to see that Hol*(B: C)CKer(V,). This completes
the proof. []

We set
(2.14) L,= —ViVv, L; = —Viv%.

Then L, and Lz are negative self-adjoint operators on LB, u). Let us show
that L, and Lz-correspond to the Hamiltonian for complex Bosons and their anti-
particles, respectively.

DEFINITION 2.3.  Bosonic second quantized operator of A and A on LB, u)
is defined on the Wick polynomials as follows

2.15)  dT(A): Zoo+Z Zn+ Zony: = 2 : ZoyoZ oy Ty Lo Tom:

(2.16) dT(A): Zy 2y Zp, -+ Zoy,: = D3 1 Zg,
where 0y, -+, 0,, 71, **+, nn EB*. dT'(4) and dT'(A) are essentially self-adjoint
on the space of the Wick polynomials and we denote its closure by the same
symbol (see e.g. [2]).

"'ZO,.an'"ZAnj'"Zﬂm:

Il

Theorem 2.4. It holds that
(2.17) L,= —2dT'(A) Lz= —2dT'(4).
Proof. To prove (2.17), it is enough to show that
L,p= —2dT(A)p  Lap= —2dT(A)p
for a Wick polynomial p= : Z +--Zy Z,, - Z,, : . By Proposition 2.1,
Ly: Zy+-Zy Zono+ Zoy: = — VAV 42 Zoy v+ Zg Zon o+ Lo,

= —g Vﬁ: Zo],“.Zaj..‘ZG"ZWI‘“Z"IM: \/ZGJ= _Zg . ZAO,‘Zﬁ."ZOJ""ZO,,Z"I."Z’I",:
— —2dT(A): Zoy-++Zo Zngr++ Loy -
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The latter can be proved similarly. [

3. An exterior product bundle
Let us define an exterior product bundle over a CAWS. To do this, let
ANH %)‘:é A'(H¥)" where A"(H%) is an anti-symmetric part of z-tensor pro-
n=0

duct of (H¥)" and its inner product is given by
1 n c
(31) (CO, ‘)7) = —n—'— (CO, 77)®"(H1’§)‘ for w, 7]EA (H%) ,

where (+) gz is the natural inner product on ®"(H¥)". We define an exterior
product of € A"(H%)" and n€ A"(H¥)" by

(3.2) YA ES ("'n_"l';nm'L A imo@7

where A, ., is an (n-+m)-th normalized anti-symmetrization defined by

(3.3) (@@ @) = % 3 sen(e)on @@ o,

We set A*9(H¥)=A?H* \A'H*. Then

(34) AY(HY) =M@ ”AM(H 3.

Exterior derivative d,=0,+0, on polynomial functionals is defined as follows
(3.5) dyo> = (n41) Ay Do

(3.6) 840 = (n+1) Sy V.0

(3.7) 840 = (n+1) Ay Vg0

for wEP(B: A"(H%)"). We denote adjoint operators of 9, and 0, in
LXB, p: A(H%)") by 8% and 9%, respectively. Then it holds as in the real case

(3D

(3-8)  BAf(RVON N O\ N A Ty = Vaf(R)A ON N O\ A\ 7y

(3.9)  Ff(R)ON A ONA BN A Ty = TV4fRIA O A A O,A AN 7,

(3.10) BXAR)ONA A O,A A A 7, = ig’;(—1)f-1v;!=(f(z)a,)91/\-~-/\ N
A G\ A A 7,

(B.11) BESR)ONA A O,A A A 7, = jE:Il(—l)"”'l'V—ﬁ(f(z)ﬁ,)Gl/\---/\ 9,
A A A TN A T
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where fEP(B: C), 0,, -+, 0, 9y, **, n,EB*. Thus 0% and 9% are densely defin-
ed operators and so 8, and 0, are closable. We denote their closures by the
same symbols. Then we easily have the following.

Proposition 3.1. It holds that

(3.12) di=0

and

(3.13) 04=0 =0 040,+9,0,=0
(3.14) =0 9% =0 0%¥0%5+9%0%=0.

