
Yosimura, Z.
Osaka J. Math.
29 (1992), 41-62

E*-INJECTIVE SPECTRA AND INJECTIVE
E E-COMODULES

Dedicated to Professor Haruo Suzuki on his sixtieth birthday

ZEN-ICHI YOSIMURA

(Received June 25, 1990)

0. Introduction

In [13] Ohkawa introduced the notion of the injective hull of spaces and
spectra with respect to homology and proved the existence theorem [13, The-
orem 1J. Following [13, Definition 1 i)] we call a CW-spectrum W E*-injective
if any map /: X-^Y induces an epimorphism / * : [Y, W]->[Jf, W] whenever
/ * : E*X-*E* Y is a monomorphism, for a fixed CW-spectrum E. A CW-
spectrum W is E*-injective if and only if the homomorphism κE\ [Xy W]->
Hom(E*X, E* W) defined by ^ ( / ) = / * is a monomorphism for any CW-
spectrum X (see [13, Proposition 7]). In this note we will be concerned about
E*-injective spectra.

For each CW-spectrum X, E*X is regarded as a module over the algebra
E*E of cohomology operations. Under the restriction that E is finite, Ohkawa
[13, Theorem 3 i) and iii)] gave the following characterization.

Theorem 0. Assume that a CW-spectrum E is finite. Then the following

conditions are equivalent:

i) W is an E*-injective spectrum.

ii) W is an E^-local spectrum such that E*W is injective as an E*E-module.

iii) κE: [X, W]->HomE*E(E*X> E* W) is an isomorphism for any CW-spectrum X.

According to [2, Proposition III.13.4] (or see [1]), the well known ring
spectra E=S, HZ/p, MO, MUy MSp, KU and KO satisfy some of nice pro-
perties as stated in the beginning of §2. For example, E*E becomes flat as an
Z^-module, and then E*X may be regarded as a comodule over the coalgebra
E*E. In §2 we will prove the following result (Theorem 2.1) for such a nice
ring spectrum E, corresponding to Theorem 0 for a finite spectrum E.

Theorem 1. Let E be a ring spectrum such that E*E is flat as an E*-mo-

dule. Assume that E satisfies the property (K") stated in the beginning of §2.

Then the following conditions are equivalent:
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i) W is an E ̂ -injective spectrum.
ii) W is an E*-local spectrum such that E*W is injective as an E^E-comodule.
iii) κE: \X, W\-^>ΆomEtE{E*Xt E*W) is an isomorphism for any CW-spectrum X.

In §3 we will next study the 2?G*-injectivity where EG denotes the CW-
spectrum E Λ SG with coefficients in G. There exists a partial order among
OFF-spectra by writing ζβyi^ζFyi when each £"*-injective spectrum is F*-
injective. In order to decide ζβGy^KβG'yj we will find a certain relation
between the abelian groups G and G' (Theorem 3.5). Moreover we will
prove the following complete result (Theorem 3.9), especially when E=H "the
Eilenberg-MacLane spectrum".

Theorem 2. A CW-spectrum W is HG ^-injective if and onίy if it is a
generalized Eίlenberg-MacLarϊe spectrum VΣnHAn in which An is a direct sum-

n

mand of Hom(G, Dn) with Dn divisible.

When E—KU "the complex K-spectrum", we will finally show a partial
result (Theorem 3.11) corresponding to Theorem 2.

In this note we will work in the stable homotopy category of CW-spectra.
We mean by a ring spectrum E an associative ring spectrum with unit, and by
an E-module spectrum F an associative (left) Z?-module spectrum. If E or F is
not necessarily assumed to be associative, then it is called a quasi ring spectrum
or a quasi E-module spectrum.

1. The Anderson dual spectra VE(D)

1,1. Let us fix a CW-spectrum E. Given CIF-spectra X and Y a map
f: X-*Y is said to be E^-monic if it induces a monomorphism /#: E*X-+E*Y.
Following [13, Definition 1 i)] (cf. [8, §9]) we call a CW-spectrum W an E*-
injective spectrum if any i^-monic map /: X-> Y induces always an epimorphism
/ * : [Y, W]->[X, W]. For any family {Wλ} of CFF-spectra it is obvious by
definition that

(1.1) each CW-spectrum Wλ is 2^-injective if and only if the direct product
ΐ[Wλ is £*-injective.
λ

Consider the homomorphism κE: [X, W]-+Hom(E*X, E*W) assigning to
each map /: X-+W its induced homomorphism f*\E*X->E*W. Then the
following result involving κE can be easily verified.

Proposition 1.1. ([13, Proposition 7]). A CW-spectrum W is E^-injec-
tiυe if and only if κE: [X, W]-+~ΆOVΆ{E*X, E*W) is a monomorphism for any CW-
spectrum X.
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A CW-spectrum W is said to be E*-local (see [6], [7] or [14]) if [X, W]=

0 for all CW-spectra X with E*X=0. As an immediate result we have

Corollary 1.2. If a CW-spectrum W is E*-injective, then it is an E*-local

spectrum.

For any abelian group G we denote by SG the Moore spectrum of type

G. Given a CW-spectrum E the corresponding spectrum with coefficients in

G is defined by EG=E /\SG. In the G=Q case we can particularly show

Lemma 1.3. Assume that EQ^Fpt. Then a CW-spectrum Wis EQ*-injec-

tive if and only if W= WQ.

Proof. We may regard as E=S> the sphere spectrum. The "if" part is

easily verified since any iS^-monic map / : X->Y induces an epimorphism / * :

[Y, WQ]-+[X, WQ]. On the other hand, the "only if" part is immediate from

Corollary 1.2.

We mean by a quasi ring spectrum E a ring spectrum with unit which is

not necessarily associative and by a quasi E-module spectrum F a (left) £-module

spectrum which is not necessarily associative. Notice that any quasi ^-module

spectrum F is always E^-local when E is a quasi ring spectrum (see [2, Lemma

ΠI.13.1] or [14, Proposition 1.17]).

Lemma 1.4. Let E be a quasi ring spectrum and F be a quasi E-module

spectrum. If a CW-spectrum W is F^-injective, then it is a quasi E-module spec-

trum. In particular, any EG^-tnjectίve spectrum W is always a quasi E-module

spectrum.

Proof. Since the unit c: S->E induces a monomorphism (c /\ 1)*: F*W->

F*(EΛ W)y there exists a map μ\Έ j\ W-+W satisfying μ(ι /\ 1)=1, where 1 de-

notes the identity map.

