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0. Introduction

In [13] Ohkawa introduced the notion of the injective hull of spaces and
spectra with respect to homology and proved the existence theorem [13, The-
orem 1]. Following [13, Definition 1 i)] we call a CW-spectrum W E-injective
if any map f: X—Y induces an epimorphism f*: [Y, W]—[X, W] whenever
fx: ExX—E.Y is a monomorphism, for a fixed CW-spectrum E. A CW-
spectrum W is Ey-injective if and only if the homomorphism «g:[X, W]—
Hom(EyX, ExW) defined by xz(f)=fs is a monomorphism for any CW-
spectrum X (see [13, Proposition 7]). In this note we will be concerned about
E«-injective spectra.

For each CW-spectrum X, E4X is regarded as a module over the algebra
E*E of cohomology operations. Under the restriction that E is finite, Ohkawa
[13, Theorem 3 i) and iii)] gave the following characterization.

Theorem 0. Assume that a CW-spectrum E is finite. Then the following
conditions are equivalent :
1) W is an Ey-injective spectrum.
il) W is an Ey-local spectrum such that ExW is injective as an E* E-module.
iil) #g: [X, W]—=Homgxz(Ex X, ExW)is an isomorphism for any CW-spectrum X.

According to [2, Proposition III1.13.4] (or see [1]), the well known ring
spectra E=S, HZ|p, MO, MU, MSp, KU and KO satisfy some of nice pro-
perties as stated in the beginning of §2. For example, E4E becomes flat as an
Ey-module, and then E4X may be regarded as a comodule over the coalgebra
E4E. In §2 we will prove the following result (Theorem 2.1) for such a nice
ring spectrum E, corresponding to Theorem 0 for a finite spectrum E.

Theorem 1. Let E be a ring spectrum such that ExE is flat as an Ey-mo-
dule. Assume that E satisfies the property (K') stated in the beginning of §2.
Then the following conditions are equivalent :
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1) W is an Ey-injective spectrum.
i) Wis an Ey-local spectrum such that ExW is injective as an EyxE-comodule.
i) xg: [X, W]—Homyg,z(ExX, ExW) is an isomorphism for any CW-spectrum X.

In §3 we will next study the EGy-injectivity where EG denotes the CW-
spectrum E A SG with coefficients in G. There exists a partial order among
CW-spectra by writing <E>;<<F); when each Eg-injective spectrum is Fi-
injective. In order to decide <EG>; =<EG">; we will find a certain relation
between the abelian groups G and G’ (Theorem 3.5). Moreover we will
prove the following complete result (Theoiem 3.9), especially when E=H “the
Eilenberg-MacLane spectrum”.

Theorem 2. A CW-spectrum W is HGy-injective if and only if it is a
generalized Eilenberg-MacLane spectrum \/3"HA, in which A, is a direct sum-

mand of Hom(G, D,) with D, divisible.

When E=KU *“the complex K-spectrum”, we will finally show a partial
result (Theorem 3.11) corresponding to Theorem 2.

In this note we will work in the stable homotopy category of CW-spectra.
We mean by a ring spectrum E an associative ring spectrum with unit, and by
an E-module spectrum F an associative (left) E-module spectrum. If E or F is
not necessarily assumed to be associative, then it is called a quasi ring spectrum
or a quasi E-module spectrum.

1. The Anderson dual spectra VE(D)

1.1. Let us fix a CW-spectrum E. Given CW-spectra X and Y a map
f: X—Y is said to be Ey-monic if it induces a monomorphism fy: Ex X —E,Y.
Following [13, Definition 1 i)] (cf. [8, §9]) we call a CW-spectrum W an Ey-
injective spectrum if any Ey-monic map f: X —Y induces always an epimorphism
f*: Y, W]—[X, W]. For any family {WW,} of CW-spectra it is obvious by
definition that

(1.1) each CW-spectrum W, is Ey-injective if and only if the direct product
TIW, is Ex-injective.
A

Consider the homomorphism «z: [X, W]—Hom(E4«X, E4W) assigning to
each map f: X—W its induced homomorphism fy: ExX —EW. Then the
following result involving «; can be easily verified.

Proposition 1.1. ([13, Proposition 7]). A CW-spectrum W is Ey-injec-
tive if and only if kg: [X, W]—Hom (E4xX, ExW) is a monomorphism for any CW-
spectrum X.
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A CW-spectrum W is said to be Ey-local (see [6], [7] or [14]) if [X, W]=
0 for all CW-spectra X with E4 X=0. As an immediate result we have

Corollary 1.2. If a CW-spectrum W is Ex-injective, then it is an Ey-local
spectrum.

For any abelian group G we denote by SG the Moore spectrum of type
G. Given a CW-spectrum E the corresponding spectrum with coefficients in
G is defined by EG=E A SG. Inthe G=Q case we can particularly show

Lemma 1.3. Assume that EQ= pt. Then a CW-spectrum W is EQ y-injec-
tive if and only if W=WQ.

Proof. We may regard as E=S, the sphere spectrum. The “if”’ part is
easily verified since any SQy-monic map f: X —Y induces an epimorphism f*:
[Y, WQ]—[X, WQ]. On the other hand, the “only if”’ part is immediate from
Corollary 1.2.

We mean by a quasi ring spectrum E a ring spectrum with unit which is
not necessarily associative and by a quast E-module spectrum F a (left) E-module
spectrum which is not necessarily associative. Notice that any quasi E-module

spectrum F is always Ey-local when E is a quasi ring spectrum (see [2, Lemma
I11.13.1] or [14, Proposition 1.17]).

Lemma 1.4. Let E be a quasi ring spectrum and F be a quasi E-module
spectrum. If a CW-spectrum W is Fy-injective, then it is a quasi E-module spec-
trum. In particular, any EGy-injective spectrum W is always a quasi E-module
spectrum.

Proof. Since the unit ¢: S—E induces a monomorphism (¢ p 1)4: FsW—
Fy(E A W), there exists a map u: E A W—W satisfying u(c o 1)=1, where 1 de-
notes the identity map.

1.2. Let E be a fixed CW-spectrum and D={D,} be a graded divisible
abelian group. By Representability theorem there exists a CW-spectrum
VE(D)=TI="VE(D,) which is related to E and D by a natural isomorphism

(1.2) k5,0 [X, VE(D)] ~ Hom(ExX, D) = [[Hom(E,X, D,)

for any CW-spectrum X. Setting Az p==xz p (1) EHom (E«VE(D), D), the natu-
ral isomorphism «g , assigns to each map f: X —VE(D) the composite Mg pfx:
EyX —EVE(D)—D.
For any graded abelian group A={4,} we choose an injective resolution
d
0— A— D — D' — 0 and denote by VE(A)=I;IZ"VE(A,,) the fiber of the in-
duced map dy: VE(D)—VE(D'). Then we obtain a universal coefficient se-
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quence
0 — Ext(Ex-.X, 4) — [X, VE(A)] "5* Hom (ExX, 4) — 0

for any CW-spectrum X. As,is easily seen [15, I and II], VE(4) is indepen-
dent of the choice of an injective resolution of 4 and it is just the function spec-
trum F(E, VS(4))=IIZ"F(E, VS(4,)). We call VE(A) the Anderson dual spec-

trum of E with coefficients in A={A4,} (cf. [4]).