Laplace-Beltrami operators [, and [J, are defined as follows
(3-15) Ua= aaaf—l‘aﬁaA ’ ‘jA = 545?;—1-31‘514 .

Then [J, and [J, are positive self-adjoint operators on Dom(3,9%) N
Dom (0%8,) and Dom (3 ,0%) N Dom (3%3,), respectively ([1]). We will show that
(4 and [, correspond to the free Hamiltonian of supersymmetric particle field
and its antiparticle field, respectively.

DEFINITION 3.2.  Fermionic second quantized operators of A and A respec-
tively, on A(H¥%)" are defined as follows

(316) dAMBA A A BAA Bg= 3O A ;A A 46,

AN ”71/\‘“/\ ﬁq
(B17)  AADONA A O A BA=A g = SO A OA 1A A
A’T]j/\'"/\ ﬂq

where 0, =+, 0, 73, -+, 7,€B*. Then dA(4) and dA(A) are essentially self-

adjoint on ) A" (B*@B¥*) (algebraic sense) ([2]). We denote their closures by
n=0

the same symbols.

Theorem 3.3. It holds that
(3.18) 4= —L,+2dA(A4) = 2(dT'(A)+-dA(4))
(3.19) Oa= —Li+2dA(A) = 2(dT(A)+dA(A))
Proof. 'To prove (3.18), it is enough to show that

Ol Zol“'Zo,,an"'Zn,,,i wl/\.../\a,p/\fl/\.../\éq
= 2dT(A)+dN(A)): Zy+Zo Zony+ Zo,: 0, A+ A0y AEA - NE,
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for 017 ) em N1 °°%s Ny Byy ***5 Dpy El’ ) EqEB*-
6Aai:ZOI'“Z0"Z711"'Zﬂ,,: col/\-"/\cop/\fl/\"-/\?q

) . = = -
= 04 2 (Z1) VA Zoy o Zo,Ln o Ly 0 Jr Nt A A - Nop NEA -+ NEq

) ) = = = -
=0, gl (—1Y12: ZvanZip " Zniny++ Ly, 01N AN Ay NEIN - NE,
- Zé : Zo;"'ZO,.Zﬂl"'an: w1/\"’/\Aw,~/\"'/\wp/\§1/\"'/\Eq

+ (0 Zean Loy Loy T+ Ty NV AG N @A - Ay A Aoy
/\El/\ oo /\Eq .
0%04: Zoy+ Zo,Lony'+* Lt r N+ N, NEIA -+ NE,

0

%

I

g 3Zo,"‘Zok"'Zo,,an'“Zn,,,: VAO Ao A No,NELA - AE,

I

;} VE(: Zoy 2o+ Zo Zn+ Zony: NV ABYL A+ A, AELA -+ NE,

)4 . N — — —
+ z; (—1)YVi(: Zol'"Zak‘“Zo,,an'”Zn,,,: wj) VAN o\ e AO; N Ao,
/\51/\”'/\54
7 :wl/\"'/\wg/\él/\'"/\gq

m

n P 3 N _ _ —
F2 0 (1Y Zva,,; Zoy oLy Zo Zony++ Ziny: NV AOG A, N A A\ Ny
NEA-NE,.
Thus (3.20) holds. (3.19) can be proved similarly. []

4. 3@ ,-cohomology group of a complex abstract Wiener space

In this section we shall define 3,-cohomology group and determine their
structure. First we shall define (p, ¢)-harmonic forms and prove de Rham-
Hodge-Kodaira’s decomposition. From this decomposition it is clear that
9 ~-cohomology groups are isomorphic to the spaces of harmonic forms and so
their structure can be determined completely.

DEerFINITION 4.1. We set
(1) 64" = Ker((%")

and call its element a harmonic (p, q)-form, where [J%7 is the restriction of [], to
AYYB)=L%B, p: A*(H%)").
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We shall determine the structure of H%?
Proposition 4.2.

{0} for ¢>1,
Hol’(B: A**(H%)") for ¢=0.

Proof. For ¢>1, from (3.19),

42) e = {

[0%4° = —L,+2 dT(4), .