1.2. Let £ be a fixed OPF-spectrum and D= {Dn} be a graded divisible

abelian group. By Representability theorem there exists a OFF-spectrum

«) which is related to E and D by a natural isomorphism

(1.2) * „ : [X, VE(D)] -> Hom(£*X, D) = ψlom{EnX, Dn)

for any CW-spectrum X. Setting \E,D=KE,D (l)<^Hom(E*VE(D), D), the natu-

ral isomorphism κED assigns to each map / : X-^WE(D) the composite λ^^/^:

For any graded abelian group A={An} we choose an injective resolution

d

0 -> A -> D -> Df -> 0 and denote by VE(A)=U^n'!7E(An) the fiber of the in-

duced map d*:VE(D)->'VE(Dr). Then we obtain a universal coefficient se-
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quence

0 -> Ext(E^Xy A) -> [Xy VE(A)] "%>* Hom(E*Xy A)->0

for any CW-spectrum X. As, is easily seen [15, I and II], VE{A) is indepen-
dent of the choice of an injective resolution of A and it is just the function spec-
trum F(Ey VS{A))=Π.Έ,nF(Ey VS(An)). We call VE(A) the Anderson dual spec-

trum of E with coefficients in A= {An} (cf. [4]).
Using the natural isomorphism κEtD of (1.2) we see immediately that

(1.3) every Anderson dual spectrum VE{D)=J\XιVE{Dn) is JS^-injective if

D= {Dn} is divisible.

By virtue of (1.3) we can show the enough Zί^-injectivity of the stable ho-
motopy category of CW-spectra (cf. [13, Proposition 4]).

Proposition 1.5. For any CW-spectrum X there exists an Anderson dual
spectrum VE(D) with D= {Dn} divisible, which is E*-injective3 and an E*-monic
map p. X->VE(D).

Proof. Choose a graded divisible abelian gioup D—{Dn} so that EnX is
embedded into Dn for each n. Pick up a map/: X->VE(D) such that κED[f):
E*X->D is just the embedding of E*X into D. Since κED(f) is decomposed
into the composite λ^^/*, the map/: X-^VE{D) is certainly I^-monic.

More generally we will next deal with the CW-spectrum EG with coef-
ficients in G. For any divisible abelian group Dn we set Sn=Hom(G, Z)n).
Take a free resolution 0->®Z^®Z->G->0 and consider the commutative dia-

« β

gram

VE(Bn) - VE(UDn) -> VE(UDn)
β a

I i
F(SG,VE(Dn)) - UVE(Dn) -> UVE(Dn)

β Λ

with two cofiber sequences. The two vertical arrows are equivalences because each
of them induces the canonical isomorphism Hom(τr^£l, Π AO-^ΠHom^i?, Dn)

y y

in the homotopy group. By applying Five lemma we get an equivalence VE(Bn)
->F(SGy VE(Dn))=VEG(Dn). Thus

(1.4) VE(B)=jμnVE(Bn)=jμnVEG(Dn)=VEG{D)

if D= {Dn} is divisible and B= {£Λ=Hom(G, Dn)}.
Using Proposition 1.5 combined with (1.1), (1.3) and (1.4) we can easily

show
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Proposition 1.6. A CW-spectrum W is EG*-injective if and only if it is a

retract of a certain Anderson dual spectrum VE{B)—J\XιVE{Bn) in which Bn=

Hom(G, Dn)for some divisible Dn.

1.3. For any graded abelian group A={An} we denote by Tor A=
{Tor^4w} its torsion subgroup. The torsion subgroup Tor A is said to be
bounded if mΎorA=0 for some positive integer m.

Proposition 1.7. Let E be a CW-spectrum such that Tor π*E is bounded.
If a CW-spectrum W is E^-irljective, then it is decomposed into the wedge sum

Proof. According to Proposition 1.6 W is a retract of a certain An-
derson dual spectrum VE{D) with D={Dn} divisible. Set A=π*E thus
An=πnE. Since Hom(AIΎor A, D) is divisible, the short exact sequences 0->
Honψ4/Tor A, D)->Hom(Ay D)->Hom(Tor A, Z))->0 and 0-^Hom(^4/Tor A,
D)*QIZ-*Yiom{A^or A, Z>)->Hom(^/Tor A, D)®Q->0 are both split. Under
our assumption on Tor A, we note that Hom(Ύor A, D)®Q=0 and hence
Uom(Ύoτ A, D)®Q/Z=0. This implies that Hom(Ay D)®QjZ=0. So the
rationalization I: Hom(A, D)-+Hom(A, D)®Q has a right inverse k because
Hom(^4/Tor A, D)(g)Q^>Hom (A, D)®Q is an isomorphism. Thus the cofiber

sequence ΈI~
1VE(D)QIZ-^VE(D)^VE(D)Q gives rise to a split short exact se-

quence

0 — π*+1VE(D)Q/Z -> π*VE(D) -> π*VE(D)Q -> 0

in the homotopy group.
Note that XQ is just the generalized Mooie spectrum \/ΣnS{πnX®Q)

for each CW-spectrum X. Consider the commutative diagram

K s- [XQ,VE(D)] -ϊ Hom(π*XQ,π*VE(D)) - 0

1 I I
0 - Extfr^XQ, π*VE(D)Q) - [XQ, VE{D)Q] ^ Hom(τr*Xρ, π*VE(D)Q) -> 0

involving the universal coefficient sequences [11]. Since the left Ext-terms
are both vanishing, the two assignments κs are exactly isomorphisms. Taking
X=VE(D), we can pick up a map /: VE{D)Q->VE(D) inducing the right in-
verse k of / in the homotopy group. This map / is certainly a right inverse
of i: VE(D)->VE(D)Q. Thus the cofiber sequence ^'lyVE(D)QIZ^VE(D)

is split. Then it is easily verified that the cofiber sequence
is split, too.

By virtue of Proposition 1.7 we obtain
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Theorem 1.8. Let E be a CW-spectrum such that Tor π*E is bounded.
Then a CW-spectrum W is E*-injective if and only if its p-local spectrum WZip)

is EZ(p)*-injective for each prime p.

Proof. The "only if" part: Assume that a CW-spectrum W is £*-injec-
tive. Then Proposition 1.7 implies that the pΛocύ spectrum WZ(P) is decom-
posed into the wedge sum of £"*-injective spectra WQ and ΎΓιWZ\p°°, in which
WQ=pt whenever EQ=pt. The Z?*-injective spectrum WQ is obviously EZ(p)*-
injective because of Lemma 1.3. On the other hand, the E1*-injective spectrum
WZjp00 is a retract of a certain Anderson dual spectrum VE(DP). Since we can
take Dp= {Dpn} to be divisible />-torsion, it is also EZ^)*-injective by means of
Proposition 1.6. Therefore WZ{p)=WQ\/ΎΓλWZ\p~ is £Z(^*-injective for each
prime p.

The "if" part: Assume that the pAooA spectrum WZ(P) is EZ^^-injective
for each prime p. Then Proposition 1.7 asserts that WQ and WZ/p00 are EZ(p)*-
injective and the canonical map j p : WQ-^WZ/p00 is trivial for each prime p,
where WQ=pt if EQ=pt. Set W^UWZ/p00, which is E*-injective. Using

P

Proposition 1.7 again we observe that the direct product W is decomposed into the
wedge sum of WQ and YΓιWQ\Z. Note that WZ\p~ is a retract of ΊΓλWZ\p~
because WZlp-^WZ/p00

 ASZlp~)V(UWZIq-) ASZlp°°. Therefore WQ\Z=

\fWZ\p~ is a retract of the £*-injective spectrum W=UWZlp°°. Thus the
P P

canonical map /: WQjZ-^W has a left inverse. Now it is easy to check that the
canonical map j : WQ-^WQjZ becomes trivial because /*: [WQ, WQ\Z\-^
[WQ, W] = Jl[WQ, WZjp°°] is a monomorphism. Since the CW-spectrum W

P

is written into the wedge sum of the E*-injective spectra WQ and ^ΣΓιWQjZ, it
is fίfc-injective as desired.

