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1. Introduction

In the present work we prove the asymptotic completeness for 3-particle
Schrodinger operators with Stark effect. Considet a system of three particles
in a uniform electric field €€ R?. The energy Hamiltonian for sach a system
takes the form

'—g (A/ij“i‘ej <8, ri>)+ls§hgank(rj_1") R

where m;, e; and 7,ER?, 1<j <3, denote the mass, charge and position vector
of the j-th particle, while—e,<&,7,>, <, D being the usual scalar product in
the Euclidean space, is the energy of interaction with the electric field and the
real function 7, is the potential interaction between the j-th and k-th particles.

During the last decade, the spectral and scattering theory of many particles
in the absence of electric field has made major progress by many works [2,9,
11,13]. Among these works, Sigal-Soffer [13] first proved the asymptotic com-
pleteness of wave operators for N-particle scattering systems with a large class of
short-range potentials (see also Graf [4] and Tamura [14]). The spectral and
scattering theory of one(two)-particle systems in the presence of electric field
has been also studied by many authors [1,5,6,10,15], but there seems to be only
a few works on the scattering problem of many-particle systems. Korotyaev
[8] has proved the asymptotic completeness of 3-particle systms by making use
of the Faddeev equation method. We here prove the asymptotic completeness
of wave operators by a different method. The idea of proof, which is, in prin-
ciple, similar to that in [13], is based on the Mourre commutator method and
on the propagation estimate showing that the relative motion of particles is as-
ymptotically concentrated on classical trajectories. In particular, it is not neces-
sarily assumed that a 2-particle subsystem Hamiltonian with zero reduced charge
does not have a zero energy resonance. This improves slightly the results
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obtained by [8], although we have to impose a somewhat restrictive smooth-
ness assumption on the pair potentials V.

We proceed to the precise formulation of the obtained results. We begin
by removing the center-of-mass motion. For notational brevity, we take the
mass m; as

m, =1, 1<;<3,

]

and, for such a 3-particle system, we define the configuration space X in the
center-or-mass frame as

X ={r = (r, 15, 15) ER¥: é r; = O}.

et
Let
E = (.6, &€, e,£)ER3
and define Ex€X as
E; = projection of E onto X.

We also assume that

Ex+0.

Then the energy operator H of the 3-particle system under consideration in the
center-of-mass frame has the form

H= —A2—<Ex,r>+V  onI¥X),
where V(r) is defined by the sum of pair potentials

Vi)= 3> Vulr;—n).

1<j<k<3
We here make the following assumption on the pair potential V.

(V)e Vu(»), yER?, is a C*smooth real function and has the following
decaying property as | y|—>oo:

(V.0) Vi(»)=0(ly|~*) for some p>1/2,

(V.1) 85V u(y)=o(1), |e|=1,

(V.2) 5Vu(»)=0(1), |a|=2.

The constant p is used with the meaning ascribed above throughout the entire
discussion. Under assumption (V),, the operator H formally defined above
admits a unique self-adjoint realization in the space L% X). We denote by the
same notation H this self-adjoint realization.

Let

Py: L¥(X)—LA(X) = eigenprojection associated with H.
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Roughly speaking, the problem of asymptotic completeness which we consider
here is to determine completely the asymptotic states as —>--oo of the solu-
tion Yr(t)=exp(—itH ), to the Schrédinger equation

i9p=Hr, ,&Range(ld—Py).

Such asymptotic states are characterized by the ranges of wave operators.

To describe precisely the obtained results, we have to introduce several basic
notations and definitions in many-body scattering theory.

We use the letter a or ¢ to denote a cluster decomposition and denote by
#(a) the number of clusters in a. Throughout the discussion, we consider only
a cluster decomposition a with #(a)=2 or 3.

For a given 2-cluster decomposition a= {(j, k), [} with j<k, we define the
subspaces X and X, of X as follows:

X' ={reX:rj4r,= 0},
X,={r€X:r;=r4.

As is easily seen, the two subspaces X and X, are mutually orthogonal with
respect to the scalar porduct  , > and span X

X=X'®X,,
so that we may write L(X) as
LA(X) = LAX)QLAX,) .

Let z°: X—X* and =,: X—X, be the projections onto X and X, respectively.
For a generic vector x€ X, we write the projection of x onto X* and X, as x’=
x’x and x,=m,x, respectively, and also we define E® and E, as

Ea:'ﬂ'aEx, EazﬂaEX

for Ey defined above.
Next we introduce the cluster Hamiltonian H, with 2<#(a)<3. For a
2-cluster decomposition a= {(j, k), I}, we often use the notation V, to denote

Va(rj——r,,) = ij(rj—rk) .
According to this notation, we define H, by

H, — ——é—A—(EX, H>4+V,  onIXX).

On the space LY X)=L X“)®L%X,), the operator H, has the following de-
composition:

H,= H'QId+IdQT,,



138 ) H. Tamura

where
H = —A2—LE* x>+V, on LA(X?),
T,= —A|2—<E,, x,) on L*(X,).

If a={(1), (2), (3)} is a 3-cluster decomposition, we define the cluster Hamilto-
nian H, as the unperturbed Hamiltonian

H, = —%A—(Ex, ~

Now assume that E°=0 for some 2-cluster decomposition ¢. Then the
2-particle subsystem Hamiltonian H° associated with ¢ has in general bound
states and hence scattering channels corresponding to such bound states may
arise even in a 3-particle system in an electric field as in the case of the absence
of field. Thus the consideration is divided into the following two cases:

Case (i) E°=0 for any 2-cluster decomposition a,
Case (ii) E°‘=0 for some 2-cluster decomposition c.

