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1. Introduction

Consider a singular perturbation of the Laplacian Δ on the rf-dimensional
Euclidean space R d :

L= -Δ+LΓ.

Here LΓ is a linear operator "living on" a closed subset TdRd which might be
of zero Lebesgue measure and as irregular as a fractal set. The problem is

how and when we can give L a proper sense. One way to formulate this is to
introduce a perturbed bilinear form

, S) = D(f, g)+βτ(f I Γ, £ I r) , f, geC7(B?) ,

where D is the Dirichlet integral and 6T is a closable pre-Dirichlet form on
L2(Γ; μ) for some positive Radon measure μ on Γ such that C%(Rd)\Fc:*D[βΓ].

If 8 is proven to be closable on L2(Rd), the L2-sρace based on the Lebesgue
measure dx, then the associated self-adjoint operator on L2(Rd) may be thought
of as a realization of L.

Some sufficient conditions for the closability of the perturbed pre-Diri-
Λ

chlet form 6 are known (M. Fukushima [2; §2.1], J.F. Brasche and W. Kar-

wowski [1]). It is plausible that 6 ought to be closable on L2(Rd) under the

sole potential theoretic assumption that μ charges no set of zero (Newtonian)
capacity. A purpose of the present paper is to affirm this in a more general

context as will be stated in §2 and proven in §4.
The proof in §4 involves the notion of the quasi-support of a measure

and its characterization crucially. The quasi-notions have appeared in poten-

tial theory in diverse contexts. Another aim of the present paper is to show in
§ 3 the existence of the quasi-support along with its useful characterizations in

terms of classes of quasi-continuous functions.
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Using the characterization, the quasi-support of a smooth measure is seen
to be identical with the probabilistic notion of the support of the additive func-
tional associated with the measure. The latter notion has been adopted re-
cently by M. Fukushima, K. Sato and S. Taniguchi[3] to describe the closable
part of a pre-Dirichlet form and to give a necessary and sufficient criterion for
the closability. In §5, we restate some basic results of [3] in terms of the quasi-
support together with alternative proof using a characterization of §3 instead
of the usage of additive functionals. In particular, a characterization due to
M. Rϋckner and N. Wielens[5] for the closability is recovered. The arguments
in §4 can be regarded as a reduction of those in §5 to a simpler specific situa-
tion.

2. Statements on closability of perturbed pre-Dirichlet forms

In what follows, we fix a locally compact separable metric space X. C0(X)
denotes the family of continuous functions on X with compact support. Suppose
that a pair (<?, C) satisfies the following conditions:

(1) C is a dense subalgebra of CQ(X) such that, for any compact set K and
relatively compact open set GuK, there exists u^C with u=l on K,
u=0 on X~ G and 0<u<l on X. Furthermore, for any £>0, there
exists a real function φz(t) with φt(t) = l, ί^[0, 1], — ε^φ^ή^l+ε,
t(=R and 0^φt(t')—φf(t)^t'—t for t<tf such that φz(C)aC.

(2) 6 is a non-negative definite symmetric bilinear form on C such that,
for each £>0 and for some function <pe satisfying the condition in (1),

Then we call 6 or the pair (<?, C) a pre-Dirichlet form over X.
Denote by <3tt the family of positive Radon measure on X and let

Jli1 == {m^ <3tt: supp m = X}.

where supp m denotes the topological support of m. A pre-Dirichlet form
(<?, C) is called closable on L\X\ m) for m^<5M,' if S(un, wΛ)->0 whenever un^Cy

{un} is <?-Cauchy and wΛ->0 in L2(X\ m). If this is the case, the closure (<?, 3)
of (<?, C) on L2(X\ m) is a regular Dirichlet form on L\X\ m). Conversely,
given a Dirichlet form (69 3) on LZ(X\ m\ the restriction of G to any subfamily
Cd3 satisfying condition (1) is a pre-Dirichlet form closable on L\X\ m). In
this case, G satisfies a stronger condition than (2) in the sense that the statement
"for some function φ" in (2) can be strengthened to "for any function φ" .