Thus [J%? is a strictly positive definite self-adjoint operator and Ker([(]%%)=
{0}. For ¢=0, from (3.19) and (2.12)

Ker((O%*)=Ker(L,)=XKer(V)=Hol"(B, p: A*(H¥)). 0O

Now we can show de Rham-Hodge-Kodaira’s decomposition. It is easy
to show the following lemma, so we omit the proof.

Lemma. Let H be a complex separable Hilbert space, A be a self-adjoint
operator on H and o(| A|) be the spectrum of | A|. If o(|A|)\{0} C[m, ) for a
positive constant m, then A has a closed range.

Theorem 4.3. A%%(B) is orthogonally decomposed as follows
(4.3) A%4(B) = Im(3% ") DIm(3%* %) Dh4*

where 0% is the restriction of 3, to A%YB) and 0%"? is the restriction of 3% to
ALTY(B).  We set Im(3%'")= {0} if g=0.

Proof. From Theorem 3.3, o([J%%)\{0} C[m, co) where m=inf ¢:(4)>0.
Thus from the above lemma,

A%*(B) = Ker((Ok*)@Im(0%*) = b4 *SIm(C47) .
For ¢=0, (J%°=0%""°8%°, thus Im((J%°)CIm(3%?:°). On the other hand, since
A2(B)=Ker(3%°)BIm(3%7°) and Ker([J%4°)=XKer(34°), we have Im((J4%)=
Im(3%?°). Therefore, Im((J%°)=Im(3%?:°) and A2%(B)=Y5%"BIm(3%*?).

Next we show (4.3) for ¢>1. We note [J%'=%?70%*9%'8%" 7" and
hence Im([J%%)CIm(8%"¢)@BIm(8%*"). On the other hand, since A%*(B)=
Ker(3%9) NKer(3%?*")®Im(05 ) BIm(3%*™") and Ker((O%?) = Ker(359)N
Ker(%?7"), we have Im([7%¢)=Im(3%*9)BIm(8%°""). Therefore, Im((0%")=
Im(3%"9)@Im(3% ") and A%Y(B)=9%*@Im(0%"*)PIm(3%*"). O

We define 3,-cohomology group as follows
(44) 949(B) = Ker(3%9)/Im(3%" ") .
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From Theorem 4.3, Ker(8% ) =Im(3%"9)*=Im(34* ") ®H%?. Therefore D4*(B)
=9% and thus the following theorem can be obtained.

Theorem 4.4. It holds that

{0} for ¢>1,
+5) o8B ={ e
HolA(B: A*°(H%)) for ¢=0.
Appendix A The fundamentals concerning the complexification
of a complex separable Hilbert space

Let H be a complex ‘'separable Hilbert space with inner product ( )y and
{e,}n-1 be its ONB. The adjoint space of H, denoted by H*, is a space of C-
linear continuous functionals on H and becomes a complex separable Hilbert
space with the following inner rpoduct:

(A1) O = 33<0,e,5Cn, e for 0, 7€ H.

H becomes a real separable Hilbert space with respect to the following inner
product,

(A.2) (%, ¥)r = Re(®, y)u -

We denote this real Hilbert space by Hz. Hj has a natural complex structure
J defined by Jx=\/—1x for x&H,. Then it holds that J?=—1, J is skew-
adjoint and {e,, Je,}»-1 is an ONB of Hy.

The adjoint space of Hp, denoted by H#%, is a space of R-linear continuous
functionals on Hj and becomes a real separable Hilbert space with respect to
the following inner product:

A3) (@, V= 2 Ko &> W, ed+<p, Jeud> <, Jeud}
for @,€H¥.

A complex structure J' on H% is defined by <{J'o@, x>=<e, Jx> for pEH%,
xeHy.