1.4. Assume that £ is a ring spectrum. Then E*X admits an ^-module
structure for each CPF-spectrum X where π*E is abbreviated as E*. Given
an injective E^-module M there exists a CW-spectrum VM so that

(1.5) κSιM: [X, VM] -> Horn*, (E*X, M)

is a natural isomorphism for any CMΓ-spectrum X, by applying Representability
theorem similarly to (1.2). The natural isomorphism κEfM assings to each map
/: X-+VM the composite λ*iAr/*: E*X-^Έ*VM-*M where XE,MZ==KE,M{^)^

Y{omEJ{E*VM, M). As a similar result to (1.3) we have

(1.6) each represented spectrum VM is E1*-injective if M is an injective E*-
module.

Every injective E*-module can be realized by a certain E-module spectrum
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as follows.

L e m m a 1.9. Let E be a ring spectrum and M be an injective E^-module.

Then the represented spectrum VM is an E-module spectrum such that the composite

^>E,M(I A 1)* •' π*VM-*E*VM-*M is an isomorphism of E*-modules.

Proof. Pick up a map μ: E /\ VM-*VM such that κEM(μ)=XEtM(mΛ 1 ) * ^

HomEχE*(EΛ VM)y M) where m\ E/\E->E denotes the multiplication of E.

Using the equality XE,M(^ A μ ) * ~ \ E , M ( ^ A 1)* w e c a n easily check that μ(c Λ 1)

= 1: VM->VM and μ(ί ^ μ)=μ(m/\1): E/\E /\ VM->VM, thus VM becomes an

E-module spectrum.

Consider the following diagram

[Y,E]®[X,VM] - [Y, E^Uom^E^X, M)

[Y Λ X, VM] -> HomB,(E*(Y Λ X), M)
KE,M

where the vertical arrows μ$ and m% are respectively defined to be μt(f®g)=

μ(f A s) a n d nit{f®a)=a(tn A 1)*(1 Λ f A !)*• By a routine computation we

can observe that the above square is commutative. Thus κEtM: [X, FM]->

HomEdtί(E*X, M) is an isomorphism of E*-modules. In particular, this implies

that the composite ^E,M(IA1)*- π*VM-+E*VM->M is an isomorphism of E*-

modules.

By virtue of Lemma 1.9 each injective E*-module M can be identified with

π*VM. Then the natural isomorphism κE>M: [X, VM]->HomEίlί(E*X, M) may

be regarded as the canonical morphism

(1.7) «E,vM = <p*B: [X> VM]->llomE*(E*Xy E*VM)^HomE,{E*X, π*VM)

where φ is induced by the 2?-module structure map μ\ E Λ VM-*VM, because

^E,M{<> A l)*μ*=λ, i ? > M(l Λ M)*(^ Λ 1 Λ 1 ) * = ^ , M ( ^ Λ !)*( ' Λ U 1 ) * = ^ . M

If D={Dn} is a graded divisible abelain group, then the E*-module

H o m ^ * , / ) )*= {Hom^., , , D)} becomes injective. Setting M ^ H o m ^ * , D)*,

we note that VM coincides with the Anderson dual spectrum VE(D) since η:

ΈlomEJίE*X, Hom(E*,D)*)-+ΐlomEχE*X,D) is an isomorphism. Hence

Lemma 1.9 implies

Corollary 1.10. Let E be a ring spectrum and D— {Dn} be a graded divisible

abelian group. Then the Anderson dual spectrum VE(D) is an E-module spectrum

such that κED: π*VE(D)->Hom(E*, D)* is an isomorphism of E^-modules.

Taking M=Kom(E*, D)* with D={Dn} divisible, we restate (1.7) as the
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natural isomorphism κEtD: [X, VE(D)]->Hom(E*X9 D) can be decomposed into

the composite

(1.8) V*B.VB(D) = -nφκE: [X, VE(D)] -> HomEm(E*X,

-> HomBm(E*X, π*VE(D)) ~ Hom(£*X, Z)).

1.5. Assume that a ring spectrum E satisfies the following property:

(F) E*E is flat as an ϋ^-module.

Then E*X is regarded to be an i^E-comodule as well as an U*-module for
each CW-spectrum X. Given an injective E^E-comodule I there exists a CW-
spectrum Wτ so that

(1.9) κBJ: [X, Wi\ - H o m M ( ^ I , /)

is a natural isomorphism for any CW-spectrum X, by means of Representa-
bility theorem. Setting λ£i/=Λ£f/(l)eHom f f l l l£(£ l*PΓ/, /), the natural isomor-
phism κEJ is given by κEj(f)=\E,if* for each/: X->Wj. For any family {/λ}
of injective i^E-comodules it is obvious that

(1.10) the direct product ΐ[WIλ coincides with the represented spectrum PF7

where / = Π Λ

Corresponding to (1.3) or (1.6) we have

(1.11) each represented spectrum Wr is £*-injective if / is an injective E*E-
comodule.

Let M be an £*-module such that the extended comodule E*E®M is injec-

tive. Put I=E*E®My and consider the composite

(1.12) θκEwl: [X, f F ; ] - H o m M ( £ * I , E*E®M)-+YίamESE*X, M)

in which θ is defined to be θ(a)=(m*®l)a. Since θ is an isomorphism, the
above composite θκEI becomes a natural isomorphism for any CPF-spectrum X.
If an jE*-module M is injective, then the extended comodule I=E*E®M is

exactly injective. In this case we notice that WI^=VM and θκEI=κEM. By the
quite same argument as in the proof of Lemma 1.9 we can show

Lemma 1.11. Let E be a ring spectrum satisfying the property (F), and M
be an E*-module such that the extended comodule I—E*E®M is injective. Then

E*

the represented spectrum Wj is an E-module spectrum such that the composite

^E,M(C Λ 1)* : 7r^WI-^E^WI->M is an isomorphism of E^-modules, where \E,M~
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(E*Wr, M).

