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1. Introduction and Results

Let u,Em3,.1(S°) be a p-element of the (8r+-1)-dimensional stable homo-

topy group of the sphere. Adams [1] gave a definition of u,, and showed that
dp(p,)*+0 and ’

(1.1) 7 1(S®) = ZJ2 <u,>®Ker(dy)  for >0,

where dp: 73,41(S°)—>Hom (KO%(S%), KO%(S®*")) is the d-invariant in the KO-
theory. We assume that the mod 2 Adams filtration of u, is equal to 4r4-1,
which determines each y, as a uniquely defined element.

Throughout the paper, CPy denotes the suspension spectrum of a Thom
complex (CPm~ "¢ for —oco<n<m< oo and n¥ oo, where £ is the canonical
complex line bundle over the complex projective space CP™~*. In [5] and [10],
it is shown that, for >0, u, is not in the image of the homomorphism #:
73,(CP7)—ms,.1(S°) induced from a stable map ¢ called a S'-transfer map. On
the other hand, Knapp [9] investigated S*-transfer maps ¢,: =2+ CPy—S°, and
proved that p, is in the image of (f,)x. We remark that f{,—=¢. The purpose of
the present paper is to discuss whether or not g, is in the image of (¢,)4« for other
values of n.

Let I(u,) be an ideal of 73(S°) generated by p,. Then our main result is
stated as follows:

Theorem 1. Assume that r>0. If <871_2ki*—1)—|-2 (8r+2k—1)$0 mod
4 for an integer k, then a 4r—1

I(,) CIm [(ta)s: (S CP5y) — mi(SV)] .

In contrast with Theorem 1, it holds that p,&Im (¢,41)s for any >0 and
k. More generally, if we treat p, with indeterminacy Ker(dy), then it is possi-
ble to give a necessary and sufficient condition for our problem. In order to
state it, we need some notations. Let a} be the coefficient of &' in the power
series expansion of ((¢*—1)/x)’, and, for n<m,

(1.2) u(n, m) = Min {{>0|laj,_;€Z for all j with n<j<m} .
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Also, for n<m, let
(1.3) h(n, m) = |h: 25x(CPy) — H,W(CP7; Z)|

be the order of the cokernel of the stable Hurewicz homomorphism. Then,
we denoet by wu,(n, m) and hy(n, m) the exponents of 2 in the prime power decom-
positions of #(n, m) and A(n, m) respeatively.

We denote the coset class of u, mod Ker(dg) by

(14) [e,] = {u,+xE7i+1(S°) | xEKer (dg)}

for r>0. Then we have the following theorem.

Theorem 2. [u,]NIm[(2,)x: Zins8/(CPR)—>m8r41(S)]=0 if and only if
one of the follswing conditions (a)—(d) holds: (a) n is odd; (b) m<n-+4r; (c) m>
n+4r and uy(n, n-t4r)=u(n—1, nt4r); (d) m>n+4r, wy(n, n+4r)=u(n—1,
n+4r)—1 and u,(n, n4-4r)<hy(n, n-+4r).

We remark that it is possible to prove Theorem 2 by using results of [7],
although we will prove it independently.
We also consider a similar problem to the S°-transfer maps

(1.5) t,: 3" RPT —> S°,

which are defined on stunted real projective spaces, and to the S*-transfer maps
on stunted quaternionic (quasi-) projective spaces. As is easily seen, u, is not
in the image of the homomorphisms induced from S*-transfer maps (see Corollary
2.3). As for the S°-transfer map of (1.5), we have the following:

Theorem 3. (1) If n=0 mod 4, m>n+2 (resp. m>n+1) and r>0
(resp. r=0), then I(w,) CIm(t,)s.
(2) Otherwise, we have [w,] N Im(2,)x=0.

This paper is organized as follows: In §2 we prepare some necessary pro-
perties about yg-elements and transfer maps, and we prove Theorems 1-3 in
§3—5 respectively.