Let (H¥)'=Hy®C, the complexification of H¥. An inner product on (H%)’
is given by (p®2z, v Q) =(®, Y)W for @, yEHE, 2,weC, which is
extended by the R-linearlity in each argument. Then (H%)" becomes a complex
separable Hilbert space with respect to this inner product. (H%)" is naturally
regarded as a space of C-valued R-linear functionals on H by <{p®z, x>=
{@, xp2. Then its inner product is also given by

(A4 (& Mage = 33 KE &> T e+ <E Je> o Jedk  for £ nE(HEY.
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R-linear operator J' can be extended to a C-linear operator on (H%)" by
J(@®z2)=(J'9)@z. We note that J”’=—1 and J' is skew-adjoint on (H¥)".
Thus (H%)° is orthogonally decomposed as a sum of Ker(J'—+/'—1) and
Ker(J'++V/ —1), where Ker(J'—+/—1)=H*, the space of C-linear continuous

functionals on Hy and Ker(J'-+V/—1)=H*, the space of anti C-linear con-
tinuous functionals on Hy.

Complex conjugate on (H%)° is given by p®2=¢®2. Then {pQz, x>=
{p®z, x> for xE Hy, so if & H*, then & H* and vice versa.

We note difference between the inner product on H* induced from (H%)
and the original one. For «, nEH¥*,

(A5) (0, Marye = 346, > o, e>+<0, Jeud> S, Jeud)
= 233 {<6, e> <, e = 20, mhue -

Thus if {0,};-: is an ONB of H*, then {\/7 0., \/2
(H¥%)".

For an operator C on H*, we define an operator C on H* as follows:

(A.6) C¢, x> = <LC¢, x> for t€H* x=H,.

8,} 7.1 becomes an ONB of

Complex conjugate defines anti-unitary isomorphism from H* to H*. Thus
C and C are anti-uintarily isomorphic and if C is self-adjoint, then C is also
self-adjoint and they are isomorphic.

Appendix B Complex Gaussian random variables and Wick product

Let Z=X-+\/—1Y be a complex random variable with mean 0. We call
Z a complex Gaussian random variable if X and Y are independent and identical-
ly distributed Gaussian random variables. This is equivalent to stating that

E[exp(\/-:TRe(aZ))]:exp(—%l a|?E[ZZ)) for any aEC.

Complex random variables Z,:--Z, are called jointly complex Gaussian ran-
dom variables if for any a,---a,€C, o2+ +a,Z, becomes a complex Gaus-
sian random variable.

Proposition B.1. Let Z,, -, Z, W, -, W, be jointly complex Gaussian
random variables. Then it holds that

(B.1) E[Zy - Z W W, =0 if nkm,
(B.2) E[ZyZ W, W,] = 2 E[ZW,]--E[ZW,],

66,
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where &, denotes the permutation group on n leiters.

For jointly complex Gaussian random variables Z, «++, Z,, Wy, +++, W,, we
define their Wick product: Zy---Z,W,---W,: by induction with respect to (n, m)

as follows,

(B3)  :ZpeZ Wy W,

(BA)  :ZyZ Wy W
= Wy i Zyoo Z, Wy Wiy — hiE[Z,,W,,,] Zyeo Ty Zy Woee Wiy

where & denotes « is deleted. From this definition we can show that for jointly
complex Gaussian random variables Z;---Z,,

(BS) % : i’]...chZi”l...Z:’v: =mn; :Z’l’l...Z;!j“l...Z;‘uZ;”p..Zc'v: s
j
(B.6) 6 . '1‘1...Z:VZ1”1..-Z;”V: e mj :Z’l'l...Z’;vZ;”l...Z?j"‘l...Z:'v: ,

(B.7) E[:Z0 22t Z™:] =0
and moreover the following can be proven.

Proposition B.2. (a) For jointly complex Gaussian random wariables Z5,
1 1 1 2 2 2 2
b Zle), W(l )) °tty Wsnl)y Z(l )) "t Z(ﬂz)) W(l ), ty W(m;

(B.8) E[:Z" ZOWP WD 1 ZP ZOW P W] =0

if my==n, or my+=m,,
(b) For jointly complex Gaussian random variables Z,, -+, Z, such that (Z;, Z).?
=38, ; for 1<i,j<v

(B.9) (;Z'{l.--ngZ;"x-uZ;"v:, ;Zgl...25yZ§1...Z§v)Lz

= 8uy Oy 1, Omy by Oy iyt ooy Iy ooy
where (X, Y),2=E[X Y for complex random variables X and Y.

The proof is similar to the real case. See [5].
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