Using the natural isomorphism «g , of (1.2) we see immediately that
(1.3) every Anderson dual spectrum VE(D)= I:'IE"VE(D,,) is Ex-injective if
D={D,} is divisible.

By virtue of (1.3) we can show the enough Ey-injectivity of the stable ho-
motopy category of CW-spectra (cf. [13, Proposition 4]).

Proposition 1.5. For any CW-spectrum X there exists an Anderson dual
spectrum VE(D) with D={D,} divisible, which is Ey-injective, and an Ey-monic
map f: X >VE(D).

Proof. Choose a graded divisible abelian gioup D={D,} so that E,X is
embedded into D, for each #n. Pick up a map f: X —-VE(D) such that «z 5(f):

Ey«X—D is just the embedding of E4X into D. Since x p(f) is decomposed
into the composite Az p f«, the map f: X -VE(D) is certainly E-monic.

More generally we will next deal with the CW-spectrum EG with coef-
ficients in G. For any divisible abelian group D, we set B,=Hom(G, D,).
Take a free resolution 0—@Z ﬁ?Z —G—0 and consider the commutative dia-

gram
VE®B,) ~— VEID) - VEIID,)

y !
F(SG,VE(D,) — IIVED,) -~ IIVE®D,)

with two cofiber sequences. The two vertical arrows are equivalences because each
of them induces the canonical isomorphism Hom(z«E, I] D,)—IIHom(=«E, D,)
Y Y

in the homotopy group. By applying Five lemma we get an equivalence VE(B,)
—F(SG,VE(D,))=VEG(D,). Thus
(1.4) VE(B)=I“IE”VE(B,,)= IJE”VEG(D,,)szG(D)

if D={D,} is divisible and B={B,=Hom(G, D,)}.
Using Proposition 1.5 combined with (1.1), (1.3) and (1.4) we can easily
show
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Proposition 1.6. A CW-spectrum W is EGy-injective if and only if it is a
retract of a certain Anderson dual spectrum VE(B)=TI="VE(B,) in which B,=

Hom(G, D,) for some divisible D,.

1.3. For any graded abelian group A={A4,} we denote by Tor A=
{Tor 4,} its torsion subgroup. The torsion subgroup Tor A is said to be
bounded if 7 Tor A=0 for some positive integer m.

Proposition 1.7. Let E be a CW-spectrum such that Tor niE is bounded.
If a CW-spectrum W is Ex-injective, then it is decomposed into the wedge sum
WOVZET'WQ|Z.

Proof. According to Proposition 1.6 W is a retract of a certain An-
derson dual spectrum VE(D) with D={D,} divisible. Set A==4E thus
A,=mn,E. Since Hom(A4/Tor 4, D) is divisible, the short exact sequences 0—
Hom(A4/Tor A, D)—-Hom(A4, D)—Hom(Tor 4, D)-0 and 0—Hom(A4/Tor A4,
D)xQ/Z—Hom(A|Tor A, D)—Hom(A4/Tor A, D)QQ—0 are both split. Under
our assumption on Tor 4, we note that Hom(Tor 4, D)®Q=0 and hence
Hom(Tor 4, D)®Q/Z=0. This implies that Hom(4, D)QQ/Z=0. So the
rationalization /: Hom(4, D)—Hom(A4, D)®Q has a right inverse k because
- Hom(A/Tor A, D)QQ—Hom (4, D)QQ is an isomorphism. Thus the cofiber

sequence 3'VE(D)Q/Z —>VE(D)1>VE(D)Q gives rise to a split short exact se-
quence

l
0 — 74 VE(D)Q|Z — nyVE(D) — w4« VE(D)Q — 0
in the homotopy group.
Note that XQ is just the generalized Moote spectrum VZ"S(7,X ®Q)

for each CW-spectrum X. Consider the commutative diagram

0— Ext(z4,X0, 7+VE(D)) — [XO, VE(D)] = Hom(z+xXQ, w4 VE(D)) —0
l ! !

0 Ext(x . X0, 7+ VE(D)Q) — [ X0, VE(D)0] =S Hom(z+XQ, 75 VE(D)Q) 0

involving the universal coefficient sequences [11]. Since the left Ext-terms
are both vanishing, the two assignments g are exactly isomorphisms. Taking
X=VE(D), we can pick up a map f: VE(D)Q—VE(D) inducing the right in-
verse k of / in the homotopy group. This map f is certainly a right inverse
of i: VE(D)—-VE(D)Q. Thus the cofiber sequence ="'VE(D)Q/Z—VE(D)
—VE(D)Q is split. Then it is easily verified that the cofiber sequence
STWOQ|Z—-W—-WQ is split, too.

By virtue of Proposition 1.7 we obtain
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Theorem 1.8. Let E be a CW-spectrum such that Tor nyE is bounded.
Then a CW-spectrum W is Ey-injective if and only if its p-local spectrum WZ,
is EZ ,y-injective for each prime p.

Proof. The “only if” part: Assume that a CW-spectrum W is Ey-injec-
tive. Then Proposition 1.7 implies that the p-local spectrum WZ, is decom-
posed into the wedge sum of Ey-injective spectra WQ and =7'WZ[p~, in which
WQ=pt whenever EQ=pt. The Ey-injective spectrum WO is obviously EZ,»-
injective because of Lemma 1.3. On the other hand, the Ey-injective spectrum
WZ|p™ is a retract of a certain Anderson dual spectrum VE(D,). Since we can
take D,={D,,} to be divisible p-torsion, it is also EZ(,«-injective by means of
Proposition 1.6. Therefore WZ,,=WQV S *WZ[p~ is EZ,+-injective for each
prime p.

The “if” part: Assume that the p-local spectrum WZ, is EZ,+-injective
for each prime p. Then Proposition 1.7 asserts that WQ and WZ/|p~ are EZ -
injective and the canonical map j,: WQ—WZ/[p~ is trivial for each prime p,
where WQ=pt if EQ=pt. Set W:];[WZ/p“‘, which is Eg-injective. Using

Proposition 1.7 again we observe that the direct product W is decomposed into the
wedge sum of WQ and S"'WQ/Z. Note that WZ/p~ is a retract of Z'WZ[p~
because WZ[p==(WZ[p= pn SZ[p=)\V (L1 WZ|q™) A SZ|p=. Therefore WQ|Z=

keSS

VWZ[p~ is a retract of the Ey-injective spectrum W=IIWZ/p=. Thus the
?» 4

canonical map I: WQ/Z—W has a left inverse. Now it is easy to check that the

canonical map j: WQ—WQ|Z becomes trivial because li: [WQ, WQ|Z]—

[(WQ, W1=II[WQ, WZ|p=] is a monomorphism. Since the CW-spectrum W
b4

is written into the wedge sum of the Ey-injective spectra WQ and =~'WQ/Z, it
is E4-injective as desired.