2. Preliminaries

First, we comment on the definition of y, briefly. Recall that a stable map
A: Z* M—M is called an Adams map if it induces a KO-cohomology isomor-
phism, where M=S°U,¢' is the mod 2 Moore spectrum. According to [1],
there exists an Adams map, and a p-element p,Ex3,.1(S°) is defined to be the
stable homotopy calss of the composition 70 A"z, where i: S¥+'—>38+1 M is the
bottom inclusion and 7: SM—S° is an extension of y=ypy: S*—=>S°. We remark
that there is some choice of Adams maps and so g, is not necessarily unique.
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But, in [8] it is proved that the highest value of the mod 2 Adams filtration of
Adams maps is 4. In this paper, we define y, to be the u-element defined using
the Adams map of the highest filtration 4. Then g, is uniquely defined, and its
Adams filtration is 4r}-1.

Let a be an m-dimensional vector bundle over a finite complex X, X* its
Thom space, and 7: S"—X* the bottom inclusion. Then, since dg(u,)=+0 as
in (1.1), we have the following:

Lemma 2.1. If a is a KO-orientable vector bundle, then iy(ur) F0in wanisrin
(X?) for any pr€[n,].

Proof. The assumption says that :*: KO™(X*)—KO"(S™) is an epimor-
phism. The property that dg(x,)=0 means that (u/)*: KO™(S™)—KO™(Sm+ér+1)
=72 is an epimorphism. Hence, (fou})* is an epimorphism, and we have the
desired result.

Let (F,d)=(R, 1), (C,2) or (H,4), and FP; be the suspension spectrum
of a Thom space (FP™~*)*, where £ is the canomical F-line bundle over the F-
projective space FP*~*. By [3], for 1<n<m, FPy is the suspension spectrum
of the stunted projective space FP"/FP*. By [9] o r[11], the cofiber of the
Sé4-!-transfer map ¢,: FP;—S**V*! is homotopy equivalent to ZFP;.;. That
is, we have the following:

Lemma 2.2. For —co<n<m< oo and n= oo, we have a cofiber sequence

t, ]
FPr, 5 ppp 3 g L sppr
where q and i are the collapsing map and the inclusion map respectively.

Since (4/d) & is a KO-orientable vector bundle, we have the following
corollary of Lemmas 2.1 and 2.2.

Corollary 2.3. Assume that d(n—1)=0 mod 4. Then, for the S*'-trans-
fer map t,: FPy—S**Y41 we have [p,] N Im(2,)x=0.

Let e; be the e-invariant in the K-theory. Then Adams [1] showed that
(2.4) ec(p,)=1/2mod 1 and Ker(dg) = Ker(ec) in #d,41(S°) .

Applying this property, we have the following lemma, where X is a finite com-
plex and f: X—S§"* is a stable map.

Lemma 2.5. Assuime r>0. If f*=0: K*(S*)—>K*(X) and H**(X; Q)
=0, then [p, )N Im [ fy: 7iisre1(X)—>75,41(S%)]=0.

Proof. Suppose that u; € Im(fy) for some p;E[p,]. Then we have maps



978 M. Imaoka

g and g satisfying the following homotopy commutative diagram:

wr i
St+8r+1 —_ Sl _— C(‘L;)
el ol e
f 7
X — 8 —C(),
where C(u7) and C(f) are the cofibers of p; and f respectively. Apply K-
cohomology functor on this diagram. Then, i*: K*(C(f))—>K!(S*)=Z<c) is an
epimorphism by assumption, and thus there is an element x€ K*(C(f)) with
i*¥(x)=c¢. Then, by the definition of e;, we have ch(§*(x))=1,~+ec(u)) 111542
H*(C(w}); Q), where ch is the Chern character and 1; denotes a generator of
H{(C(ur); Z). Since H*****(C(f); Q)=0 by assumption, we have ch(§*(x))=
F*(ch(x))=1; and thus ec(p7)=0. But this contradicts to (2.4), and thus we
have the desired result.

By Lemmas 2.2 and 2.5 we have the following:

Corollary 2.6. [p,]NIm(t,)s=0 for r=0, if ¢, is one of the following:
(1) the S°-transfer t,: RPy—S" for odd n;
(2) the S'-transfer t,: CPy—S*"! for m<n+4r.