A similar discussion to (1.7) shows that the above natural isomorphism
θκEJ: [X, W/l-^HomE^E^X, M) is rewritten into the canonical morphism

(1.13) κEtWl = ψκE\ [X9

where M is identified with π*Wχ by the aid of Lemma 1.11.
For each l^E-comodule / we denote by injdim£j(t£/ the injective dimension

of / as an JŜ J

Proposition 1.12. Let E be a ring spectrum satisfying the property (F), and
L be an E*-module with injdim jE^JB^S®L^l. Then there exists a quasi E-

module spectrum Y such that π* Y has an E*-module structure and it is isomor-
phic to L as E*-modules.

i j
Proof. Choose a short exact sequence 0—>L—>M-»iV—>0 of JS^-modules

with M injective. Set I=E*E®M and J=E*E®N, both of which are injective
m m

i^E-comodules. According to Lemma 1.11 both PF7 and Wj are JE-module spec-
tra such that the composites XEtM(i Λ 1)* : π*Wf->M and \EtN(ι Λ 1)* : π*Wj-^>N
are isomorphisms of .E*-modules. Pick up a map g: WI-^Wj such that θκEj(g)=

f 'g
j^Έ,M^1^-0TΐlE*(E^Wϊ, N), and then consider the cofiber sequence Y—^WJ-^WJ.

Since ~λEtN(l Λg)*=j^E,M> there exists a homomorphism \EtL: E*Y->L of E*-
modules such that λE>M(l /\f)*=iXE>L^HomEit:(E*Y, M). Denote by μι\
EΛ WJ-^WJ and μj\E Λ WJ-^WJ the £-module structure maps of Wj and Wj
respectively, which satisfy that λ£>M(l Λ / ^ / ) * = W ( m Λ l ) * and XEtN(l Λμj)*=
λΈ,Λr(#*Λ !)*• As is easily checked, there holds the equality gμi=μj(l Λg)'
E Λ WJ->WJ. So we get a map μγ: E /\ Y—>Y such that fμγ=μr(l Λ /) a n d
μγ(ι Λ 1)=1. Thus Y is a quasi ^-module spectrum which gives π*Y an as-
sociative E*-module structure. Because the cofiber sequence Y-^WJ-^WJ

induces a short exact sequence 0-*π*Y->π*WI->π*WJ->0 of E*-modules. By
applying Five lemma we can moreover see that the composite XE,L{L Λ !)*• τr*Y
-^>E*Y->L is an isomorphism of E*-modules.

Finally we show

Lemma 1.13. Let E be a ring spectrum satisfying the property (F) and W
be an E-module spectrum such that the extended comodule I—E*E®W* is injective.

Then W coincides with the represented spectrum Wj.

Proof. Use the natural isomorphism θtcEJ: [X, Wj]->llomEή!E(E*X, /)-»
(£*X, π*W) of (1.12). We then get a map /: W-^Wι such that \BtWJ*
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=μ*: E*W->π*W, where \EtW^—θκEI{\) and μ: E j\W~-*W denotes the E-
module structure map of W. Consider the composite

{Θ^Y'ICE.W [X, W) - HomEt(E*X, π*W) ~ [X, W1\

which is certainly induced by the map/, where KE,W—<PKE
 a n d it is defined to be

*B.w(g)=μ*(l Λg)* Taking X=Ί,k for every k, κEtW: [Σ*, W]-^HomBt(E^Σk

9

π*W) is evidently an isomorphism. Therefore we can easily observe that /: W
-*Wi is an equivalence.

2. Injective 2^2^-comodules

2.1. Let £ be a ring spectrum and F be an ^-module spectrum. The
JS-module structure map μ: E /\F-*F gives rise to homomorphisms vEtF:
X*E®F*-^X*F and κE F: [Xy F]->HomEi,(E*X, F*) defined in the canonical

ways. We are interested in ring spectra E which satisfy some of the following
nice properties (see [1] or [2]):

(F) E*E is flat as an 2^-module.
(K) vEy. X*E®F*->X*F is an isomorphism for any Z?-module spectrum F

E*

if E*X is a flat Z^-module.
(U) κEF: [X, F]^>HomEίiί(E*X, F*) is an isomorphism for any E-module
spectrum F if E*X is a projective JS^-module.
(P) For every CPF-spectrum X there exists a CW-spectrum Y and a map
g:Y^X such that £ ^ 7 is a projective £*-module and g*: E*Y->E*X is an
epimorphism.

If a ring spectrum E satisfies the property (F), then the condition (K) im-
plies that

(K/) vEtF\ E*E®F*-^>E*F is an isomorphism for any Z?-module spectrum JF,

and in particular that

(K") VE,VE(D)' E*E®VE(D)*^E*VE(D) is an isomorphism for each graded
E*

divisible abelian group D—{Dn}y

because the Anderson dual spectrum VE(D) is an jB-module spectrum by
Corollary 1.10.

As typical examples of ring spectra satisfying all of the properties (F),
(K) ,(U) and (P) the following spectra aie well known (see [1] or [2, Proposition
III.13.4]):

(2.1) S, HZ/p, MO, MU, MSpy KU and KO .
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In this section we will give some characterizations of J?*-injective spectra
for such a nice ring spectrum E as in (2.1). Putting their results together we
can summarize as follows (cf. [13, Theorem 3 i) and iii)] or [8, §9]).

Theorem 2.1. Assume that a ring spectrum E satisfies the properties (F)
and (K"). Then the following five conditions are all equivalent:
i) W is an E*-injective spectrum.
ii) Wis a quasi E-module spectrum such that E*W is injective as an E*E-module.
iii) W is an E*-local spectrum such that E*W is injective as an E^E-comodule.
iv) κE: [X, W]-+HomE)t:E(E*Xy E*W) is an isomorphism for any CW-spectrum X.
v) κE: [X, W]->HomEi!E(E*X, E*W) is a monomorphism for any CW-spectrum
X.

2.2. Let E be a ring spectrum satisfying the property (F). Then the homo-
morphism κE: [X, W]->Hom(E*Xy E*W) defined by κE{f)=f* is evidently
factorized through HomEli:E(E*X, E*W). Moreover we note that vEtEsW\
E*E®E*W->E*(E Λ W) defined in the canonical way is an isomorphism, even

if E is not assumed to satisfy the property (K').

Proposition 2.2. Let E be a ring spectrum satisfying the property (F).
If W is a quasi E-module spectrum such that E*W is injective as an E*E-comodule,
then it is an E^-injective spectrum and κE: [X, W]->HomEiisE(E*X, E*W) is an
isomorphism for any CW-spectrum X.

Proof. Set I=E*W, which is an injective ϋ^iί-comodule. By means of
(1.9) and (1.11) there exists an ^-injective spectrum PF7 so that κEI: [Xy Wj]-+
HomEή:E(E*X, E*W) is a natural isomorphism for any CW-spectrum X. Taking
X=W, we get a map/: W-^WΣ with κEtI(f) = l. Notice the composite

*i>*: [X, W] - HomM(£,Z, E*W) Ξ [Xy

is exactly induced by the map /. Consider the composite <pκE: [X, E Λ W]->
HomM(E*X, E*(E AW))->liomE,(E*X, E*W) in which φ is defined to be
<p(a)=(m/\l)*a and it is an isomorphism because vE>EhW: E*E®E*W—>

E*(E Λ W) is an isomorphism. Taking X— Σ* for every k, it is easily checked
that κE: [Σ\ E Λ W]-^HomE^E(E^k, E*(E Λ W)) is an isomorphism. Since W
is a retiact of E /\W, κE: [Σ*, W]-^KomE^E(E^Sk, E*W) becomes an isomor-
phism, too. This implies that /: W-^Wj is an equivalence because KE)IKE=

/*: [X, W]-+[X> Wr]. Hence we observe that W is an E*-injective spectrum
and moreover κE; [Xy W]^HomEtE(E*Xy E*W) is an isomorphism.