1.4. Assume that E is a ring spectrum. Then E4X admits an Ey-module
structure for each CW-spectrum X where nE is abbreviated as Ey. Given
an injective Ey-module M there exists a CW-spectrum V), so that

(1.5) kst [X, Va] = Homg, (ExX, M)

is a natural isomorphism for any CW-spectrum X, by applying Representability
- theorem similarly to (1.2). The natural isomorphism « , assings to each map
f: X—=Vy the composite g yfy: ExX—ExVy—>M where Agy=rpy(l)E
Homg(ExVy, M). As a similar result to (1.3) we have

(1.6) each represented spectrum V) is Ey-injective if M is an injective Ey-
module.

Every injective Ex-module can be realized by a certain E-module spectrum
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as follows.

Lemma 1.9. Let E be a ring spectrum and M be an injective Ey-module.
Then the represented spectrum Vy is an E-module spectrum such that the composite
Ae (e At wkViyy—ExVy—M is an isomorphism of Ey-modules.

Proof. Pick up amap p: E A Vy—V) such that kg y(u)=ng u(m A1)« E
Homg,(E4«(E A V), M) where m: E A E->E denotes the multiplication of E.
Using the equality Mg (1 A p)s=Ng u(m A 1)5 we can easily check that u(c 1)
=1:Vy—Vy and p(l Ap)=p(mal): EAE AVy—Vy, thus V) becomes an
E-module spectrum.

Consider the following diagram

[Y, EIQ[X, V] ®~I—: Y, E]J®Homg (ExX, M)

1Qwz,u
pel- | my
[YAX, V] -  Homg(Ex(Y 7 X), M)

Kg,m

where the vertical arrows ug and my are respectively defined to be py(f®g)=
w(fAg) and m(f@®a)=a(mp1)x(1 A f Al)x. By a routine computation we
can observe that the above square is commutative. Thus «gp: [X, Vi]—
Homg,(E4X, M) is an isomorphism of Ex-modules. In particular, this implies
that the composite Mg (e A 1)s: 74 Vy—>ExVy—>M is an isomorphism of Ey-
modules.

By virtue of Lemma 1.9 each injective E4-module M can be identified with
wxVy. Then the natural isomorphism kg y: [X, Vi]—Homg,(ExX, M) may
be regarded as the canonical morphism

(L.7) kgyy = @rg: [X, V] >Homg(ExX, ExVy)—Homg (Ee X, 74V y)

where @ is induced by the E-module structure map w: E A Vy—Vy, because
Aen(e A Dsepse =g p(1 A B)x(e A LA Dse=Ng,u(m A Dx(e A LA D)s=ng -

If D={D,} is a graded divisible abelain group, then the Ey-module
Hom(Ey, D)y= {Hom(Ex_,, D)} becomes injective. Setting M=Hom(Ex, D),
we note that V), coincides with the Anderson dual spectrum VE(D) since n:
Homg,(ExX, Hom(Ey, D)y)—Homg,(E4«X, D) is an isomorphism. Hence
Lemma 1.9 implies

Corollary 1.10. Let E be a ring spectrum and D={D,} be a graded divisible
abelian group. Then the Anderson dual spectrum VE(D) is an E-module spectrum
such that kg p: 7 VE(D)—Hom(Ey, D)y is an isomorphism of Ey-modules.

Taking M=Hom(E4, D)y with D={D,} divisible, we restate (1.7) as the
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natural isomorphism #z ,: [X, VE(D)]—>Hom(E4X, D) can be decomposed into
the composite

(1.8)  mkzvem) = nokz: [X, VE(D)] = Homg,(Ex X, ExVE(D))
— Homg,(Ex X, 74 VE(D)) > Hom(E4X, D) .
1.5. Assume that a ring spectrum E satisfies the following property:
(F) ELE is flat as an Ex-module.

Then E.X is regarded to be an EyE-comodule as well as an E4-module for
each CW-spectrum X. Given an injective ExE-comodule [ there exists a CW-
spectrum W; so that

(1.9) kg i [X, W] = Homg,z(ExX, I)

is a natural isomorphism for any CW-spectrum X, by means of Representa-
bility theorem. Setting Az =&z (1) EHomg,z(E«W;, I), the natural isomor-
phism «y ; is given by xz ;(f)=\z.;fx for each f: X ->W,. For any family {/,}
of injective EyE-comodules it is obvious that

(1.10) the direct product []W;, coincides with the represented spectrum W,

A
where I=T111,.
A

Corresponding to (1.3) or (1.6) we have

(1.11) each represented spectrum W; is Ex-injective if I is an injective ExE-
comodule.

Let M be an Ey-module such that the extended comodule ExE® M is injec-
Bx
tive. Put I=E4EQ®M, and consider the composite
Hx

(1.12) Ok ;2 [X, W,]~>Homp,z(ExX, ExEQ M)—Homj,(ExX, M)
Hx

in which @ is defined to be f(a)=(m4x@1)a. Since @ is an isomorphism, the

above composite f«z ; becomes a natural isomorphism for any CW-spectrum X.

If an Ey-module M is injective, then the extended comodule I=E,EQM is
Hy

exactly injective. In this case we notice that W,;=V, and Oxz =Kz 5. By the

quite same argument as in the proof of Lemma 1.9 we can show

Lemma 1.11. Let E be a ring spectrum satisfying the property (F), and M
be an Ey-module such that the extended comodule I=E+EQ M 1is injective. Then
Ex

the represented spectrum W, is an E-module spectrum such that the composite
Apule A D)x: es Wi—E Wi—M is an isomorphism of Ey-modules, where \g =
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(Mm@ 1)kz, (1) € Homg,(Ex W,, M).

A similar discussion to (1.7) shows that the above natural isomorphism
Oxg, 2 [X, Wi]—=Homg,(E4+X, M) is rewritten into the canonical morphism

(1.13)  kpp, = prg: [X, Wi]>Homg,z(ExX, ExW,)—>Homg (Ex X, 4 W)

where M is identified with 74 W, by the aid of Lemma 1.11.
For each ExE-comodule I we denote by injdimg,zI the injective dimension
of I as an EyE-comodule.

Proposition 1.12. Let E be a ring spectrum satisfying the property (F), and
L be an Ey-module with injdimg;ExEQL=1. Then there exists a quasi E-
Hx

module spectrum Y such that mw+Y has an Ey-module structure and il is isomor-
phic to L as Ey-modules.