3. Proof of Theorem 1

We consider the mod 2 Adams spectral sequences
E3t = Exty(H*(W; Z)2), Z12) = ny(W)

for finite CW-spectra W, and denote the r-th terms by E;"*(W). For W=2S8 k;
denotes the generator of E3-*(S%=<Z/2 for 0<7<3. By the vanishing theorem
and the periodicity theorem ([2]), E;+*(S°) are well investigated near the vanishing
line (cf. [12; Chap. 3.4]). The periodicity theorem states that there is an iso-
morphism P: E5-*(S°%) — Es***#+1%(8%), for 4<s<t<<3s+2, defined by P(u)—
{u, hs, hs, a Massey product, and we will apply it repeatedly to our calculation.
As an example, it is known that E5°*¥*1(S%)=0 for s>4r-+2, and that, if we
put @y,.,=P'(hy),

(3.1) Egr+l,12r+2(SO) — Eir+1,12r+2(S0) — Z/2 <a4'+]> ,

where P(h;) is defined by the same way. Then, by the assumption that the
mod 2 Adams filtration of u, is 471, u, just corresponds to a,,4;.
Now, the condition of Theorem 1 is divided into the following two cases:

(Sr—l—Zk—}—l

2
(3-2) 4r-1

)El mod 2 ;
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(3.3) (8r+2k—]~1)+2 (8r+2k—1

4r+1 4r—1

By Lemma 2.2, Theorem 1 is equivalent to the assertion that iy(u,)=0 in
wirssr—1(CP3EELT) if (3.2) or (3.3) is satisfied, where 7: S#~2—CP3;*{" is the bot-
tom inclusion. Then, since E3:**3 **=1(CP3}*{")=0 for s>4r-2 by the vanish-
ing theorem, the following theorem implies Theorem 1 by (3.1), and the rest of
this section is devoted to the proof of it.

)EZ mod 4.

Theorem 3.4. If (3.2) (resp. (3.3)) is satisfied, thet isx(@4y4)=0 in
E;'*1'”"*“’(CP§ﬁi‘f’)(resp. Eé’“'”’*“(CP%ii‘f’)).

We use conditions (3.2) and (3.3) to ensure the the following lemma, which
is an immediate consequence of results by Crabb and Knapp in [6], where
hy(n, m) denotes the integer defined below (1.3).

Lemma 3.5. Assume that (3.2) (resp. (3.3)) is satisfied. Then, hy(2k—1,
2k+4r)=4r--1 (resp.==4r), and, as a generator of the free part of wirssr(CP3r-1),
we have an element x whose mod 2 Adams filtration is 4r+1 (resp. 47).

Proof. In [6] and [7], the codegrees cdy(cr, X) and the j-theory codegrees
cdi(et, X) of vector bundles @ over connected spaces X are determined under
some conditions. We put L=2k+4r-+1. Then, by [6; Cor. 1.3] and [7; Prop.
5.24], we have cdj(—LE, CP*+")==4r+1 if (3.2) is satisfied. By similar calcu-
lations, we see that cdj(—LE, CP**')=4r if (3.3) is satisfied. By [6; Th. 1.5 and
1.6] and the proofs of them, if cdj(—LE, CP"*')=4r+-& for €&=1 or 0, then we
have cdy(—LE, CP**')=4r+-¢, and it holds that, as a generator of the free part
of the stable cohomotopy group z372((CP*+')~%), we have an element y whose
mod 2 Adams filtration is 47+&. Since CP3%1" is S-dual to (CP¥*')~%¢ by [3]
and hy(2k—1, 2k+47r)=cdy(—LE, CP**') by definitions, the dual element x&
mir+a,(CP3EEL") of y is the required generator of the free part, and we have the
desired result.

In order to prove Theorem 3.4, we also need the following two lemmas.