If (<?, C) is a pre-Dirichlet form closable on L\X\ m) for some m^<3tt,\ we
have the associated notion of capacity which can be evaluated for compact set
Kzs

Cap (K) = infill, u): u£ΞC, u>l on K},
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where 8\(u, v) is the sum of 8(u, v) and the inner product (u, v)m in L\X\ m).
The set of zero capacity is called 8λ-polar to indicate its relevence to 8 and m.

Theorem 2.1. Let (6, C) and (8, C) be pre-Dirίchlet forms closable on
L2(X; m) and L2(X\ m) respectively for some m, rh^Jtt'. We assume that

8(u,u)>8(u,u) ,

and that fa charges no 8rpolar set. Then (8, C} is closagle on L2(X\ m).
Theorem 2.1 will be proven in §4 by using quasi-notions studied in the

next section. We now show an immediate consequence of Theorem 2.1.

Theorem 2.2. (superposition of closable forms). Let (6, C) be a pre-Dίri-
chlet form closable on L2(X m} for some m e <_5K ' . Consider a collection {Tβ θ e Θ}
of closed subsets of X and suppose that, for each θ^θ, there exist a positive Radon
measure μθ on X charging no δi-polar set with supp μθ=Tθί and a pre-Dίrichlet
form 8B over Γθ closable on L2(TQί μθ) with C \ ΓβC.2)[£β]. Further let (Θ, JL, v) be
an auxiliary σ-finite measure space such that βθ(f \ TQ, f \ ΓΘ) and μθ(K) are, as func-

tions of θ^θ, v-ίntegrable for every f^C and every compact KdX. Then the

form 6 defined by

is a pre-Dirίchlet form closable on L2(X; m).

Proof. In view of the remark made after the definition of the pre-Diri-
Λ

chlet form, we can see that (8, C) is a pre-Dirichlet form. If we let

the m is a positive Radon measure on X charging no <?rpolar set. Further-
more in the same manner as in the proof of [2; Theorem 2.1.3], we can show

that 8 is also closable on L2(X\ rh). Hence 8 is closable on L2(X\ m) by The-
orem 2.1.

3. Quasi-supports of smooth measures and their characteri-
zations

Let m be in <3tt,' and (<?, £F) be a regular Dirichlet form on L2(X] m). Then

we have the associated capacity Cap, and we use the terms "quasi-continuous",
"polar" and "q.e." in relation to Cap. We add "<?r" in front of these terms
when it is necessary to emphasize their relevence to 8 and m. Without loss

of generality, we assume that each element of 3 is quasi-continuous. Two ele-
ments of 3 represent an equivalence class of £FcL2(^Γ; m) iff they coincide q.e.
An increasing sequence {Fn} of closed sets with lim^oo Cap (X—Fn)=Q is said
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to be a nest.
A set EC: X is called quasi-open if there exists a nest {Fn} such that EΓlFn

is open in Fn in the relative topology for each n. The complement of a quasi-

open set is called quasi-closed.

Lemma 3.1. (i) A set F&X is quasi-closed if and only if there exists a

quasi-continuous function u with F=u~\{0}) q.e.
(it) If F is quasi-closed, then, for any relatively compact open set G, there

exists a non-negative quasi-continuous function u in 3 such that w=0 q.e. on F
and u>0 on G—F.

Proof. The "if" part of (i) is evident. We give probabilistic constructions
for the rest of the proof. Consider a Hunt process M=(Xt, Px) on X associated
with the regular Dirichlet form (<?, £?) on L2(X\ πί). For any Borel set B,
denote by eB the 1 -order hitting probability of B:

eB(x) = Ex(e-°*) , x^X,

where σB— inf {£>0: Xt^B}. When Cap (J5)<oo, eB is a quasi-coninuous ver-

sion of the (l-)equilibrium potential of B ([2; Th.4.3.5]). But we can see that
eB is quasi-continuous for any Borel B. In fact, for any relatively compact E C
X, w=eB/\eE is a 1 -excessive function dominated by eE^ΞF. Hence w^3
(by [2; Lemma 3.3.2]) and w (and consequently eB) is quasi-continuous (by [2;
Th.4.3.2]).