By the asumption Ex=0, one can easily see that there exists at most one 2-
cluster decomposition ¢ with E‘=0.
Finally we introduce the wave operators. We define W§: LA X)—L*X) by

W = s— lim exp(itH) exp(—itH,) .
t>too

Let ¢ be as in case (ii) and let P*: L3 X“)—L*(X°) be the eigenprojection associat-
ed with H°. Then we further define W¥: L% X)—L%X) by

W = s— lim exp(itH) exp(—itH,)P°QId .
t>too

If the wave operators W7 and W¥ exist, then these operators can be easily shown
to have the following properties: (i) their ranges are closed in LX) and are
contained in Range (Id—Py); (ii) their ranges are mutually orthogonal.

We are now in a position to formulate the main theorem.

Theorem 1.1. (ASYMPTOTIC COMPLETENESS). Let the notaitons be as above.
Then one has the following statements.

(i) Consider the case (i). Assume (V), with p>>1/2. Then the wave opera-
tors Wi exist and are asympiotically complete

Range W7 = Range(ld—Py) .
(it) Consider the case (ii). Let the 2-cluster decomposition ¢ be as in case

(). Assume (V), with p>1. Then the wave operators Wi and W exist and
are asymptotically complete

Range Wi @ Range W7 = Range(ld—Py) .
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We conclude this section by making a brief comment on the above theorem.

REMARK 1.2. In statement (ii), the decay condition V,(y)=0O(|y| "), p>1,
for a==¢, ¢ being as in case (ii), is used to prove only the existence of the wave
operators WZ. If we assume that the eigenstate p(x")EL¥X°) associated with
the zero eigenvalue of H* has the decaying property

(141#°1) p(x’) ELHX")

for some »>1/2, then statement (ii) can be proved to remain true under the
weaker decay assumption V,(y)=0(|y|~*), p>1/2, for a=c.

ReEMARK 1.3. As stated above, the asymptotic completeness of 3-particle
systems in an electric field has been proved by Korotyaev [8]. Roughly speak-
ing, it is assumed in the work [8] that the 2-particle subsystem Hamiltonian H*
with zero reduced charge, ¢ being again as in case (ii), has no zero energy reson-
ance and that the pair potential V/, has the decaying property V (y)=0(|y|™)
for some »>2. Thus statement (ii) improves slightly the results obtained by
[8], although in the present work, the additional restrictive C2-smoothness as-
sumption is imposed on the pair potentials V .

2. Two-particle Stark Hamiltonian

In this section, we make a brief review on the known facts about the spe-
ctral properties of 2-particle Stark Hamiltonian.
We consider the 2-particle unperturbed Stark Hamiltonian

Tl = To“l_ Vl on LZ(R_?;)
in the center-of-mass frame, where

T,= —A/2  on L¥R})
and

V= —ex&o y> , EERE.

We write the coordinates y=(y,,y,)ER'X R? and, for notational brevity, we
take the electric field &,, as £,=(1, 0, 0), so that V;=—e,y,, €,+0.

We denote by p=(p,, p,) ER'X R? the coordinates dual to y=(y,,y,) and
by #(p) the Fourier transform of u(y)

i(p) = 2y | exp(—i<y, pIu(») dy ,

where the integration with no domain attached is taken over the whole space.
This abbreviation is used throughout. We also denote by (D), D=(D,, D,)=
(—18/0y,, —i8/0y,), the pseudodifferential operator with symbol @(p). Similar
notations ¢(D;) and @(D, ) are used for pseudodifferential operators with sym-
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bols @(p,) and @(p,), respectively.
Let @y(D,) be defined by

@o(Dy) = exp(ie; Di/6) .
Then it follows that
‘Po(Dl) (Df/2+ Vl) = Vl%(Dl)

and hence we have
(2.1) Ty = @o(D)*(| DLI* 24 V) po( Dy) -

where | D, |* denotes the negative Laplacian with respect to the variables y, €
R?. This relation implies the essential self-adjointness of the operator T} on
the Schwartz space S(R3) and also we see after a simple calculation (Perry [10])
that

(2.2) exp(—itT,) = exp(—ieit’[6) exp(—itV,) exp(—iet>D,[2) exp(—itTy) .
We now consider the 2-particle perturbed Stark Hamiltonian
Tz = Tl+ Vz on LZ(Ri) )

where the potential V,(y) is assumed to satisfy the assumption (V), with p>
1/2. The operator T is also essentially self-adjoint on S(R3). We denote by
the same notation 7, this self-adjoint realization in L¥R}). We here summarize
the spectral properies of T, obtained by the works [1, 5, 10, 15]. These spec-
tral properties have been verified under much weaker assumptions on V.

Proposition 2.1. Assume V,(y) to satisfy the assumption (V), with p>1/2.
Then the operator T, has following spectral properties.

(i) T, has no bound states.

(ii) For all \ER', the resolvents (T,—(N+-ix))™" have the boundary values
(T,—(A+10))™" as k—0, as an operator from the weighted L* space

LY(RS) = {u(y): 'L Ry)},  <yp = (1+y})",

into L2y(R3) for v>1/4.

(iii) The operators (T,—(A-+i0))"': LY(R)—L2y(R3), v>1/4, are locally
Hlder continuous in A E R'.