Lemma 3.6. Assume that m<n--4r. Then, for the inclusion i: S**—>CPy;,
we have 1y(11,) %0 in 73, 12041(CPY), and hence ix(ay1,)+0 in E37 1127 +242(CPY),

Lemma 3.7. For integers r>0 and k, we have an element b satisfying
B3 Y CPRH Y =Z|2Kb> and  hob = ix(a44),
where 12 S*2>CP2%+4=1 {5 the bottom inclusion.

Lemma 3.6 follows obviously from Lemma 2.2, Corollary 2.6 and the van-
ishing theorem. We postopone the proof of Lemma 3.7 until the end of this
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section, and prove Theorem 3.4 first.

Proof of Theorem 3.4. Put X=CP3*# and X'=CP%#+{"-'. 'Then, the

’

l .
cofiber sequence X'—X=>S**% induces the following exact sequence of E,-
terms:

E;,s+87+4k(X)-g’f E;S(SO) _6_) E§+l's+8'+4k(X') li/k) E§+l,s+8r+4k (X) .

By Lemma 3.5, as a generator of the free part of z3,.4(X), we have an element
x whose mod 2 Adams filtration is 4741 (resp. 47), if (3.2) (resp. (3.3)) is satisfied.
Also, by Lemma 3.7, we have E3"'*"**~Y(X")=Z/2<{b> and hob=14(a4,+1)-

First, we assume that (3.2) is satisfied. Then x represents an element
yEEY+Lr (X which satisfies pg(y)=ho"*'. It holds that 8(hg")=ix(as+1)
in E§7+112r+4k(X") because otherwise we have hy(2k— 1, 2k +4r) <4r which does
not occur by Lemma 3.5. Hence, i4(a,4;)=0 in E3"*"?"**¥(X), and thus we
have the desired result in this case.

Next, we assume that (3.3) is satisfied. Then x represents an element y&
E412+4( X)) and then we have py(y)=h$". In this case, we have A3~ =(py)
(2) for some z€E{~112r+4-1(X)  In fact, if hd"~'eeIm(px), then we have
Ohy"'=b and 8l =hb=ix(ay+1)+0 by Lemmas 3.6 and 3.7, which con-
tradicts to the equality py(y)=hs". Hence E5+'12+**(X)=Z/2{ix(a4+)), and
Esttes+8rik( () —0 for s>4r+1. But we have 2=0€ E¥~11#*4*-1(X), because
otherwise we have /y(2k—1, 2k--4r)<4r—1 which does not occur by Lemma
3.5. Therefore we have dy(2)=ix(a4+1), and thus iy(@,+,)=0 in E3"*1127+4¥(X),
which establishes the required result.

Proof of Lemma 3.7. As in (3.1), we have P(ay,+;)=a,,45 for =1, where P
is the isomorphism in the periodicity theorem. We put a,,=FP" " (h3h;) € E3"-**"~!
(S%. Then, itis known that 4,, is represented by an element «,, which is in
Im(J)Cz3,-1(S°) and of order 2, and we have E3"'*~}(S%)=E¥1*"~1(§%)=Z/2
{a,y and E5°*¥~1(8%=0 for s=>4r+1 by the periodicity theorem.

i
Consider a cofiber sequence S11S°——>M,,—¥>S2. Then, %2 M,=CP%_,,

and we have an isomorphism #4: Ej*+3 =} (CPj}_ )= Es**8+%#=1(CP} )
for s>4r, where i’ is the usual inclusion. Thus, to obtain the required result,
it is sufficient to prove that there is an element we E3"'"*(M,) with hyw=iy
(a3,+1), because then b=14(w) is a desired element.

By using the exact sequence of E,-terms induced from the above cofiber se-
quence, we see that E5**3*(M,)=0, Z/2{ix(as+)) and Z|2{w) according as
s=>4r+2, s=4r-+1 and s=4r, and we have gy(w)=a,, since h, a,,=0. Also we
have E3**%(M,)=0 for s>4r+1. Thus E5"'*"*}(M,)=E"*"*(M,)=Z|2{w).
We show that w is the desired element. To do it, we consider an exact sequence
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73, (S°) iy 75, +1(S°) ad 7ars1(My) & 73r-1(S°). Let vEm;,.1(M,) represents w.
Then gyv=a,,, and we have 2vEi,y, a,,, 2> by [15; Prop. 1.8], where < , , >
denotes a Toda bracket. But, u,E<7, 2, a,,> by definition, and thus by
[15; (3.9)] we have 2v=14(u,+2u) for some uE x3,.,1(S°). This yields that A=
t%(@4y+1), and we complete the proof.