PR

Proof. Choose a short exact sequence 0—L—M —LN —0 of E4-modules

with M injective. Set I=E4+EQ®M and J=E+EQN, both of which are injective
Bx By

ExE-comodules. According to Lemma 1.11 both W, and W, are E-module spec-
tra such that the composites Mg y(¢ A 1) 72« W,—M and Mg y(t A Vst s W;—N
are isomorphisms of Ey-modules. Pick up a map g: W,— W; such that 0« ;(g)=

e,y EHomyg,(E4W;, N), and then consider the cofiber sequence YL W,£> W;.
Since Mg y(1 A £)x=JAg,u, there exists a homomorphism Ag ;: ExY—L of Ey-
modules such that Mg y(1 A f)s=irg  EHomg,(E4Y, M). Denote by p;:
EANW, W, and u;: E A W;—W/ the E-module structure maps of W, and W,
respectively, which satisfy that Mg (1 A pr)s=Ag u(m A D)s and Ag y(1 A py)s=
Men(mal)g. As is easily checked, there holds the equality gu;=p(1 A g):
EAW—W;. Sowe get a map uy: E A Y=Y such that fuy=p,(1A f) and
uy(te Al)=1. Thus Y is a quasi E-module spectrum which gives 7Y an as-
sociative Ey-module structure. Because the cofiber sequence Y—W,—W;
induces a short exact sequence 0=z Y —=n W=7 W;—0 of Ex-modules. By
applying Five lemma we can moreover see that the composite Az (¢ A 1)s: 7Y
—FE4+Y—L is an isomorphism of Eg-modules.

Finally we show

Lemma 1.13. Let E be a ring spectrum satisfying the property (F) and W
be an E-module spectrum such that the extended comodule I=E+E ;@ Wi is injective.

Then W coincides with the represented spectrum W.

Proof. Use the natural isomorphism O« ;: [X, W;]—=Homg,z(EsxX, I)\—
Homg,(ExX, 7« W) of (1.12). We then get a map f: W—W, such that Mgy, fx
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=px: ExW—n W, where Agy, =0k (1) and p: E A W—W denotes the E-
module structure map of W. Consider the composite

(Okz.1) k. [X, W] — Homg,(ExX, 7 W) < [X, W]

which is certainly induced by the map f, where «z =@« and it is defined to be
kpw(@)=wpx(1 A g)x. Taking X=3F for every k, g y: [2F, W]—>Homg,(E43,
nxW) is evidently an isomorphism. Therefore we can easily observe that f: W
— W, is an equivalence.

2. Injective EyE-comodules

2.1. Let E be a ring spectrum and F be an E-module spectrum. The
E-module structure map pu:E AF—F gives rise to homomorphisms vg r:
X4EQFy—XyF and g p:[X, F]—=Homg(ExX, Fy) defined in the canonical

Bx

ways. We are interested in ring spectra E which satisfy some of the following
nice properties (see [1] or [2]):

(F) E4E is flat as an Ey-module.
(K) vpr: X4 EQFy—>X4F is an isomorphism for any E-module spectrum F
Hy

if E4X is a flat E,-module.

(U) «gr:[X, F]>Homg,(ExX, Fy) is an isomorphism for any E-module
spectrum F if E4X is a projective Egx-module.

(P) For every CW-spectrum X there exists a CW-spectrum Y and a map
g:Y—X such that E4Y is a projective Eyx-module and gy: ExY—E4X is an
epimorphism.

If a ring spectrum E satisfies the property (F), then the condition (K) im-
plies that

(K" v r: ExEQF4—E4F is an isomorphism for any E-module spectrum F,
Hy
and in particular that
(K" vevew: ExEQVE(D)y—E«VE(D) is an isomorphism for each graded
Hx .
divisible abelian group D={D,},

because the Anderson dual spectrum VE(D) is an E-module spectrum by
Corollary 1.10.

As typical examples of ring spectra satisfying all of the properties (F),
(K) ,(U) and (P) the following spectra aie well known (see [1] or [2, Proposition
IT1.13.4]):

@2.1) S, HZ|p, MO, MU, MSp, KU and KO .
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In this section we will give some characterizations of E-injective spectra
for such a nice ring spectrum E as in (2.1). Putting their results together we
can summarize as follows (cf. [13, Theorem 3 i) and iii)] or [8, §9]).

Theorem 2.1. Assume that a ring spectrum E satisfies the properties (F)
and (K”).  Then the following five conditions are all equivalent :
i) W is an Ex-injective spectrum.
il)y W is a quasi E-module specirum such that ExW is injective as an EyE-module.
ill) W is an Ex-~local spectrum such that E«W is injective as an EyE-comodule.
v) gz [X, W]—=Homg,(ExX, E.W) is an isomorphism for any CW-spectrum X.
v) kg: [X, W]—=Homg,z(E+X, ExW) is a monomorphism for any CW-spectrum
X.

2.2. Let E be a ring spectrum satisfying the property (F). Then the homo-
morphism «z: [X, W]—-Hom(EyX, ExW) defined by «z(f)=fx« is evidently
factorized through Homg,z(Ex«X, ExW). Moreover we note that vgg,p:
ELE (EZ)E* W—E4«(E A W) defined in the canonical way is an isomorphism, even

if E is not assumed to satisfy the property (K).

Proposition 2.2. Let E be a ring spectrum satisfying the property (F).
If W is a quasi E-module spectrum such that EW is injective as an EyE-comodule,
then it is an Ey-injective spectrum and rg: [X, W]—Homg,z(ExX, ExW) is an
isomorphism for any CW-spectrum X.

Proof. Set I=E.W, which is an injective E4E-comodule. By means of
(1.9) and (1.11) there exists an Ey-injective spectrum W, so that «g ;: [X, W;]—
Homyg,z(E«X, Ex<W) is a natural isomorphism for any CW-spectrum X. Taking
X=W, we get a map f: W—W, with «z ;(f)=1. Notice the composite

k5lrg: [X, W] — Homg.s(ExX, ExW) < [X, W]

is exactly induced by the map f. Consider the composite gxz: [X, E A W]—

Homg,z(E4«X, Ex(E A W))—Homg,(ExX, ExW) in which @ is defined to be

@(a)=(mal)xa and it is an isomorphism because vpp,p: ExEQE«W —
Bx

E«(E A W) is an isomorpbism. Taking X=Z3* for every &, it is easily checked
that xg: [2*, E A W]—>Homyg,z(Ex2*, Ex(E A W)) is an isomorphism. Since W
is a retiact of E A W, kp: [2F, W]—Homy,;(ExZ*, ExW) becomes an isomor-
phism, too. This implies that f: W—W, is an equivalence because «z'/xz=
fx: [X, W]—[X, W;]. Hence we observe that W is an Ey-injective spectrum
and moreover «z: [X, W]—Homg,(ExX, ExW) is an isomorphism.