(iv) The wave operators

W=(T,, T;) = s— lim exp(itT5) exp(—itT})
t»too
exist and are asymptotically complete

Range W*(T,, T;) = LY R3).
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3. Resolvent estimate at high energies

In this section, we keep the same notations as in the previous section and
study the resolvent estimate at high energies of the 2-particle Stark Hamilto-
nian 7T5. The obtained result plays a basic role in proving the local commuta-
tor estimate (Mourre estimate) of the 3-particle Stark Hamiltonian H under con-
sideration.

The goal here is to prove the following result.

Proposition 3.1. For any v>1/4,
<> (To—(A£10)) 9>l = 0(1),  [N]—00,

where ||-|| denotes the operator norm when considered as an operator from LY R3)
into itself.

This proposition is obtained as an immediate consequence of the following

Proposition 3.2. For any y>1/4,
<> (T —(A£00)) <>l = o(1), [N|—eo.
In fact, by assumption (V), with p>>1/2, the operator
Vi Ti—(N£i0))™": LY(R})—>LY(RS)
is well-defined for v, 1/4<v<p/2, and also, by Proposition 3.2,
1d+V(Ti—(M£i0))™: Ly(R35)—Ly(R3)

is invertible for [A]|>1 large enough. The inverse is bounded uniformly in
[»|>1. Hence Proposition 3.1 follows immediately from the resolvent equa-
tion.

We now prove Proposition 3.2. The proof is rather long and is divided
into several steps.

Proof of Proposition 3.2. For brevity, we take the charge ¢, as e=1
and consider the-case only.

(i) We start with the spectral representation for 7; with e=1. Let
@o(D,) be again defied by

@o(Dy) = exp(iD3/6)
with g,=1. 'This is the convolution operator with the kernel
Yro(s) = 212 4i(2¥35), sER',

where A4i(s) is the Airy function
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Ai(s) = (2m)™ S exp(isq) exp(ig’|3) dg .

For later reference, we here note that the Airy function Ai(s) obeys the following
estimates:

(3.1) | 4i(s)| <C(1+[s])7,
(3-2) | (d/ds) Ai(s)] <C(A+|s] )",

and hence so does Jry(s).
Let $=,, .5, be the partial Fourier transformation in the variables y, €
R?. We define the unitary operator Jy: L(R3)—LRy; LY R3))) by
Jou(@, p1) = Jo(O)u(py) ,

where

(3.3) Jo(@u(p1) = S Yol | pLI*12—0—1) (Fu) (31, p1) @ -

By relation (2.1), this unitary operator gives the spectral representation for T
in the sense that T is transformed into the multiplication operator by @ in the
space L(Ry; L(R})));

JoTw(0, p,) = 6 X Jou(0, p.) -
(i) Set
vo(y.) = (1+1y.1%)7, €>0,
and define the operator 4,(0): L R3,)—L¥R},), 0ER’, by
A0) = (1d+(I D |*}2—6)*)%, k>0.

Lemma 3.3. Let the notations be as above. If 0<k<1/4 and 0<€<

1/2, then
14x@)vell <Co(14161)~

for any d, 0<d<<2KE, as an operator from LA(R?)) into itself.

Proof. To prove the lemma, it suffices to consider only 6 with > 1 large
enough.

Let E(w)=FE(u; |D,|*2), u>0, be the spectral resolution associated
with | D, |%2. We know that for y>1/2,

(3.4) lloy(d]dp)E(u)m|| = O(u™%), p—>oo,
as an operator from L(R2)) into itself. Let
T={uER": |p—0| <6}

and let I¥ be its complement in R!. We write
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vy Ay(0)'vy = vy Ay(OF E(T)+ A OYET))vy -

The norm of the first operator on the right side is of order O(0~%) as §— oo
and also the second one is represented as the integral

| a+u—0pvdidn) B du.

If 0<k<1/4, then we see by (3.4) that the norm of this operator is also of order
O(6%*). Hence

14(0)wll = O(67F) .
Thus, by interpolation, the lemma follows immediately. [J
(iif) Set
vse(¥) = o™Xy~
Let y(s), s€ R, be a bounded function with
[ <C(1+1s)7, &>0.
Define the operator Jy(0), ER', as

JoOyu(ps) = { (1 p.112—0—3,) (Fu) (3o £2) o

Lemma 3.4. Let the notations be as above. Let 1/4<<8<1/2 and 0<
e<1/2. If 1/2—8<k<1/4, then Jy(0)vse: LAR3)—L¥R},) is bounded and

1 Jo(@)rsell <Cu(1+161)~¢
for any d, 0<d<<(k+8—1/2)¢.

Proof. We evaluate the value | Jy(6)vsu(p,)|? by use of the Schwarz in-
equality. By assumption, we have

| JoOpsa IS CO+(| po 72—y 447 | |(Fwa) (93, 1)y
Hence
[ 170w dp <[ | 14uO s )12 dyidy,

with m=(k+8—1/2)/2,0<m<1/4, A,(0) being as in Lemma 3.3. Thus
Lemma 3.3 with 2=m completes the proof. []

Let Jy(0) be defined by (3.3). If we take 8 and & as 1/4<8<1/2 and
0<€<1/2, then it follows from Lemma 3.4 with k=1/4 that

(3.5) ”]o(e)Vae”SCd(l‘l‘ l al)-d
for any d, 0<d<<(§—1/4)&, as an operator from L¥R3) into LA Rj})).
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(iv) Set
a=|p.1*2—0—y,, B=|p.l’)2—c—p:.
Then, by (3.2), we have
[ro(@)—o(B)| <Cl10—o | (14 || 18] ).
On the other hand, by (3.1) ,we have

[ro(@)—ro(B) | L C((1+ | ) 4+(1+ | B) V).