Now, for any quasi-closed set F, the function

u(x) = \—eF(x) , x^X ,

has the required property in (i) because F— Fr is polar (by [2; Th.4.2.3]) and
eF(x)<l q.e. x^X~F (by [2; (4.3.5)]). The properties stated in (ii) is satisfied
by

u(x) =

where v is a (quasi-continuous) bounded function in 3 such that z>>0 on G
and v=Q q.e. on X-G (eg.v(x)=Ex(f^-^ e"ff(Xt)dt) for bounded />0, /<Ξ
L*(X;m)).

Corollary 3.2. Any m-negligίble quasi-open set is polar.

Proof. Let E be an m-negligible quasi-open set. By Lemma 3.1(i), E=
{wφO} for some quasi-continuous u. Then u—Q m — a.e. and consequently
q.e., namely, E is polar.

A measure μ^<3tt is said to be of finite energy integral if SdL\X\ μ) and

(3.1) J \v(x)\μ(
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for some positive constant C. The family of all measures of finite energy in-

tegrals is denoted by SQ. A positive Borel measure μ is said to be smooth if μ

charges no polar set and there exists an incresaing sequence {Fn} of closed sets
such that

(3.2) μ (x- U FH] = 0, lim Cap (K—Fn) = 0 for any compaat set K
\ «— 1 / «-»oo

and μ(Fn)<oo for each n. S will denote the totality of smooth measures. S

contains the class c_5K0 defined by

μ charges no polar set}.

It is known ([2; Th.3.2.3]) that μ^S iff there exists an increasing sequence {Fn}

of closed sets satisfying (3.2) and IFn μζ=SQ for each n.

For set A, BdX, we write

AdB q.e. (resp. A=E q.e.)

if the set A—B (resp. the symmetric difϊernece AQB) is polar. For μ^S, a set

Fd X is said to be a quasi-support of μ if

(a) F is quasi-closed and μ(X— JF)=0

(b) if JP is another set with property (a), then FdF q.e.

The quasi-support F of μ^S is unique up to a polar set. Let F^supp

μ be the toplogical support of μ. Since any closed set is quasi-closed, we have
FdF q.e., and by deleting a polar set from F if necessary, we can always assume

Theorem 3.3.
(i) Any μ^S admits a quasi-support.
(it) For μξ=S and quasi-closed F(ΣX, the following conditions are equivalent :

(1) F is a quasi-support of μ.

(2) u=Q μ—a.e. on X if and only if u=Q q.e. on F for any u

(3) Condition (2) holds for any quasi-continuous function u.

Proof. We first prove (ii).

(2)=>(1): For μ^S and quasi-closed F, we set

(3.3) 3Zμ= {u<=3: J |

(3.4) 3>c={tte3 :n=0 q.e. on F}

and assume that 3?μ,=2v. For any relatively compact set G, take a function u
of Lemma 3.1 (ii). Then u^3Fc and hence u^Jlμ,, which means μ(G—F)=0.

Consequently we get μ(X— F)=Q. Consider other quasi-closed set Fl with
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μ(X—F1)=0. Take again a function % of Lemma 3.1 (ii) for G and Fλ. Then
u^Jlμ. and hence u^3Fc, which means F Π GdFl Π G q.e. Accordingly J?C

FI q.e. proving that F is a quasi-supo support of μ.

(l)-^(3): Suppose (1) is satisfied. Then the "if" part of condition (2)

is celarly satisfied for any Borel function u. If u is quasi-continuous and u=0
V V

μ—a.e., then the set F= {#— 0} has the property (a) and hence FC.F q.e. and
u=0 q.e. on F.