Adding the condition (K”) on E we can show the following result, which
contains the converse of Proposition 2.2.
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Proposition 2.3. Let E be a ring spectrum satisfying the properties (K”') as
well as (F). If a CW-spectrum W is Ex-injective, then it is a quasi E-module
spectrum such that E4W 1is injective as an EyE-comodule and «g:[X, W]—
Homg,z(ExX, ExW) is an isomorphism for any CW-spectrum X.

Proof. From Lemma 1.4 it follows that W is a quasi E-module spectrum.
On the other hand, Proposition 1.6 asserts that I is a retract of a certain
Anderson dual spectrum VE(D)=TI="VE(D,) with D={D,} divisible. So it is

sufficient to show our result for W=VE(D). According to Corollary 1.10,
VE(D) is an E-module spectrum and «y p: 74« VE(D)—>Hom(Ey, D)y is an iso-
morphism of Ey-modules. Under the condition (K”) on E the EyE-comodule
ExVE(D) is isomorphic to the extended comodule E*E§Hom(E*, D), which

is certainly injective as an E4E-comodule. Moreover we can easily observe by
use of (1.8) that «z: [X, VE(D)]—>Homg,z(E4«X, ExVE(D)) is an isomorphism
for any CW-spectrum X.

By making use of Proposition 2.3 we obtain the following result, which
resembles Proposition 2.2.

Proposition 2.4. Let E be a ring spectrum satisfying the properties (K"') as
well as (F). If Wis an Ex-local spectrum such that E«W is injective as an ExE-
comodule, then it is an Ey-injective spectrum and rg: [X, W]—=Homgz(EsX,
EW) is an isomorphism for any CW-spectrum X.

Proof. Set I=EW, then there exists an Ey-injective spectrum W; so that
kg,r: [X, Wil>Homg,;(ExX, ExW) is a natural isomorphism for any CW-
spectrum X. On the other hand, Proposition 2.3 asserts that xz:[X, W;]—
Homyg,z(E+X, ExW)) is also an isomorphism for any CW-spectrum X. Taking
X=W in the former and X=W; in the latter, we get maps f: W—W; and
g: Wi—W; such that A\g  fe=1: ExW—ExW and ge=fsrp: ExW—ExW,;
where Ag ;=«p (1)EHomg,(ExW;, ExW). As is easily checked, the map g
becomes just the identity. This implies that fy: ExW—E4xW; is an isomor-
phism. Since both W and W, are Ey-local spectra, we then observe that
f: W—W, becomes an equivalence. Thus W is an Ey-injective spectrum and
moreover «z: [X, W]—Homg,z(E4«X, E4W) is an isomorphism.

Proof of Theorem 2.1. The implication i)—ii)—iii)—i) is immediately
shown by use of Propositions 2.3 and 2.4. On the other hand, the implication
i)—iv)—>v)—1i) is done by use of Propositions 2.3 and 1.1.

2.3. Making use of Proposition 2.3 again we can realize every injective
E4E-comodule by a certain Ey-injective spectrum when E satisfies the proper-
ties (F) and (K”) (cf. Lemma 1.11).
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Proposition 2.5. Let E be a ring spectrum satisfying the properties (F) and
(K”) and I be an injective EyE-comodule. Then the represented spectrum W, is
Ey-injective such that g ;2 ExW;—1 is an isomorphism of EE-comodules.

Proof. Choose a graded divisible abelian group D so that I is embedded
into M=Hom(Ey, D)y as Ey-modules. Consider the monomorphism i: [—
E*E®I —»E*E®M of EyE-comodules, which has a left inverse j: E4xE ®M —

I Identlfy the 1nJect1ve Ey-module M with z4,VE(D) by use of Corollary 1.10,
and the extended comodule E4EQVE(D)y with E,VE(D) under our assumption
By

on (K”). Then we get maps f: W;—VE(D) and g: VE(D)— W, making the fol-
lowing diagram commutative

J g
[X, W] = [X, VE(D)] = [X, W]
l' Kg,1 Jr Kg J/ Kg,1
Iy Es

where the vertical arrows «z,; and «; are all isomorphisms by (1.9) and Proposi-
tion 2.3. Note that the composite gf: W,—W, is exactly the identity. Since
fx=iAp 1t ExW;—ExVE(D) and j=xg ;gx: ExVE(D)—1, it is easily checked
that Ag ;: E4W;—1 is an isomorphism of EyE-comodules where Az ;=5 ;(1).

By a quite similar discussion to [8, Theorem 10.1] using Proposition 2.5
with (1.9) we can show

Corollary 2.6. Let E be a ring spectrum satisfying the properties (F) and
(K”) and C be an EyE-comodule with injdimg,;C<2. Then there exists an Ey-
local spectrum Z such that EyZ is isomorphic to C as EyE-comodules.

Combining Propositions 2.4 and 2.5 with (1.10) we obtain

Proposition 2.7. Let E be a ring spectrum satisfying the properties (F) and
(K) and {I,} be a family of injective EyE-comodules. Then W is an Ey-local
spectrum such that E4W is isomorphic to the direct product T11, as EyE-comodules

A

if and only if it coincides with the direct product 1] Wr,.
A
Proof. The “if” part follows immediately from (1.10) and Proposition

2.5. On the other hand, the “only if”’ part is easily shown by observing (1.10)
and the proof of Proposition 2.4.

2.4. Let E be a ring spectrum satisfying the properties (F) and (K’) and
W be an E-module spectrum such that the extended comodule E4xEQ Wy is
By

injective. Then the EyxE-comodule ExW is injective since vgy: ExEQWy—
By
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E.W is an isomorphism under the condition (K’). So Proposition 2.2 asserts
that W is an Ey-injective spectrum and xz: [X, W]—Homg,z(ExX, ExW) is an
isomorphism for any CW-spectrum X. Conversely we obtain

Lemma 2.8. Let E be a ring spectrum satisfying the property (F) and W
be an E-module spectrum such that the extended comodule E+EQ Wy is injective.
By

Assume that kg: [X, W]—Homg,z(ExX, ExW) is an isomorphism for any CW-
spectrum X. Then W is an Ey-injective spectrum such that vgy: ExEQWy—
By

E W is an isomorphism of EyE-comodules.

Proof. According to Lemma 1.13 W may be actually regarded as the re-
presented spectrum W; with I=E4EQ W, which is Ex-injective. Under our
B x

assumption on «y (1.13) implies that xz: [X, W]—Homg,z(ExX, ExW) is de-
composed into the composite vig ;: [X, W]—>Homg,gz(ExX, I)—>Homg,z(ExX,
E«W) where v is induced by vgy: I—ExW. Then it is obvious that vy 5 : I—
E«W becomes a left inverse of Az ;=xg (1). In order to show that vy, is a
right inverse of Az ; we here use the canonical isomorphism §: Homg,z(C, I)—
Homg,(C, z« W) for any E4E-comodule C. By using (1.13) again we note that
Ong,)=px: ExW—nW under our assumption on «z where u: EA W—>W
denotes the E-module structure map of W. Taking C=1, it is easily computed
that O(\g,;vew)=psxvew=0(1). Consequently vz p: I—>E4W is in fact an iso-
morphism of EyE-comodules.