Adding the condition (K") on E we can show the following result, which
contains the converse of Proposition 2.2.
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Proposition 2.3. Let E be a ring spectrum satisfying the properties (K") as
well as (F). // a CW-spectrum W is E ̂ -injective, then it is a quasi E-module
spectrum such that E*W is injective as an E*E-comodule and κE: [X, W]->

E{E*X, E*W) is an isomorphism for any CW-spectrum X.

Proof. From Lemma 1.4 it follows that W is a quasi 2?-module spectrum.
On the other hand, Proposition 1.6 asserts that W is a retract of a certain
Anderson dual spectrum VE{D)=JlΊ!tVE{pn) with D=(Dn} divisible. So it is

sufficient to show our result for W=VE(D). According to Corollary 1.10,
VE(D) is an i?-module spectrum and κED: π*VE(D)->Ή.om(E*, D)* is an iso-
morphism of ^-modules. Under the condition (K") on E the Z^S-comodule
E*VE(D) is isomorphic to the extended comodule E*E(&Hom(E*, D)*, which

is certainly injective as an Z^E-comodule. Moreover we can easily observe by
use of (1.8) that tcB: [X, VE(D)]-+HomE,E(E*Xy E*VE(D)) is an isomorphism
for any CW-spectrum X.

By making use of Proposition 2.3 we obtain the following result, which
resembles Proposition 2.2.

Proposition 2.4. Let E be a ring spectrum satisfying the properties (K") as
well as (F). If W is an E*-local spectrum such that E*W is injective as an E*E-
comodule, then it is an E^-injective spectrum and κE\ [X, W]->HomElt!E(E*Xi

E*W) is an isomorphism for any CW-spectrum X.

Proof. Set I=E*W, then there exists an E*-injective spectrum Wι so that
κEJ: [Xy Wτ]->HomEtE(E*X, E*W) is a natural isomorphism for any CW-
spectrum X. On the other hand, Proposition 2.3 asserts that /cE: \X, W/\—>
HomElt:E(E*X, E*Wr) is also an isomorphism for any CPF-spectrum X. Taking
X=W in the former and X—Wr in the latter, we get maps /: W-^WT and
g: W^Wr such that XEjf* = l: E*W^E*W and g^=U\EJ: E^W1-^E^Wι

where X5 > /=/c^> /(l)eHom^ j E(£^IF/, E*W). As is easily checked, the map g
becomes just the identity. This implies that /*: E*W-^>E*WT is an isomor-
phism. Since both W and Wτ are E^-local spectra, we then observe that
/: W->Wf becomes an equivalence. Thus W is an E*-injective spectrum and
moreover κE: [X, W]-^HomE^E(E^Xy E*W) is an isomorphism.

Proof of Theorem 2.1. The implication i)-»ii)->iii)->i) is immediately
shown by use of Propositions 2.3 and 2.4. On the other hand, the implication
i)-*iv)-»v)-^i) is done by use of Propositions 2.3 and 1.1.

2.3. Making use of Proposition 2.3 again we can realize every injective
E^E-comodule by a certain E*-injective spectrum when E satisfies the proper-
ties (F) and (K") (cf. Lemma 1.11).
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Proposition 2.5. Let E be a ring spectrum satisfying the properties (F) and

(K") and I be an injective E*E-comodule. Then the represented spectrum Wι is

E*-injective such that XE,i: E*Wj->I is an isomorphism of E*E-comodules.

Proof. Choose a graded divisible abelian group D so that / is embedded
into M=Hom(E*y D)* as E*-modules. Consider the monomorphism i: /->•
E*E®I->E*E®M of i^E-comodules, which has a left inverse/: E*E®M->

ΈJ* E* 2 7 *

/. Identify the injective E^-module M with π*VE(D) by use of Corollary 1.10,
and the extended comodule E*E®VE(D)* with E*VE(D) under our assumption

on (K"). Then we get maps/: WI-^VE{D) and g: VE{D)-^Wj making the fol-
lowing diagram commutative

i - [X,W;]
KE,I v KE Ψ KE,I

, I , / ) τ> Hom^(£*X, E*VE(D)) τ> HomM(E*X91)

where the vertical arrows κEJ and κE are all isomorphisms by (1.9) and Proposi-
tion 2.3. Note that the composite gf: WI->WI is exactly the identity. Since
U=iXEfI: E^Wr-^E^E(D) and j=XEJg*:E*VE(D)-+I, it is easily checked
that \Ej\ E^Wj-^I is an isomorphism of £^£'-comodules where XEj=κE,i(l).

By a quite similar discussion to [8, Theorem 10.1] using Proposition 2.5
with (1.9) we can show

Corollary 2.6. Let E be a ring spectrum satisfying the properties (F) and

(K") and C be an E*E-comodule with injdirng^C^^. Then there exists an Ex-

local spectrum Z such that E%Z is isomorphic to C as E^E-comodules.

Combining Propositions 2.4 and 2.5 with (1.10) we obtain

Proposition 2.7. Let E be a ring spectrum satisfying the properties (F) and

(K") and {/λ} be a family of injective E*E-comodules. Then W is an E*-local

spectrum such that E*W is isomorphic to the direct product J[Iλ as E*E-comodules

if arid only if it coincides with the direct product Π WIλ.

Proof. The "if" part follows immediately from (1.10) and Proposition

2.5. On the other hand, the "only if" part is easily shown by observing (1.10)

and the proof of Proposition 2.4.

2.4. Let E be a ring spectrum satisfying the properties (F) and (K') and
W be an E-module spectrum such that the extended comodule E*E®W* is

injective. Then the i?*i?-comodule E*W is injective since vEtW: E*E®W*->
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E*W is an isomorphism under the condition (K/). So Proposition 2.2 asserts
that W is an E^-injective spectrum and κE: [X, W]->HomEίtιE(E*X, E*W) is an
isomorphism for any CW-spectrum X. Conversely we obtain

Lemma 2.8. Let E be a ring spectrum satisfying the property (F) and W
be an E-module spectrum such that the extended comodule E*E®W* is injectiυe.

E*

Assume that κE: [X, W]~^HomE^E(E^Xy E*W) is an isomorphism for any CW-
spectrum X. Then W is an E*-injective spectrum such that vEW\ E*E®W*-+

E* W is an isomorphism of E*E-comodules.