4. Proof of Theorem 2

Theorem 2 gives a necessary and sufficient condition for
(4‘1) [ll’r] NIm [(tn)*: ”§n+8r(CP:') - ”§r+1(So)] =0,

where »>0 and m>n. By Corollaries 2.3 and 2.6, (4.1) holds if the condition
(a) or (b) of Theorem 2 is satisfied. In this section, we prove that, for m >n--4r,
(4.1) holds if and only if the condition (c) or (d) of Theorem 2 is satisfied.
Then it establishes Theorem 2.

When we treat y, with indeterminacy Ker(dg), the Adams-Novikov spectral
sequence

E? «(X) = Extiifau(MUyg, MU(X)) = mi(X)
is an efficient tool, where MU is the Thom spectrum of the complex cobordism

theory. The cofiber sequence in Lemma 2.2 induces an exact sequence

)
(42) 0= B2 20ss/(CP1) 12 B3 005 (CPE) > ElLgyua(SY).

Let PMU,( ) be the group of all primitive elements in MU, ) with respect
to the MU4MU-comodule structure of MUy( ). Then, it is a fundamental
fact that Ej »( )=PMU,( ), and for k>h we have

(4.3)  E}:4(CPy) = PMUyu(CP7)=Z{g,,> for some generator g, , .
Also we need the following well known fact.

Lemma 4.4. (1) Ef s,.2(S°)=ETs,+2(S°)=Z|2{atyy+1) and o,y is repre-
sented by p,.

(2) 8 induces a homomorphism Eg 3n,5,(CP7)—ET s, .2(S°), which is associated
with (tn)*: ”;n+8r(CP:)_’>7f§r+l(So)-

By (4.2-4), we have the following:

Corollary 4.5. Assume that m>n-4r. Then, (4.1) holds if and only if
one of the following holds:

(1) gx(gn-1,n+4r) = T Lnntars

(2) gx(gn-1.n+a4r) = £28n n+4r AN gy 14y EEG 2018, (CPY).
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In order to combine Corollary 4.5 with the required result, we need to
represent g, , in an explicit form, and we use a method given by [13] and [4].
In order to describe it, we prepare the following notations to denote generators
of E-homology groups of CPy; and MU for E-==H, MU or K.

Ex(CP7) = Ex{B%, Brs1, > and  Eyx(MU) = Eu[bf, b7, -],

where | BF|=|bF|=2. Also, ()} denotes the 2j-dimensional part of (145
«++bf), and we identify it with an element of m;(MU)®Q. Then g, is
represented by the following formula, in which u(k, ) is the integer gievn in
(1.2).

Proposition 4.6. Assume that h<k. Then we have
&ni = u(h, k) i}' (B)i=: BYY  up to sign.

Proof. We put B=3Y_,(b)i-; B¥U. By the similar reason as in [13], it is
easy to see that BE PMU,(CP;)QQ=(. By Baker ([4]) it is shown that the
Todd genus 7: MU—K induces an isomorphism 74: PMU4(CPy)—PK4(CPy)
by the Hattori-Stong theorem, and it is known that 74(8¥Y)=8¥ and 74(6¥)=
(1/G+1) Yt emy(K)QRQ (cf. [14]), where tEmy(K)=</ is a generator. Thus
we have

ru(B) = 3} aks 7 BF

where a} is the coefficient of x’ in the power series expansion of ((e*—1)/x)’.
Hence, by (1.2), u(h, k) is the minimum positive integer such that u(k, k)B is an
integral class, and thus we have the desired result.