Lemma 2.8 combined with Lemma 1.13 and Proposition 2.3 shows

Corollary 2.9. Let E be a ring spectrum satisfying the properties (F) and
(K" and W be an E-module spectrum such that the extended comodule E+EQ@ W
By

is injective. Then W is an Ey-injective spectrum such that vgy: E4EQWy—
By

E W is an isomorphism of EyE-comodules.

We will here deal with a ring spectrum E satisfying the properties (F),
(U) and (P) in place of (F) and (K").

Lemma 2.10. Let E be a ring spectrum satisfying the properties (F) and
(U). If E Y is projective as an Ey-module, then rxg:[Y, W]—Homg,z(E4Y,
E W) is an isomorphism for any quasi E-module spectrum W.

Proof. Consider the composite gig: [Y, EAW]—Homg,z(ExY, Ex(E AW))
—Homg,(E«Y, ExW). Here @ is an isomorphism under the condition (F), and
@« is an isomorphism under the condition (U). Consequently #«z: [Y, W] —
Homg,z(E4«Y, ExW) becomes an isomorphism when W is a quasi E-module
spectrum.
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Using Lemmas 1.4 and 2.10 we obtain

Proposition 2.11. Let E be a ring spectrum satisfying ihe properties (F),
(U) and (P). If a CW-spectrum W is Ey-injective, then «g: [X, W]—
Homg,z(ExX, ExW) is an isomorphism for any CW-spectrum X.

Proof. Under the condition (P) we can choose for any CW-spectrum X
a cofiber sequence Z—Y—X such that 0>E.Z—E,Y—E.X—0 is a short
exact sequence and E.Y is projective as an Ey-module. Use the commuta-
tive diagram

[X, W] - [Y, W] — Z, W]
| kg | Kg | &g

0 — Homg,x(ExX, ExW) — Homg,;(ExY, ExW) — Homg,n(ExZ, ExW)

with two exact rows. The vertical arrows «; are all monomorphisms by Pro-
position 1.1, and in particular the central one is an isomorphism by means of
Lemmas 1.4 and 2.10. Applying Four lemma we see that the left arrow xg:
[X, W]—=Homg,z(E+X, E4«W) becomes an epimorphism, and hence an isomor-
phism as desired.

Putting Corollary 1.10, Lemma 2.8 and Proposition 2.11 together we can
finally remark that

(2.2) a ring spectrum E satisfies the condition (K”) if it satisfies (F), (U) and

(P).

3. EG-injective spectra

3.1. Among abelian groups we introduce a partial order as follows. Given
abelian groups G and G’ we write

(3.1) (G> < <G>

if for each divisible abelian group D there exists a divisible one D’ so that Hom
(G,D) is a direct summand of Hom (G’, D’).

Let G and D be abelian groups. If D is divisible, then the short exact
sequence ‘

(3.2)  0— Hom(G/Tor G, D) — Hom(G, D) — Hom(Tor G, D) — 0

is split. Hete Hom(G/Tot G, D) is a maximal divisible subgroup of Hom(G, D)
and Hom(TorG, D) is a reduced algebraically compact group (see [9, Theorem
46.1]). Recall that every divisible abelian group D is written into the direct
sum of indecomposable ones which are either isomorphic to Q or Z/p~ for vari-
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ous primes p. Using these facts we can show

Lemma 3.1. {G>=LG") if and only if for every prime p there exists a
divisible abelian group D, so that Hom(G, Z[p~) is a direct summand of
Hom(G’, D,) and in addition GQ Q=0 whenever G'QQ=0.

Proof. The “if” part: Obviously Hom(G, Q) is a direct summand of
Hom(G’, D) with D;=Hom(G, Q). Each divisible abelain group D is written
into the form of (B Q) BB (P Z/p™) and it is a direct summand of the direct

@, » @,

product (IT Q) @II (IL Z/p™). So the result is immediately obtained.
% L)

The “only if” part: Assume that G'QQ=0. By definition Hom(G, Q)
is a direct summand of Hom(G’, D,) for some divisible D,. However
Hom(G’, D) is reduced, in other words Hom(Q, Hom(G’, D;))=0. This im-
plies that Hom(G, Q)=0, and hence GQQ=0.

For each abelian group G we consider the subset
(3.3) J(G) = {p; (G[Tor G)@Z|p=+0}
of primes p and set
(34) J(G)=J(G)U {0} or ¢

according as either GRQO=*0 or GR®QO=0. For any divisible abelian group
D, Hom(G/Tor G, D)xZ[p is isomorphic to Hom(G/Tor GQZ[p, DxZ[p). Hence
it is easily seen that

(3.5) Hom(G/Tor G, D) = (%B O)d & (DZp~)

PEI @,

where a,=0 if DxZ/p=+0. In particular, taking D=Z/p~ we have
(3.6) Hom(G|Tor G, Z|p~) = ( (D Q)DB(D Z/[p~) if pe J(G)
%o %p
®0 if e J(C)

where a,=0.

For every prime p we can choose a p-basic subgroup B, of Tor G which
is unique up to isomorphism [9, Theorems 32.3 and 35.2]. The p-basic sub-
group B, is written into the form of a direct sum of cyclic p-groups Z/p* and
it is p-pure in Tor G, and moreover (Tor G/B,)QZ(, is expressed as the
direct sum of copies of Z/p~. Consider the subset

3.7) J(G) = {k; Z|p* is a direct sum component of B,}

of positive integers k.
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When J,(G) is an infinite set, the p-adic integers Z, is embedded into the
direct product , ‘lr'[@Z/pk as a direct summand (cf. [9, Corollary 38.2]). We
el

here put

(3.8) J(G)= {J,(G) if J,(G) is finite and (Tor G/B,)®Z = 0
JH(G)U {w,}  if otherwise.

For any p-local divisible abelian group D, the short exact sequence
(3.9) 0—=Hom(Tor G/B,, D,)—Hom(Tor G, D(,)—Hom(B,, D(,)—>0

is split because it is pure owing to [9, Proposition 44.7] and Hom(Tor G/B,, D)
is algebraically compact by [9, Theorem 44.7]. As is easily seen, we have

(3.10) Hom(B,, Dip) =, IT_(IT Dy Zp"

with B,#0. On the other hand, Hom(Tor G/B,, D(,) is the p-adic comple-
tion of the direct sum of copies of Zj(use [9, Exercise 47.7]). In particular,
taking D,,=Z/p™ we obtain

(3.11) Hom(Tor G, Z/p~)= ( II (II Z/p”)@l];[ Zy if (Tor G/B)®Z»*0

keTp( B A

I (IT Z/p*) if (Tor G/B,)®Zy=0

kST B,

where 8,0 and 8,30 (cf. [9, Theorem 47.1]).