Hence, by interpolation, it follows that for any »>0 small enough,
[¥ro(@) —vo(B)| < Cyl 0 —a | "{(1+ ] )71+ B] )™M
(L1814 a0y
Assume that
10—a | <(1+16])/2.
Then we have
[9o(@)—do(B) | S Co | 0—a | (Yra(@t; 0)+4r4(8; 9))

with

Vol 8) = (14 [1)7 07004 (14 6] YP4(1+ | s 0=,

Let & and & be again as above. Take » so small that
0<n<2(8—1/4)€/(14-€).

Then Lemma 3.4 shows that if |§—a| <(1410])/2,

(3.6) I(Jo(0)—Jo(@))sel < Cagl 6 —o | "(1+161)~

for any d, 0<d<<(§—1/4)&/2, as an operator from L%(R3) into LY R3)).

(v) 'The proof of the proposition is completed in this step.

Let v>1/4 be as in the proposition. We assume without loss of generality
that 1/4<v<1and decompose 7 into y=258+& with 1/4<<8<<1/2 and 0<<€<1/2.
For such a pair (8, £), we take 5 as above and define the operator I,(6): L*(R})—
LY R3), 6= R', by

Iy(0) = vse Jo(0)* Jo(O)vse -
By (3.5) and (3.6), this operator has the following properties:

IL(OI<Ca(1+161)7,
I(0)—Iy(o)| < Cogl 0—o | "(1+161) 7,

for any d, 0<d<<(8—1/4)€/2, o being as above.
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Recall the spectral representation for T} in step (i). Then we have

1
——I(8)d6 .
O—\—ik 0)

vao( Ty —A—ik) " lpy, = S
Hence the Privalov lemma proves that for d>>0 as aobve,
llge Ty—A—1k)wgell = O(IN] %), |N|—>00,
uniformly in #, 0<#<1. This completes the proof of the proposition. []

For later reference, we here mention one application of Proposition 3.1.
Let AER' be fixed. We take a non-negative smooth function f,& C3(R"),
0< f;<1, with a small support around 1

supp fsC {sER": |s—n| <8}
for >0 small enough.

Corollary 3.5. Let the notations be as above. Let Vy(y), yERS, be a real-
valued bounded function vamishing at infinity. Then, as an operator from LY R})
into trself,

1Vafas(@+To)ll = o(1), &0,
uniformly in 0 € R".

Proof. It suffices to prove the corollary for ¥V such that Vy(y)=0(|y|™),
vy>1/4, as | y| —>oo.

Let E(u)=E(u; T;), nER?, be the spectral resolution associated with T5.
Consider the operator V,fy(0+ T,)?V;. 'This operator is represented as

Vaf0+ TfVs = | 0+ Vi(didu) BV dis.
By Proposition 3.1,
IVidjdu)E(u)Vill<C
for C independent of u. 'This proves that
IV fo O+ To)IE = IV s+ TofVell = o(1), 8-0.

Hence the proof is complete. []

4., Commutator calculus

In this seation, we develope a commutator calculus, which is also used as
a basic tool to prove the local commutator estimate of the 3-particle Stark Ha-
miltonian H.
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We begin by fixing some notations. First we denote by B(X) the class of
bounded operators acting on LX)
B(X) = {B: L(X)—L¥X) is a bounded operator}.
Next we introduce the function class Q,(X), kER', by
X)) = {f(x) €C=(X): |85 f(x) | S ColaD*™'*1}.

For g,(x)€04(X), we denote by g, the miltiplication operator by g,(x). In later
application, we often use g, as the multiplication operator by <{x)*EQy(X).

The next lemma is easy to prove. In fact, for the proof, we have only to
note that

(4.1) G-V H+i) € B(X).

Lemma 4.1. Assume that 0<k<1/2. Then one has :
() g-(H+1)" € B(X).
(it) The commutator [(H-+1)7", q,]q12- € B(X).

Lemma 4.2. Assume that 0<k<1/2. Then one has:
(i) [exp(itH), ¢:] (H+7)" € B(X)

for all tE R' and the operator norm obeys the bound O(|t|) as |t|—>oo.
(il) (H+7) '[exp(itH), gl -s(H+7) " € B(X)

for all t€ R and the operator norm obeys the bound O(|t|?) as |t|—>oo.

Proof. (i) Let
To=—A2  on LXX).
The operator under consideration is written as
S: exp(i(t—s)HYi[ T, gs] (H+i)™" exp(isH) ds .

Hence, this, together with (4.1), proves (i).
(i) (ii) is also proved similarly. We can write the operator under consider-
ation as

[, exp(itt—s)H) (H+i) [T, qilgun-s(H+i)™ explisH) ds
+{! expe—s) H) (i) 1T, gl lexp ), qums) (i)™ d

The first operator is bounded by (4.1) and the second one is also bounded by
(4.1) and (i). 'This proves (ii). [J

Lemma 4.3. Let g=Cy(R"). Assume that 0<k<1/2. Then
4-8(H)@: € B(X) .