Now, we can complete the proof of Theorem 2. The condition that
G(Zn-1,5+4r) = = &n,n+4r (€SP (Zn-1,n44r) =28y n+4,) in Corollary 4.5 is equiva-
lent to that u,(n, n+4r)=uy(n—1, n4-4r) (resp. uy(n, n+4r)=u(n—1, n+4r)—1),
by Proposition 4.6. Also, we have u,(n, n4-47)<hy(n, n+4r) if and only if
Zumtar EET 2048,(CPy), by (4.3), Proposition 4.6 and the definition of A(n, m).
Therefore, for m>n+-4r, the conditions (c) and (d) in Theorem 2 are equivalent
to those of (1) and (2) in Corollary 4.5 respectively. Thus we have the desired
result.

5. Proof of Theorem 3

Let M,=S*U, CS* be the mod 2 Moore spectrum. Then the stable cell
structure of RP{}*} is given by

(5.1) RP:;::% = S“_l Uz\ﬁ, C(S“_IVMM) ’
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where 7 is an extension of 5==p,, and thus the following lemma is easily seen,
where [X, Y] denotes the abelian group of all stable homotopy classes of stable
maps from X to Y.

Lemma 5.2. (1) =zi(RPi*1)=0.
(2) 2Vn)x: [Mys1, RPE1>[ My, S*] is an epimorphism.

Now, Theorem 3 for #=1 mod 2 has already shown in Corollary 2.6. By
Lemma 2.2, we have a cofiber sequence

ty . )
(5.3) RPr 2 8" 5 sRPE,

where ¢, is the S°-transfer map and 7 is the bottom inclusion. Then we have
Theorem 3 for =2 mod 4 as follows:

Lemma 5.4. If n=2 mod 4, then [u,]NIm(t,)x«=0 for =0 and m>n.

Proof. We prove that iy(p))=#0 in z},s,(RPs_,) for any p/E[n,]. Then
it yields the desired :esult by (5.3). Let 0: SRP;.,—3* RP,Z} be the attaching
map, and ¢': S*'—>3% RP;} the bottom inclusion. Since the attaching map of
the top cell of 32 RP;=; is homotopic to i’oy by (5.1), and, since it is also homo-
topic to 9oz, we ha have

0xtx(pr) = i5(nur) .

But 32 RP;Z5=M,_,, and 2 {/nu, in =5,,2(S°) by [1; Th.1.4]. Hence we have
t%(nur) =0, and thus the desired result that 74(u’)==0.

Now, we begin the proof of theorem 3 for =0 mod 4, and so we put n=4k.
Let 7, yy: RP{;_1—RP7;_; be the inclusion for 4k<t<m. For m>4k+1, i4x(m,)
Enmiy(RPH-1) is in the image of (4441 )%, and thus we have 74(u,)=0 by Lemma
5.2(1). When m=4k, i4(u,)#0, since #,,: S#*—S* is of degree 2 and 2 u,.
Thus we have the following lemma, which is the assertion of Theorem 3 for p,
and n=4k.

Lemma 5.5. u,&Im(t,) if and only if m>4k+-1.

Lastly, the following lemma completes the proof of Theorem 3.

Lemma 5.6. Assume that r>0. Then, u, € Im(ty)x if m>4k+2, and
[ )N Im(24)x=0 if m=4k or 4k+1.

Proof. First we assume that m>4k-+2, and prove that iy(u,)=0 for the
bottom inclusion . Then it yields the desired result in this case by (5.3). By
Lemma 5.2(2), we have iy(7)=0 in [M,,, RP*}]. But, since u,=%oA"oi by
definition, we have 74(u,)=0, and the desired result. TFor the case of m=4k,
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the assertion is obvious, because #,,: S*—S* is of degree 2 and 7 is not devid-
ed by 2 for any p;E[u,]. Next, we assume m=4k+1. Then, by (5.1) and

(5.3), t4==2V 5: S*#\ Stktl Sk,

Suppose that u,EIm(t,)« for some prE[p,].

Then we have ul=na,+2¢, for some a;E73,.:(S°), and pu;=2"a,. But this is
impossible, because the Adams-Novikov filtration of yu; is 2 (cf. [12; Chap. 5.4])
and that of %?q, is greater than 2. Thus we have p;eIm(#,)%, and complete

the proof.
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