Pfoof. According to Lemma 1.13 W may be actually regarded as the re-
presented spectrum Wj with I=E*E®W*y which is j?#-injective. Under our

E*

assumption on κE (1.13) implies that κE: [Xy W]^>HomEtE(E*X, E*W) is de-
composed into the composite vκEI: [Xy W]->HomE^E(E^X, / ^ H o m ^ ^ Z ^ X ,
E*W) where v is induced by vEtW\ I-+E*W. Then it is obvious that vEtW: /->
E*W becomes a left inverse of ^EJ—^EΛ^)- I Ω order to show that vEtW is a
right inverse of XEJ we here use the canonical isomorphism θ: HomEήίE(Cy /)->
Hom£slc(C, π*W) for any iϊ^E-comodule C. By using (1.13) again we note that
θ(\Etί)=μ*: Έ*W-*π*W under our assumption on κE where μ: E /\W-+W
denotes the ^-module structure map of W. Taking C=I, it is easily computed
that θ(\EjvEtW)=μ*vEtW=θ(l). Consequently vEtW: I-+E*W is in fact an iso-
morphism of E^E-coτnodules.

Lemma 2.8 combined with Lemma 1.13 and Proposition 2.3 shows

Corollary 2.9. Let E be a ring spectrum satisfying the properties (F) and
(K") and W be an E-module spectrum such that the extended comodule E*E®W*

is injective. Then W is an E*-injective spectrum such that vEtW: E*E®W*->
E*

E*W is an isomorphism of E*E-comodules.

We will here deal with a ring spectrum E satisfying the properties (F),
(U) and (P) in place of (F) and (K")

Lemma 2.10. Let E be a ring spectrum satisfying the properties (F) and
(U). If E*Y is protective as an Ex-module, then κE: [Y, W]->HomE^E(EχY\
E*W) is an isomorphism for any quasi E-module spectrum W.

Proof. Consider the composite <p/cE: [ Y, EΛ W]-^UomE^E(E^ Y, E*(EΛ W))
-^Hom^JS*y, E*W). Here φ is an isomorphism under the condition (F), and
φκE is an isomorphism under the condition (U). Consequently κE: [Y, W] -»
Homjs^E*y, E*W) becomes an isomorphism when W is a quasi E-module
spectrum.
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Using Lemmas 1.4 and 2.10 we obtain

Proposition 2.11. Let E be a ring spectrum satisfying the properties (F),

(U) and (P). // a CW-spectrutn W is E*-injective, then κE: [X, W]->

HomEtE(E*Xy E*W) is an isomorphism for any CW-spectrum X.

Proof. Under the condition (P) we can choose for any CW-spectrum X

a cofiber sequence Z->Y->X such that 0-+E*Z->E*Y->E*X->0 is a short

exact sequence and E*Y is projective as an E*-module. Use the commuta-

tive diagram

[X,W] -> [Y,W] - [Z,W]

0 — B J * y * ) ω ( # , # ) M ( , , *)

with two exact rows. The vertical arrows κE are all monomorphisms by Pro-

position 1.1, and in particular the central one is an isomorphism by means of

Lemmas 1.4 and 2.10. Applying Four lemma we see that the left arrow κE:

[X, W]->HomE*E(E*X, E*W) becomes an epimorphism, and hence an isomor-

phism as desired.

Putting Corollary 1.10, Lemma 2.8 and Proposition 2.11 together we can

finally remark that

(2.2) a ring spectrum E satisfies the condition (K") if it satisfies (F), (U) and

(P)

3. Mϊ^-injective spectra

3.1. Among abelian groups we introduce a partial order as follows. Given

abelian groups G and G' we write

(3.1)

if for each divisible abelian group D there exists a divisible one D' so that Horn

(G,D) is a direct summand of Horn (G', Dr).

Let G and D be abelian groups. If D is divisible, then the short exact

sequence

(3.2) 0 -> Hom(G/Tor G, D) -> Hom(G, D) -> Hom(Tor G, D) -> 0

is split. Heie Hom(G/Toi G, D) is a maximal divisible subgroup of Hom(G, D)

and Hom(TorG, D) is a reduced algebraically compact group (see [9, Theorem

46.1]). Recall that every divisible abelian group D is written into the direct

sum of indecomposable ones which are either isomorphic to Q or Zjp°° for vari-
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ous primes p. Using these facts we can show

Lemma 3.1. <G>^<(G'> if and only if for every prime p there exists a

divisible abelίan group Dp so that Hom(G, Zjp°°) is a direct summand of

Hom(G', Dp) and in addition G®Q=0 whenever G'®Q=0.

Proof. The "if" part: Obviously Hom(G, Q) is a direct summand of

Hom(G', Do) with Z)0=Hom(G, Q). Each divisible abelain group D is written

into the form of ( 0 Q) 0 0 ( 0 Z\p°°) and it is a direct summand of the direct

product (Π Q) 0 Π (Π Z/p00). So the result is immediately obtained.
* o P "p

The "only if" part: Assume that G'®Q=0. By definition Hom(G, Q)

is a direct summand of Hom(G', Do) for some divisible Do. However

Hom(G', DQ) is reduced, in other words Hom(£>, Hom(G/, D0))=0. This im-

plies that Hom(G, 0)=O, and hence G®Q=Q.

For each abelian group G we consider the subset

(3.3) J(G) = {p; (G/Tor G)®Z\pΦO}

of primes p and set

(3.4)

according as either G®ζ)Φ0 or G(g)Q—O. For any divisible abelian group

Dy Hom(G/Tor G, D)*Z/p is isomorphic to Hom(G/Tor G®Z\ρ, Ώ*Z\p). Hence

it is easily seen that

(3.5) H o m ( G / T o r G , Z ) ) ^ ( 0 O ) 0 0 (® Z/p")

where α^φO if D*Z/p^0. In particular, taking D^=Zjp°° we have

(3.6) Hom(G/Tor G, Z/p~) « ((0 g ) 0 ( 0 Z/f") if p*=J(G)

( e g

where apφ0.

For every prime p we can choose a />-basic subgroup J5̂ , of Tor G which

is unique up to isomorphism [9, Theorems 32.3 and 35.2]. The ^-basic sub-

group Bp is written into the form of a direct sum of cyclic ^-groups Zjpk and

it is />-pure in Tor G, and moreover (Tor GjBp)®Z^P) is expressed as the

direct sum of copies of Zjp°°. Consider the subset

(3.7) Jp{G) = {k\ Zjpk is a diiect sum component of Bp}

of positive integers k.
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When JP(G) is an infinite set, the ^>-adic integers Zp is embedded into the
direct product Π Z\pk as a direct summand (cf. [9, Corollary 38.2]). We

k^JCGD

here put

(3.8) JP(G) = (Jp(G) if Jp(G) is finite and (Tor GjBp)®Zip) = 0

I Jp(G) U {ω̂ > if otherwise.

For any p-local divisible abelian group D(P) the short exact sequence

(3.9) 0->Hom(Tor G\BP, £>(/o)-*Hom(Tor G,

is split because it is pure owing to [9, Proposition 44.7] and Hom(Tor GjBp, Dip))
is algebraically compact by [9, Theorem 44.7]. As is easily seen, we have

(3.10) H o m ^ A , ) ) - Π
keJC

with /3AΦ0. On the other hand, Hom(Tor G/Bpy D(Py) is the jp-adic comple-
tion of the direct sum of copies of Zp(use [9, Exercise 47.7]). In particular,
taking D(P)=Zlp°° we obtain

(3.11) Hom(Tor G, Z/p00)

Π (II Zip") if (Tor G/B,)®Z(,,=0
eĵ CfiO βk

where /3*ΦO and /3ωφ0 (cf. [9, Theorem 47.1]).