3.2. By applying Lemma 3.1 with the aid of (3.2), (3.6), (3.9), (3.10) and
(3.11) we will prove the following criterion (cf. [5]).

Proposition 3.2. <G)>=<G"> if and only if J(G)CJ(G") and J,(G)C
J«G") for every prime p.

Proof. The “if” part: If G’QQ=0, then J(G')=¢ by definition. This
implies immediately that GQQO=0. We will next show that for each prime
p there exist divisible abelian groups D; and Dj’ so that Hom(G/Tor G,
Z[p~) and Hom(Tor G, Z/p~) are respectively direct summands of Hom(G'/
Tor G, D}) and Hom(TorG’, D}’). In order to find a suitable divisible D; we
may assume that G'®Q=0. Evidently O is a direct summand of Hom(G’/
Tor G', Q). If p€ J(G), then (3.6) shows that Z/p~ is contained in Hom(G’/
Tor G, Z|p~) as a direct summand because J(G)C J(G'). Taking D;=(I] O)®

%

(IT Z/p=) or II O according as pE J(G) or pe& J(G), it is easily seen that
“p %o

Hom(G/|Tor G, Z[p~) expressed as in (3.6) becomes a direct summand of
Hom(G'[Tor G’, D}).
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Using (3.11) in place of (3.6) we will similarly find a suitable divisible Dj’.

If ke J,(G), then (3.11) shows that Z/p* is contained in Hom(Tor G’, Z/p~) as a

direct summand because J,(G)C J,(G’). Assume that (Tor G/B,)®Z,#+0. In

this situation J,(G’) is an infinite set or (Tor G'/B};)®Z,+0 because the ele-

ment w, is belonging to J,(G)CJ,(G’). Set D,,,=k E@’) Z|[p= or Z[p~ according
s

as J,(G') is infinite or (Tor G'/|B})®Z,)+0. By use of (3.11) we see easily
that Hom(Tor G’, D,) contains Z; as a direct summand. Taking D;'=
I (IIZ /p"“)EBE[ D,, it follows immediately that Hom(Tor G, Z/p~) expressed

KETYD B
as in (3.11) is a direct summand of Hom(Tor G’, D}’) as desired. By the aid of
(3.2) we may now apply Lemma 3.1 to obtain {G>=<G">.

The “only if” part: For every prime p we choose a divisible abelian group
D, so that Hom(G, Z[p~) is a direct summand of Hom(G’, D,). As is easily
verified, Hom(G/Tor G, Z/p~) and Hom(Tor G, Z/p~) are respectively direct
summands of Hom(G’/Tor G’, D,) and Hom(Tor G’, D,). When J(G)=¢, it
follows from Lemma 3.1 that J(G)CJ(G’). Assume that J(G)=%¢. For each
prime p& J(G), (3.6) asserts that as a direct summand Z/p~ is contained in
Hom(G/Tor G,Z[p) and also in Hom(G’/Tor G’, D,). Therefore we see that
Hom(G'|Tor G'QZ|p, D,)*0, and hence p€ J(G'). Thus J(G)C J(G'), which
implies that J(G)C J(G").

Pick up a positive integer RE J,(G) for a fixed prime p. By virtue of
(3.11) Z/p* is contained in Hom(Tor G, Z/p~) as a direct summand and
also in Hom(Tor G', D,QZ,). However ZJp* is actually embedded into
Hom(Bj;, D,®Z ;) because Hom(Tor G’/|B}, D,QZ,) is torsion free. Using
(3.10) we can easily see that k€ J,(G'). Thus J,(G)C J,(G’). In order to show
J(G)C J,(G’) we here assume that J,(G) includes the element w,, thus J,(G) is
an infinite set or (Tor G/B,)®Z,)#+0. For our purpose we may consider only
the case when J,(G’) is finite and (Tor G/B,)®Z,)+0. In this situation Z, is
contained in Hom(Tor G, Z[p™) as a direct summand by use of (3.11), and hence
in Hom(Tor G’, D,®Z,). If Hom(Tor G'|B;, D,®Z,)=0, then Hom(TorG’,
D,®Z,)=Hom(B}, D,QZ,) is bounded because of (3.10). This is a contra-
diction. Thus Hom(Tor G'/B;, D,®Z,)=0 which implies that (Tor G'/B})®
Z,*0. Therefore the element w, is belonging to J,(G’) in our case. Conse-
quently J,(G)C J,(G").

3.3. For any CW-spectra E and F we write
(3.12) B> = <F);

if every Ex-injective spectrum W becomes always Fy-injective (cf. [6], [7] or
[14]).
Lemma 3.3. <E>;=<F>; if and only if every Fy-monic map f: XY
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is always Ey-monic.

Proof. The “if” part is immediate by definition.

The “only if”’ part: Given an Fy-monic map f: X —Y we may choose an
Ey-injective spectrum W and an E4-monic map g: X —W by virtue of Proposi-
tion 1.5. Since W becomes Fy-injective, there exists a map h: Y —W with
hf=g. This equality implies that f: X —Y is Ey-monic.

As a relation between the partial orders (3.1) and (3.12) we have

Lemma 3.4. i) If <G>=LG"), then <EG);=<{EG">; for any CW-spec-
trum E.

i) Assume that nyE is torsion free and nwyEQZ[p+0 for each prime p.
Then the converse of 1) is valid.

Proof. i) is immediate from Proposition 1.6 and Definitions (3.1) and
(3.12).

ii) We may assume that z,EQZ/p=+0 for a fixed prime p. Set 4,=
Hom(G, Z/p~). By means of (1.3) and (1.4) the Anderson dual spectrum VE(4,)
becomes EGy-injective, and hence it is EG4-injective. According to Proposition
1.6 VE(A,) is a retract of a certain Anderson dual spectrum VE(B)=];[Z"VE(B,,)

where B,=Hom(G’, D,) for some divisible D,. So m,VE(A,) becomes a direct
summand of #,VE(B)=[Iz_,VE(B,). As is easily computed, m,VE(A4,)==
Hom(w,E, 4,)=Hom(G, Hom(nE, Z[p~)) and similarly »_,VE(B,)=Hom(G"’,
Hom(z,E, D,)). By (3.5) the divisible group Hom(nE, Z/p~) contains Z/p as
a direct summand under the assumption that z,EQZ[p+0. Therefore 4,=
Hom(G, Z[p~) is contained in =,VE(A,) as a direct summand, and hence in
mVE(B)=Hom(G’, D,) where D,=TI Hom(,E, D,) and it is divisible.
Similarly we can choose a divisible abelian group D, so that 4,=Hom(G, Q)
is a direct summand of Hom(G’, D,). This implies that GQ Q=0 whenever

G'®0=0, as was shown in the proof of Lemma 3.1. Consequently it follows
from Lemma 3.1 that (GO <<{G">.