3-PARTICLE STARK HAMILTONIAN 147

Proof. Let g(t), t€R", be the Fourier transformation of g. Then we have
0-+18(H)gs = (22)™ | £(2)1g0 exp(itH)-+gilexp(itH), q.]} di
Hence, by Lemma 4.2,
4-sg(H)q(H+4)" € B(X),
which, together with Lemma 4.1, yields
g-+8(H)(H+1)" g, €B(X) .
This completes the proof. []
Lemma 4.4. Let g C7(RY). Assume that 0<k<1/2. Then
[&(H), ¢i)gre-1 € B(X) -
Proof. We write
[2(H), 4] = (22) | £(0) exp(ieH), gl dt .

Hence, by Lemma 4.2,

(4.2) (H+14)"'[g(H), ¢lqip-i(H+1)' € B(X) .
We assert that
(4.3) (H+1)"'[5(H), ] (H+4) " g1+ €EB(X) -

To prove this we write the above operator as

(H+2)"' [g(H), galgre-(H+2) ™"
+(HA+4)7 (e(H) g —aug(H) [(HA4) 7", q2-4] -

The first operator is bounded by (4.2). Since
Gl(HA9)™ qi-s] EB(X)

by Lemma 4.1 the second operator is also bounded by Lemma 4.3. Thus,
assertion (4.3) is verified.
We now write

g(H) = (H+4)™ f(H)(H+1)™
with feCg(R"). Then, after a simple commutator calculation, we see by (4.3)

and by Lemmas 4.1 and 4.3 that the operator [g(H), ¢;]¢i2-+ In question is
bounded. This completes the proof. []

Let H, be the cluster Hamiltonian associated with the 2-cluster decomposi-
tion a. We now take g, € QJy(X) to satisfy that on the support of g, the in-
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tercluster potential I,(x) behaves like
(4.4) IL(x)=H—H,=V—-V,=0(|x|™"), |x|—>oc.

Lemma 4.5. Assume qo(x)EQy(X) to satisfy the above condition. Let
ZECT(RY). Then

(8(H)—2(Ho))qout1e € B(X) -
Proof. First, by Lemma 4.1, we can easily see that
(4:5) (H+9)" —(He41) ") o1 € B(X) -
We write the difference g(H)—g(H,) as the integral
(2m)~2 S 200 {S' expisH)il, exp(i(t—s)H,) ds} dt .
o ‘

Hence, we have by Lemma 4.2 and (4.4) that

(g(H)“g(Ha))qmql/Z(Ha+i)—1E-@(X) ’
which implies that
(46) (8(H)—g(HL)) (Ho+)" qutin € B(X)
We now write g(H)=f(H)(H-1i)™! with feC§(R"); similarly for g(H,). Then
the lemma follows from (4.5) and (4.6). [J

5. Local commutator estimate

The aim of tbis section is to prove the local commutator estimate for the 3—
particle Stark Hamiltonian H. Such an estimate is called the Mourre estimate,
which has been played a basic role in the spectral and scattering theory for
many-particle systems in the absence of electric fields ([3,9,11,13]).

Let Ex=0 be as in section 1. We write E as

EXZEOw, EO:"IEX|>0’
for w &Sy, Sy being the unit sphere in X. We also write x€ X as
X = Zﬂ)‘l’“zJ_

with zER' and 2z, €I1,, I, being the hyperplane orthogonal to w. With these
notations, the Hamiltonian H under consideration is represented as

H= —A2—Eg+V.
We further define the operator 4, as
(5.1 A4, = <o, (1/1)V> .
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Proposition 5.1. Assume (V), with p>1/2. Let the notations be as above.
Fix NE R arbitrarily. Let f € C7(R") be a non-negative smooth function support-
ed in a small neighborhood around \. Then, for any >0 small enough, one can
take the support of f around N so small that for a compact operator K=Kj acting
on LX),

fH)iH, 4] f(H) = (Ey—8) fiH) +K
in the form sense.

REMARK 5.2. As is seen from the proof below, this proposition remains
true without assuming (V.2).

Before proving the proposition, we here introduce a smooth non-negative
partition of unity, {j,(x)}, 0<7,<1, over X such that: (5.1)

S =1 onX,

where a ranges over all the cluster decompositions with 2<#(2)<3. (;.2)
J.€OQW(X). (j.3) On the support of j,,

I,=V-V,=0]|(x|""), [x]|—00 .
If, in particular, #(a)=3, then V=0(|x|~") on the support of j,.

Proof of Proposition 5.1. Let $,(X) stand for the class of compact op-
erators acting on LA X). Throughout the proof, we denote by the same notation
K compact operators.

(i) By a simple calculation, we have

i[H, A]] = E,+i[V, 4] .
Let {j,} be the partition of unity introduced above. Then it follows that
SE)V, A fH) = 33 fH)jilVe A]juf(H)+K.
Thus it suffices to prove that for a 2-cluster decomposition q,
(5.2) FH)jiVe, A1l juf(H) 2 —8f(H}+K .
(i) The next lemma follows immediately from Lemmas 4.4 and 4.5.

Lemma 5.3. Let gC7(R"). Then one has:

(i) [g(H), j ] €EB(X),

(i) Jjo(8(H)—g(H,)) € By(X).

Recall the notation o’=z'0w. Let A{=<{w’ (1/i)V,>. Then we have
V., A]=[V., A%]. We now write f(H)=f(H)g(H) with g€CF(R'). We may
assume that g is also supported in a small neighborhood around NER'. By
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Lemma 5.3, we have
JH)ja[Vay Ailja f(H) = f(H)jag(H,)i [V, Aflg(Ho)ja f(H)+K .