3.2. By applying Lemma 3.1 with the aid of (3.2), (3.6), (3.9), (3.10) and
(3.11) we will prove the following criterion (cf. [5]).

Proposition 3.2. (G>^<Gr> if and only if /(G)c/(G') and Jp(G)cz
Jp(G')for every prime p.

Proof. The "if" part: If G ' ® ρ = 0 , then J(G')=φ by definition. This
implies immediately that G®Q=0. We will next show that for each prime
p there exist divisible abelian groups Dp and D" so that Hom(G/Tor G,
Zip00) and Hom(Tor G, Z/p00) are respectively direct summands of Hom(G7
Tor G', D'p) and Hom(TorG', D'p'). In order to find a suitable divisible D'p we
may assume that G'®£)Φ0. Evidently Q is a direct summand of Hom(G7
Tor G', Q). If pG/(G), then (3.6) shows that Z/p°° is contained in Hom(G7
Tor G', Zip00) as a direct summand because J(G)(Zj(G'). Taking Z);=(Π £?)θ

(Π /̂p°°) or Π 5 according as p^J(G) or p&J(G), it is easily seen that

Hom(G/Tor G, Z/p°°) expressed as in (3.6) becomes a direct summand of

Hom(G7TorG',Z);).
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Using (3.11) in place of (3.6) we will similarly find a suitable divisible D".
If k^Jp(G), then (3.11) shows that Z\pk is contained in Hom(Tor G', Z\p°°) as a
direct summand because JP(G) C Jp{Gr). Assume that (Tor GjBp)®Z^p)Φ0. In
this situation JP{G') is an infinite set or (Tor G'jBp)®Z^p)^0 because the ele-
ment ωp is belonging to Jp{G)aJp{Gf), Set Dω= Π Z\p°° or Z\p~ according

as JP(G') is infinite or (Tor G'IB'p)®Z(p)*0. By use of (3.11) we see easily
that Horn (Tor G', Dω) contains Zp as a direct summand. Taking D'p'=

Π (Π Zip")®!! Dωy it follows immediately that Hom(Tor G, Z/p00) expressed
6ΞJ-/60 β β

as in (3.11) is a direct summand of Hom(Tor G', Z)") as desired. By the aid of
(3.2) we may now apply Lemma 3.1 to obtain <\Gy^(G'y.

The "only if" part: For every prime p we choose a divisible abelian group
Dp so that Hom(G, Z/p00) is a direct summand of Hom(G', Dp). As is easily
verified, Hom(G/Tor G, Zjp°°) and Hom(Tor G, Z/p00) are respectively direct
summands of Hom(G7Tor G', Z>,) and Hom(Tor G', Z>,). When J(G)=φ, it
follows from Lemma 3.1 that J(G)dJ(G'). Assume that/(G)φφ. For each
prime p^J(G), (3.6) asserts that as a direct summand Z\p°° is contained in
Hom(G/Tor G,Z\p°°) and also in Hom(G7Tor G', Dp). Therefore we see that
Hom(G7Tor G'®Z\p, fl^ΦO, and hence jpe/(G'). Thus/(G)C/(G'), which
implies that/(G)c/(G') .

Pick up a positive integer k^Jp(G) for a fixed prime >̂. By virtue of
(3.11) Z\pk is contained in Hom(Tor G, Z/p00) as a direct summand and
also in Hom(Tor G', Dp®Z(P)). However Z/pk is actually embedded into
Hom(Bp, DP®Z(P)) because Hom(Tor G'jBp, DP®Z(P)) is torsion free. Using
(3.10) we can easily see that k^Jp(G'). Thus JP(G)CZJp(Gf). In order to show
Jp(G)CiJp(Gr) we here assume that/^G) includes the element ωpy thus JP(G) is
an infinite set or (Tor GIBp)®Z(P)Φ0. For our purpose we may consider only
the case when j^(G') is finite and (Tor G/Bp)<g)Z(P)3=0. In this situation Zp is
contained in Hom(Tor G, Z/p°°) as a direct summand by use of (3.11), and hence
in Hom(Tor G', Dp®Z(p)). If Hom(Tor G'\B'P, Dp®Z(p))=0, then Hom(TorG',
Dp®Z(P))^Hom(Bp, DP®Z(P)) is bounded because of (3.10). This is a contra-
diction. Thus Hom(Tor G'\B'Py Dp®Z(p))=t0 which implies that (Tor G'jB'p)®
Z(/oΦ0. Therefore the element ωp is belonging to JP{G') in our case. Conse-
quentlyΛ(G) dJp(G').

3.3. For any CW-spectra E and F we write

(3.12) <£>, ^ <F>,

if every E'̂ -injective spectrum W becomes always 2^-injective (cf. [6], [7] or

Lemma 3.3. ^ ^ ^ . F ^ if and only if every F*-monic map f: X-*Y
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is always E*-monic.

Proof. The "if" part is immediate by definition.
The "only if" part: Given an JP^-monic map f\X->Y we may choose an

Z^-injective spectrum W and an E^-monic map g: X^>W by virtue of Proposi-
tion 1.5. Since W becomes jF^-injective, there exists a map h: Y->W with
hf=g. This equality implies that/: X->Y is j^-monic.

As a relation between the partial orders (3.1) and (3.12) we have

Lemma 3.4. i) // <G>^<G'>, then C E G ^ C E G ' ) , for any CW-spec-
trum E.

ii) Assume that π*E is torsion free and π*E®Z/p + 0 for each prime p.
Then the converse of i) is valid.

Proof, i) is immediate from Proposition 1.6 and Definitions (3.1) and
(3.12).

ii) We may assume that π0E®Zlp=%=0 for a fixed prime p. Set Ap=
Hom(G, Z/p00). By means of (1.3) and (1.4) the Anderson dual spectrum VE(Ap)
becomes iϊG*-injective, and hence it is -EG^-injective. According to Proposition
1.6 VE(Ap) is a retract of a certain Anderson dual spectrum VE(B)=ΐlΊ(

nVE(Bn)

wheie J?n = Hom(G', Dn) for some divisible Dn. So π0VE(Ap) becomes a direct
summand of πo

J7E(B) = Tlπ-nVE(Bn). As is easily computed, πo

17E(Ap)^

Hom(7Γ0£,^)^Hom(G, Hom(τr0£, Z/p°°)) and similarly π-nVE(Bn)^ΐlom(G'y
Hom(zrΛ£, Dn)). By (3.5) the divisible group Hom(π0E, Zjp°°) contains Z\p* as
a direct summand under the assumption that π0E(g>ZlpΦ0. Therefore Ap=
Hom(G, Zjp°°) is contained in πoVE(Ap) as a direct summand, and hence in
7Γ0V£(5)^Hom(G', ΰp) where DP=TL Hom(τrM£;, Dn) and it is divisible.