The implication (3)=Φ(2) is trivial.
(i) can be proved as follows. For any μ&S, the space 32μ defined by (3.3)

is a closed subspace of the separable Hubert space (£?, £ι) because IFίt μ&S0

for some increasing closed sets Fn satisfying (3.2) and 3 is continuously embed-
ded into L\X\IFn μ) for each n by (3.1). Choose a countable dense subcol-
lection {uk} of 3Zμ and let

(3.5) F=v-\{Q}) for *(*) = Σ 2

Since #^37μ, ί
1 is quasi-closed by Lemma 3.1(i) and further μ(X— F)=0.

Hence we arrive at the equality 3Ίμ,=3?Fc for 3Fc defined by (3.4) for this F.
We can then conclude that F is a quasi-support of μ from (ii).

Corollary 3.4. The underlying measure m has the full quasi-support X.

Finally we state an important probabilistic consequence of Theorem 3.3
although we shall not use it in this paper.

Corollary 3.5. For μ^S, the support of the associated positive continuous
additive functional (PCAF) of M is a quasi-support of μ.

Proof. Denote by A a PCAF of M associated with the smooth measure
μ<=S (cf. [2; Chap. 5]). The support FA of A is defined by

FA = {xEΞX-N: Px(At>0 for any f>0) = 1},

where TV is an ecxeptional (polar) set for A. Then

FΛ = {xeX-N: eFA(x) = 1}

and consequently FA is quasi-closed since eFA is quasi-continuous as was seen
in the proof of Lemma 3.1. Furthermore we can check the property (3) of The-
orem 3.3 (ii) for μ and FA in the same way as in the last paragraph of the proof
of [2;Th.5.5.1].

4. Proof of Theorem 2.1.

We prove Theorem 2.1 by a series of lemmas. Suppose that <?, <?, m and
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rh satisfy the conditions of Theorem 2.1. Let (£, 3") and (β, 3) be the clo-

sures of (£, C) and (£, C) on L2(^Γ nί) and L2(-SΓ, /&) respectively, (u, v)m (resp.
(w, s;)£) denotes the inner product in L\X\ rri) (resp. LZ(X\ w)). Recall that

Gι(u, v) (resp. Gι(u, v)) stands for ^(z/, v)+(u, v)m (resp. (^(z/, α)+(^ v)ά). Note
further that the conditions of Theorem 2.1 are never destroyed if we replace rh
by m-\-tfi. Hence we can assume without loss of generality that

(4.1) rh > m .

Lemma 4.1. We let

(4.2) 8m(u, ^) - £(«, v)+(u, v)m , n,

Then (8m, 3") is a Dirichlet form on L2(X\ ni) possessing C as a core. Moreover
this is transient, namely, there exists a strictly positive wi-integrable function g such
that

(4.3)

Proof. The first assertion is evident because G?(u, u)=βm(u, u)-\-(uy u)ά is

equivalent to 6ι(u,ιΐ) for w^£F. Since rh^Jft^ with respect to the Dirichlet
form (<?, £F) on L2(X\ m) by assumption, there exist increasing closed sets Fn

such that (3.2) holds for rh and (3.1) holds for IFΛ^ and some positive constant
Cn for each n. Hence we can find a function g with the required properties.

Lemma 4.2. The measure m has the full quasί-support X with respect to
the Dirichtet form of Lemma 4.1.

Proof. Let S be a quasi-support of m with respect to the Dirichlet form

(βm, 3) onL2(X; rn) of Lemma 4.1. E=X— S is then £Γ-quasi-open and m(E)

=0. Due to the domination of 6T over 6l9 E is also ^-quasi-open and con-
sequently £χ-polar by Corollary 3.2. Then E is ^-negligible by the assumption

and 8\ -polar by Corollary 3.2 again.