(iif) Suppose case (i). If E,==,Ex=0, then we make use of the spectral
representation for the 2-particle Stark Hamiltonian

T,= —A2—<E,, x,> on L*(X,)

to obtain that the operator g(H,):[V,, Af]g(H,) is represented as the direct inte-
gral

(5.3) S Bg(0-+Hi[V,, ASlg(60+H") db .

We apply Corollary 3.5 to the above direct integral. By assumption (V.1),
[V., Af]=0(1), |x*| > oo, as a function of the x° variables. Hence we can take
the support of g so small that

(54) g(Ha)l[Vaa Af]g(Ha)Z—S

This proves (5.2) in the case that E,3=0. If E,=0, then we make use of the Fou-
rier transformation in the x, variables to obtain a direct integral representation
similar to (5.3). By Corollary 3.5 again, we can prove (5.4). Thus (5.2) is
verified if case (i) is assumed.

(iv) Next we deal with case (ii). Let the 2-cluster decomposition ¢ be as
in case (ii). Then »°=0 and hence [V, 4,]=[V,, A{]=0. This proves (5.2)
for the 2-cluster decomposition ¢. If a==c, then the same argument as in step
(iii) applies and (5.2) can be also verified in this case. At any case, we can prove

(5.2) and the proof is completed. []

6. Spectral properties of 3-particle Stark Hamiltonian

We can prove the folloiwng spectral properties of H.

Proposition 6.1. Assume (V), with p>1/2. Then one has :

(1) The set a,(H) of point spectrum of H is discrete with possible accumulat-
ing points - co. '

(i) For nER\o,(H),

sup, K>~ (H—(notin) <>~ < C

for v>1/4, as an operator from L*X) into itself, where the constant C can be
taken locally uniformly in x € R"\a,(H).

The above proposition can be obtained as a consequnece of Proposition
5.1 in the same way as in [9, 11]. In particular, statement (ii) follows, if we
take account fo the facts that by assumption (V.2), the double commutator



3-PARTICLE S1ARK HAMILTONIAN 151

[[V, 4], 4;] is bounded on L*X) and that ¢.,,A4,(H-+7)™" is also bounded on
LXX). The assumption (V.2) is ued for the first time in proving Proposition
6.1.

REMARK 6.2. The same statements as in Proposition 6.1 remain true for
the cluster Hamiltonian H,. In this case, o,(H,)=0.

REMARK 6.3. We can prove the non-existence of bound states, o,(H)=0,
under assumption (V), with p>3/4. The detailed proof of this result will be
discussed elsewhere.

7. Propagation estimate

Throughout this section, (V), with p>1/2 is assumed to be satisfied and
also we assume, without loss of generality, that 1/2<p<1. The next result

can be derived from Proposition 6.1 as a consequence of the smoothness theorem
due to Kato [7].

Proposition 7.1.  Assume’(V), with p>>1/2. Then one has :

(i) Let yr=Range(Id—Py), Py being the eigenprojection of H. Then exp
(—2tH)yr converges weakly to zero as t— L oo.

(if) Let A be an open bounded interval with ANo,(H)=0, A being the
closure of A. Then the multiplication operator by <{x>~", v>1/4, is H-smooth
on A;

[ 11<a>" exp(—ieH) B2 de < Cllbllacn

where E(A)=E(A: H) denotes the spectral resolution onto A of H.
The aim here is to prove the (non-) propogation estimate for the propagator
exp(—itH), which shows that the relative motion of particles is asymptotically
concentrated on classical trajectories. As is easily seen, charged classical parti-

cles go to infinity along the direction of electric field. The result is formulated
as follows.

Proposition 7.2. Assume (V), with p>1/2. Let w&Sy be again the
direction of electric field and let A be as in Proposition 7.1. Suppose that a non-
negative function g, Qy(X) vanishes in a small coninal neighborhood of w; |x|w
€ supp qo for |x| >1. Then the multiplication operator by qx>~"* is H-smooth
on A.

Let A4, be defined by (5.1). We define 4, as
Ay = <y W AL apT

Then we have the following
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Proposition 7.3. Assume (V), with p>1/2. Write again x€X as x=
2w+2, with 2, €I, and Ex as Ex=E.w with Ey=|Ex|>0. Fix A€ R\g,(H)
arbitrarily and take a non-negative function f & Cg(R") to be supported in a small
neighborhood around \; supp f Noy(H)=@. Then one can take the support of f
so small that for some bounded operator BE B(X),

fH)IH, A f(H)
z% FCH) <y oy f(H )+ f(H) xd~*2B {y=*12f(H)
in the form sens., where

Go(x) = (14 212+ | 2132 —2)[<x> .

The propagation estimate can be obtained as an immediate consequence
of Propositions 7.1 and 7.3. In fact, since A,(H~+:)™': LA(X)—L*X) is bound-

ed, Proposition 7.2 follows from the relation

% 114, exp(—itH) f(HWI e
= {f(H)i[H, 4] f(H) exp(—itH)r, exp(—itH )12, -

Proof of Proposition 7.3. 'The proof is divided into several steps. Throu-
ghout the proof, we denote by B bounded operators on LX) and by Q, the
multiplication operator by <{x>*. We also again denote by ¢, the multiplication
operator by g,(x) € Ox(X).

(i) We start by calculating the commutator

i[H, 4;] = i[—A[2, A,]+i[—Ewz, 4,)+i[V, 4,] .
By a simple calculation, the second operator on the right side is equal to
(7.1) i[—Ew, 4] = Q- 1EeQ-1ps -
(ii) Since
(A, Q-] = —(1/2)Q-54 Dot-q-9n4
with
Dy = <x[<x>, (1/)V.>

the first operator takes the form

i[—A[2, 4;] = —%9—3/4(A1D0+D3'<A1)Q—3/4

+¢-sn(A1+Do+D§)g -5+ G141 -

The next lemma is easy to prove.
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Lemma 7.4.
A,Dy+DFA, < —2A
in the form sense.