Similarly we can choose a divisible abelian group Do so that ^40=Hom(G, Q)
is a direct summand of Hom(G', Do). This implies that G®Q=0 whenever
Gf®Q=0j as was shown in the proof of Lemma 3.1. Consequently it follows
from Lemma 3.1 that <G>^<G r>.

Combining Proposition 3.2 with Lemma 3.4 we obtain

Theorem 3.5. i) // /(G)c/(G') and Jp(G)dJp(Gf) for every prime p,

then (EGy^ζEG'yj for any CW-spectrum E.
ii) Assume that π*E is torsion free and π*E®Z/pφO for each prime p.

Then the converse of i) is valid.

As an immediate result we have the following criterion (cf. [7, Proposition
2.7]).

Corollary 3.6. Assume that π*E is torsion free and π^E®Z/pΦ0 for
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each prime p. Then <EG>I=<EGr>I if and only if J(G)=J(G') and JP(G)=

JP(G') for every prime p.

3.4. Let us denote by H the Eilenberg-MacLane spectrum and by KO,

KU and KT the real, the complex and the self-conjugate i£-sρectrum respec-

tively. Recall that VH(G)=HG, VKO(G)=VKOG, VKU{G)=KUG and

VKT(G)=VKTG for any abelian group G (see [4] or [15,1]). Note that the

canonical map ω: VΣnHAn->ϊ[ΣnHAn is an equivalence for any graded abelian

group A={An}. On the other hand, it is well known that the i£-spectra K=
KOy KU and KT possess the period p(K)=8, 2 and 4 respectively.

Taking E=H, KO, KU or KT in Proposition 1.6 we can immediately show

Proposition 3.7. i) A GW-spectrum W is HG*-injective if and only if

it is a retract of a generalized Eilenberg-MacLane spectrum \/ΣnHBn in which

Bn=Hom(G, Dn) for some divisible Dn.

ii) Let K denote the periodic K-spectrum KO, KU or KT. Then a CW-

spectrum W is KG*-injeciive if and only if it is a retract of a certain finite wedge

sum \/Q^n<p(κy^nKBn in which Bn=Hom(G, Dn) for some divisible Dn.

The following easy result is useful in studying the EG^-injectivity when
E=H or KU.

Lemma 3.8. i) If W is a quasi H-module spectrum, then it is a generaliz-
ed Eilenberg-MacLane spectrum written into the form VΈ<nH(πnW).

ii) If W is a quasi KU-module spectrum such that the composite μ*βn(t Λ 1)*
πiW-^KUiW^KU2n+iW->π2n+iW (/=0, 1) is an isomorphism for any n, then it
is written into the wedge sum KU{πQW)\/Ί}KU{πιW).

Proof, i) Our proof is due to [2, Lemma ΠI.6.1]). Set An=πnW and

choose a map fn: !?SAn->W inducing the identity isomorphism between the

n-ύi homotopy groups. Construct a map /: \/Ί?HAn->W whose n-th. com-

ponent is the composite μ(l j\fn): Ί?HAn->H Λ W-+W where μ: H A W-+W

denotes the //-module structure map of W. As is easily checked, the map / is

an equivalence.
ii) is similarly shown to i).

Conserning the HG*-injectivity we obtain the following characterization.

Thoerem 3.9. The following three conditions are equivalent:

i) W is an HG^-injecUve spectrum.

ii) W is a quasi H-module spectrum such that for each n πnW is a direct sum-

mand of Hom(G, Dn) with Dn divisible.

iii) W is a generalized Eilenberg-MacLane spectrum VΣΉAn in which An is a

direct summand of Hom(G, Dn) with Dn divisible.
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Proof. The implication iii)->i)-»ii) follows immediately from Proposition
3.7 i), and the implication ii)->iii) is immediate from Lemma 3.8 i).

Let G be an abelian group whose torsion subgroup Tor G is bounded.
Since the bounded torsion group Tor G is a direct sum of cyclic torsion groups,
the sets JP(G) are finite but they are empty except only finite numbers of primes
p. By means of (3.2) and (3.5) we then observe

βp k

(3.13) Hom(G,Z>)«(φρ)θ θ {® Zip-)®®
<*Q P&ΓζP) Λp P k

for each divisible abelian group Dy where apΦ0 and βPtk^0 if Z)*Z/pφO.

Corollary 3.10. Assume that the torsion subgroup Tor G is bounded. Then

a CW-spectrum W is HG^-injective if and only if it is a generalized Eilenberg-

MacLane spectrum \/ΣnHAn in which each An is a direct sum of divisible groups

and cyclic torsion groups as given in the right side of (3.13).

3.5. Concerning the KUG*-injectivity we obtain the following character-
ization under some restriction to G.

Theorem 3.11. Assume that the torsion subgroup Tor G is bounded. The

following three conditions are equivalent:

i) W is a KUG*-injecιive spectrum.

ii) W is a quasi KU-module spectrum such that KU /\ W is KUG*-injective.

iii) W is a quasi KU-module spectrum such that KU{W is a direct sum of divi-

sible groups and cyclic torsion groups as given in the right side of (3.13).

Proof. By virtue of Corollary 3.6 we may regard as Tor G is finitely gene-
rated.

The implication i)-*ii): According to Proposition 3.7 ii), IF is a retract of
the wedge sum KUBQ\/Ί<ιKUBι for some Bf =Hom(G, Df ) with D{ divisible
(z=0, 1). Recall that KU0KU is a countable free abelian group and KU1KU=0
(see [3, Theorem 2.1]). Then Lemma 3.8 ii) shows that the smash product
KU Λ KU is just the wedge sum VKU of countable copies of KU. Therefore
KU Λ W is a retract of the wedge sum KU(®B0) VVKU^B,). Consider the

short exact sequence O->0Hom(G, Dλ)->Hom(G, ®Dλ)-»C-*0 with Dλ divisi-

ble. Since Tor G may be regarded to be finitely generated, the canonical homo-

morphism 0Hom(Tor G, Dλ)->Hom(Tor G, ΘDλ) is an isomorphism. Hence
\ A.

we get a short exact sequence 0-»φHom(G/Tor G, Z)λ)—>Hom(G/Tor G, ®Dλ)
λ λ.

->C-»0, which is clearly split. This implies that the previous short exact se-

quence is split, too. Consequently we see that ®5 / =0Hom(G, Z>, ) is a direct

summand of 5f.=Hom(G, ® A ) foi each i=0, 1. So KU AW is KUG*-
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injective by use of Proposition 3.7 ii) again.

The implication ii)-^iii) follows immediately from Proposition 3.7 ii) and

(3.13).

The implication iii)->i): By Lemma 3.8 ii) KU Λ W is just the wedge sum

KUA^Ί,ιKUAι with A~KU{W (i=0, 1). From Proposition 3.7 ii) and

(3.13) it is immediate that KU/\W is i£ί7G*-injective. Then W becomes

also KUG*-injective since W is a retract of KU Λ W.
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