Combining Proposition 3.2 with Lemma 3.4 we obtain

Theorem 3.5. i) If J(G)C J(G') and J,(G)C J,(G") for every prime p,
then <EG);<<EG">; for any CW-spectrum E.

i) Assume that nE is torsion free and myEQZ|p+0 for each prime p.
Then the converse of 1) is valid.

As an immediate result we have the following criterion (cf. [7, Proposition
2.7]).

Corollary 3.6. Assume that myE is torsion free and =y EQZ|p+0 for



60 Z. YOSIMURA

each prime p. Then <EGY;=<EG"); if and only if J(G)=J(G') and J(G)=
J«G") for every prime p.

3.4. Let us denote by H the Eilenberg-MacLane spectrum and by KO,
KU and KT the real, the complex and the self-conjugate K-spectrum respec-
tively. Recall that VH(G)=HG, VKO(G)=3'KOG, VKU(G)=KUG and
VKT(G)=3'KTG for any abelian group G (see [4] or [15,1]). Note that the
canonical map o: \”/E"HA,,—J;[E"HA,, is an equivalence for any graded abelian

group A={4,}. On the other hand, it is well known that the K-spectra K=
KO, KU and KT possess the period p(K)=38, 2 and 4 respectively.
Taking E=H, KO, KU or KT in Proposition 1.6 we can immediately show

Proposition 3.7. i) A CW-spectrum W is HG-injective if and only if
it is a retract of a generalized Eilenberg-MacLane spectrum \/Z"HB, in which
B,=Hom(G, D,) for some divisible D,.

ii) Let K denote the periodic K-spectrum KO, KU or KT. Then a CW-
spectrum W is KGy-injeciive if and only if it is a retract of a certain finite wedge
sum V ogn<pr> KB, in which B,—=Hom(G, D,) for some divisible D,.

The following easy result is useful in studying the EGx-injectivity when
E=H or KU.

Lemma 3.8. i) If Wis a quasi H-module spectrum, then it is a generaliz-
ed Eilenberg-MacLane spectrum written into the form \/ Z"H(w,W).

i) If Wis a quasi KU-module spectrum such that the composite pyB"(¢ A 1)4:
a,W—>KUW=KU,, . ;W—>1,,.; W (=0, 1) is an isomorphism for any n, then it
is written into the wedge sum KU(m,W)\V Z*KU(m,W).

Proof. i) Our proof is due to [2, Lemma III.6.1]). Set A,=z,W and
choose a map f,: ="SA,—»W inducing the identity isomorphism between the
n-th homotopy groups. Construct a map f: \"/E”HA,,—>W whose #n-th com-
ponent is the composite u(1 A f,): Z"HA,—~H A W—W where u: H\ W—W
denotes the H-module structure map of W. As is easily checked, the map f is
an equivalence.

ii) is similarly shown to i).

Conserning the HGy-injectivity we obtain the following characterization.

Thoerem 3.9. The following three conditions are equivalent :
1) Wis an HGx-injective spectrum.
i) W is a quasi H-module spectrum such that for each n =, W s a direct sum-
mand of Hom(G, D,) with D, divisible.
iliy W is a generalized Eilenberg-MacLane spectrum YE"HA,, in which A, is a
direct summand of Hom(G, D,) with D, divisible.
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Proof. The implication iii)—i)—ii) follows immediately from Proposition
3.7 i), and the implication ii)—iii) is immediate from Lemma 3.8 1).

Let G be an abelian group whose torsion subgroup Tor G is bounded.
Since the bounded torsion group Tor G is a direct sum of cyclic torsion groups,
the sets J,(G) are finite but they are empty except only finite numbers of primes
p. By means of (3.2) and (3.5) we then observe
(3.13)  Hom(G, D)= (D Q)® & (DZ[p)DD D (D Z[p")

@ PETE @, )

KETHE B, ,

for each divisible abelian group D, where at,=0 and 8, ,%0 if D*Z/p=0.

Corollary 3.10. Assume that the torsion subgroup Tor G is bounded. Then
a CW-spectrum W is HG y-injective if and only if it is a generalized Eilenberg-
MacLane spectrum \/3"HA, in which each A, is a direct sum of divisible groups

and cyclic torsion groups as given in the right side of (3.13).

3.5. Concerning the KUGx-injectivity we obtain the following character-
ization under some restriction to G.

Theorem 3.11. Assume that the torsion subgroup Tor G is bounded. The
following three conditions are equivalent :
1) Wis a KUGy-injecrive spectrum.
i) Wis a quasi KU-module spectrum such that KU p W is KUG y-injective.
i) W is a quasi KU-module spectrum such that KU,W is a direct sum of divi-
sible groups and cyclic torsion groups as given in the right side of (3.13).

Proof. By virtue of Corollary 3.6 we may regard as Tor G is finitely gene-
rated.

The implication i)—ii): According to Proposition 3.7 ii), W is a retract of
the wedge sum KUB,VZ'KUB, for some B;=Hom(G, D;) with D; divisible
(7=0, 1). Recall that KU,KU is a countable free abelian group and KU,KU=0
(see [3, Theorem 2.1]). Then Lemma 3.8 ii) shows that the smash product
KU A KU is just the wedge sum V KU of countable copies of KU. Therefore
KU A W is a retract of the wedge sum KU(DB,) VE'KU(PBB,). Consider the
short exact sequence 0—>GI\3 Hom(G, D,)—Hom(G, E}\BDA)—>C—+0 with D, divisi-

ble. Since Tor G may be regarded to be finitely generated, the canonical homo-
morphism @Hom(Tor G, D,)—Hom(Tor G, G)\BDA) is an isomorphism. Hence
A

we get a short exact sequence 0—@Hom(G/Tor G, D,)—Hom(G[Tor G, E?D,\)
A

—C—0, which is clearly split. This implies that the previous short exact se-
quence is split, too. Consequently we see that @B;=@Hom(G, D;) is a direct
summand of B;=Hom(G, @®D,) for each i=0,1. So KUAW is KUGx-
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injective by use of Proposition 3.7 ii) again.

The implication ii)—iii) follows immediately from Proposition 3.7 ii) and

(3.13).

The implication iii)—i): By Lemma 3.8 ii) KU A W is just the wedge sum

KUA,VZ'KUA, with 4;=KU;W (i=0, 1). From Proposition 3.7 ii) and
(3.13) it is immediate that KU A W is KUGx-injective. Then W becomes
also KUG-injective since W is a retract of KU A W.
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