If we write
A2 = —H—Ez-+V,
then the lemma above shows that
i[—A[2, A) = —Q-3uHQ 34— Q-3nEe2Q -3
+Q—3/4VQ-3/4+4-5/4(A1+D0+D3‘)Q—514+(1—14/4 .

We analyze the first and fourth operators on the right side. If 0<k<1/2, then
it follows from (4.1) and Lemma 4.1 that

(7.2) @-4-12V(H+) 7' EB(X) .
Write f(H)=f(H)g(H)(H+1:)™ with g&C7(R") and calculate
HQ_y(H+10)7" = Qg —iQ-an(H+1) " +[—A[2, Q-gd] (H+4)™"

Then, by (7.2), we make use of the commutator calculus developed in section 4
to obtain that

Que8(H)(HA+1)" Q-3 HQ-y(H+1) " g(H) 01, € B(X) .

Similarly we obtain that

O128(H) (HA+2)""q-s1s( A1+ Do+ D§)qsp(H+1) " g(H) 01, EB(X) .
Thus we have

f(H)i[—A[2, 4] f(H)
2 —f(H)Q-sn B Q-3 f(H)+f(H)Q-1.BQ -1 f(H) -

(iii) Let g, be as in the proposition. Recall the relation (7.1). We cal-
culate the difference E,—Q_,,E2Q_,), as

Ey—Q-1pERQ-11p = Eo -
Thus, by (7.1) and (7.3), we have
JH) A2, Ay]+-i[—Eoz, 4,]) f(H)
2 Eof(H)Q-1s@oQ-u f(H) +f(H)Q-1pBQ -1 f(H) -

(iv) We anelyze the commutator [V, 4;]. Let {j,} be the partition of unity
introduced in section 5. We can construct {j,} to have the additional property
that for all cluster decompositions a with 2<#(a)<3,

(7.3)

(7.4)
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(7.5) V.J. vanishes in a conical neighborhood of w.

By the definition of A,, it follows that
i[V’ Az] = ; Q-mjai[V’ Al]faQ—lM .

We again write f(H)=f(H)g(H)(H+1)™. If #(a)=3, then we again make use
of (7.2) and of the commutator calculus to obtain that

Qore8(H)(HA1) Q1 ol V, Al jaQ-1(H+4) 7' g(H) Q5. € B(X)
and also, if #(a)=2, then

OQorg(H)(H+4)"'01pjalley A1]joQ-ya(HA+-1)"'g(H) Qo € B(X),

where I,=V —V, is the intercluster potential associated with a. Hence we have

JH)V, 4,] f(H)
= 2] f(H)Q"leai[Va) Af]jaQ-1/4f(H)+f(H)Q-P/2BQ-p/zf(H) .

$a)=2

(v) We first deal with case (i). Write f(H)=f(H)g(H) with §E€C§(R").
The function £ i> also assumed to be supported in a small neigborhood around
. By interpolation, it follows from Lemmas 4.3, 4.4 and 4.5 that

Ous(8(H)—E(H.)) jeQin EB(X), Qnl8(Ho), ju] QunEB(X) .

Hence we have

E(H)O-14Jat [V, A1]jaQ-118(H)
= Q—l/4jng~(Hl)i[Vm Atll]g(Ha)jaQ—lﬂ"*"Q—l/ZBQ—l/Z .

We now apply the same argument as used in the proof of Proposition 5.1 to the
first operatot on the right side. We can take the support of § so small that

f(H)Q-mjai[Vm A'f] jaQ-l/4f(H)
> —3f(H)Q-11jeQ-1u f(H)+f(H)Q-1,BO- 1 f(H)

for §, 0<8<K 1, small enough. By property (7.5), we may assume that j, with
#(a)=2 vanishes in a small conical neighborhood of w. Hence, by (7.4), the
proposition is verified in case (1).

Next we consider the case (ii). Let ¢ be as in case (ii). Then [V, 4{]=0
and hence the same arguments as above prove the proposition in this case also.
Thus the proof is now completed. [

8. Asymptotic clustering

Throughout this section, we again assume (V), with p>>1/2 to be satisfied.
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Let A be an open bounded interval avoiding o,(H). We take g and g,€C§(A)
to satisfy the relation gog=g. Let {j,} be again the partition of unity with the
additional property (7.5). Set 7,(x)=j,(¥)>. Then we have

exp(itH)g(H)r
= 3} exp(—itH,) {g(H,) exp(itH,)j, exp(—itH)g(H)y} +o(1)

as t—>oo, where o(1) denotes a term converging strongly to zero in LX) as
t—>+4oco. The relation above follows readily from the facts that exp(—itH)
g(H)yr converges weakly to zero as #—>-oo and that (g,(H)—go(H,))j, and
[go(H,), 7,] are both compact operators on L(X). We rewrite the term with
brackets in the integral form

SolHo) T+ | g(H) exp(HL)AH, Fo—7 HY exp(—itH)g(H) ds .
The operator H,j,—7, H in the above integral is expressed as
H,j,—j.H = [—A[2, j.]— 7ol
Since the first operator on the right side is represented in the form
[—A/2, j.] = (Hi+0){0:Q-14BO-1qo+ Q-1eBO-1 o} (H+-4)

for some g, Qy(X) having the property as in Proposition 7.2 and since the
second operator satisfies I,=O(| x| ") as |x| —co on the suppoit of j,, it follows
from Propositions 7.1 and 7.2 that the above integral converges strongly as
t—+4co. Thus we can prove that there exist 47 € LX) such that

(8.1) exp(—itH)g(H)r = 33 exp(—itH 2z +o(1), t—>too.

When the relation as above holds, the Hamiltonian H under consideration is
said to be asymptotically clustering.

9. Existence of wave operators

In this seation we prove the existence of wave operators.
Proposition 9.1. Consider the case (i). Assume that
V) <CA+19D), p>1j2.
for all 2-clusetr decompositions a. Then the wave operators W exist
Wi = s_;l.igl exp(itH) exp(—itH,) .

Proof. We consider the 4+ case only. To prove the existence of W7, it
suffices to show that as a function of ¢,
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9.1) [V exp(—itHy)oll 2x) E L1, o)
for @ in some dense set of LA X). As such a dense set, we take
9 ={peS(X): PECF(X")},

where X’ stands for the space dual to X. Fix one of 2-cluster decompositions
and denote it by a={(j, k), [}. As coordinates over X, we take x=(x", x,) €
X°@X, associated with a and write the pair potential V, as V,(r,—r,)=U(x").
To prove (9.1), we consider the integral

Ju(t) = S S | U(x") exp(—itHo)p(x°, x,) | dx* dx,
for p€9. By relation (2.2), it follows that
| exp(—itHo)p(s", 3)| = |exp(—itTo)p(a’— BC[2, x,—E,[2)|

with To=—A/2. Here it should be noted that E°#0 by assumption. By a
change of variables, we have

Tt = | | 106+ Bo12) exp(—it T)p(s®, 5,) 12 vt d,

Set

@i(x) = exp(—itTy) p(x, x,), t>1.
Then
9.2) | i) < Ct

and also, if
supp PC{pEX’: |p| <R}

for some R, it follows that

(9.3) | ()| <Cy(1+24|x])7Y, N>1,
for |x]>2Rt. We decompose the integral J,(f) into two parts
Jo(t) = S SIxI<2Rt o g S S|x|>2Rt o A

By (9.3), the second integral on the right side is of order O(t™"), N> 1, as t—co.
Since E°+0 and since U obeys the bound U(x*)=O0(|x°| ") as |x| =00, we
have by (9.2) that the first integral is of order O(z*°). This proves (9.1) and
completes the proof. []

Proposition 9.2. Consider the case (ii). Let ¢ be as in case (ii). Assume
that for a=+c,

Ve <CA+1y1)* p>1/2,
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and that
[V()I<CA+1y1)"" p>1.

Then the wave operators W exist.

Proof. Let 9 be as in the proof of Proposition 9.1. If aZ=c, we have
already shown that

”Va eXP(_itHo)fan’(x)eLl(l, °°)

for peg. If V, has the decaying property as in the proposition, we can pvove
this also for V, in the same way as above. This completes the proof. []

Proposition 9.3. Consider the case (ii). Let ¢ be as in case (ii). Assume
that

V() SCA+131) p>1,

for all 2-cluster decompositions a. Then the wave operators W exist
W7 = s— lim exp(itH) exp(—itH,)P°®Id .
t>too

We omit the proof. The proof is based on the L?—L? estimate for the free
propagator exp(i2A/2) and relation (2.2) enables us to prove the proposition
in the same way as in the case of absence of electric fields (Reed-Simon [12]).
Similarly we can also prove the existence of the wave operators W7 under the
zssumptions stated in Remark 1.2.

10. Asymptotic completeness

In this seation we prove the asymptotic completeness of wave operators and
complete the proof of the main theorem.

For brevity, we deal with case (ii) only. A similar argument applies to case
(i) also. The relation which we have to prove is

Range W§@Range W7 = Range (Id—Py) .

We further prove this for the + case only. The inclusion relation C is obvi-
ous by the intertwining property of wave operators. Let

D = {g(H)WEL(X): gECF(RY), supp g Nay(H) = B}
Then the set 9 is dense in Range (Id—Py). Thus we have only to show that
(10.1) 9DcRange Wi PRange W,

because Range W§ and Range W3 are both closed. Let g(HWE9. Then,
by the asymptotic clustering property (8.1), there exist 4r, € L* X) such that
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exp(—utH)g(HWr = ;} exp(—itH,r,+0(1), t—oo.

We approximate J», with #(a)=2 as
Y, ~ 3 0°Q0,

finite

with 0°€L*(X°®) and §,€L¥X,). If azc, then it follows from Proposition
2.1 that

exp(—itH,)0°®0, = exp(—itHy)p'®0,+0(1), t—oo,
for some p*€LA(X®). If a=c, then

exp(—itH,)§°'®0,
= exp(—itH,)P°0°®Q0,+exp(—itH))p'®0,+o(l), t—>oo,

for some @' €L%(X‘). This relation follows from the asymptotic completeness
of 2-particle Schrodinger operators —A-+V with short-range potentials V.
Thus, for any £>0 small enough, there exist ry, and 4r, € L* X) such that

lim sup | exp(—itH) g(HL
—exp(—itHo)yro.—exp(—itH,) (P* @ Id )l |2 <€
and hence, by Propositions 9.2 and 9.3,
Ng(H N —WAroe— Wil 120 <€ -

This proves (10.1) and completes the proof of the main theorem.
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