The next lemma particularly implies Theorem 2.1. Denote by (βm,β)
the extended Dirichlet space of the transient Dirichlet form of Lemma 4.1. Q

is the completion of 2 with respect to the metric Qm. We may assume that

each element of Q is <?Γ-quasi-continuous.

Lemma 4.3. (<?, S] is a Dirichlet form on L\X\ m) possessing C as its core.

Proof. If u^Q and u=0 m—a.e. on Xy then w—0 6\—q,e. on X by

Lemma 4.2 and Theorem 3.3, and hence β(u, u)—0. Therefore (GyS) can be
regarded as a symmetric form on L2(X\ m). The rest of the proof is clear from

Lemma 4.1.
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5. Closable part and closability criterion in terms of quasi support

In this section, we restate some basic results of [3] in terms of the quasi-

support and we see how an analytical characterization of § 3 simplifies the argu-

ments. For m^tSM! , let (<?, 3) be a regular Dirichlet form on L\X\m) pos-
sessing as its core a set C satisfying condition (1) in §2. (<?, 3) is assumed

to be either transient or irreducible. For simplicity of presentation, we only
describe the case that (<?, £?) is transient. The irreducible case can be treated
in the same way however by considering the transient Dirichlet form <?μ( , •)

=£(•,•)+(•> )Λχί« ([3], [4]).
Take any non-trivial μ^JMQ. Denote by F and F the (topological) support

and the quasi-support of μ respectively. As was noticed in §3, we may asume
that FaF. For a moment, we do not assume that F—X. Consider the extend-

ed Dirichlet space (£?e, S) of (£?, 6). 3e is a Hubert space with inner product
6 and each element of £?„ can be assumed to be ^-quasi-continuous. Let

ff.. JΓ-F = {we£?β: u = 0 q.e. on F} .

This is a closed subspace of (£Fβ, <S). Denote by Pj? the orthogonal projection

on the orthogonal complement of 2βt X-p.

Note that, if vly v2^3e and vλ= v2 μ—a.e. on F, then Vi=v2 q.e. on F by
virtue of Theorem 3.3, and consequently PpVl^=PFV2 Therefore the following
definition makes sense:

£?μ = {u^L\F\ μ): u = v μ—a.e. on F for some u

6*(u, u) = G(PFV, Ppv) for v as in the above braces.

Lemma 5.1. (£?μ, βμ) is a Dirichlet form on L\F\ μ) possessing C\F as a
core. Here C \ F denotes the restrictions to F of elements of C.

Proof. It can be readily seen that, for

β^u, u) = inf {G(v, v): v^3e v = u μ—a.e. on F}.

Denote by Tu the unit contraation 0 Vu/\ 1 of u<=3μ>. Then Tu<^3lL and

βμ(Tu9 Tu) = inf {B(v, v}: v<=Ξ3e, v=Tu μ-a.e. on F}
<. inf {8(Tv3 TV): v^3e, v=u μ-a.e. on F}
< inf {6(v, v): v^3ϊe, v=u μ—a.e. on F}
= 6(u,u),

proving that the unit contraction operates. The closedness of (£P, (?μ) on
L\F\ μ) is easily verified. We refer to [3] for the last statement about the core.

A pre-Dirichlet form (JL9 C) is called the closable part of a pre-Dirichlet
form (<?, C) with respect to μ e <3M' if (JL, C) is closable on L\X\ μ),
Jl(u, u)<6(u, u), u^C, and (Jl, C) is the maximum among those. Lemma 5.1
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leads us to the next assertion (cf. [3; Lemma 4.3]).

Theorem 5.2. For μ<Ξ JM' Π <3H0, (£
μ, C) is the closable part of (£, C) with

respect to μ.

Theorem 5.3. For μ^JH'Γi <J/0, (<?, C) is closable on L\X\ μ) if and only

if μ has the full quasi-support X.

Proof. By Theorem 5.2, we have the following series of equivalent con-

ditions:

(£, C) is closable on L\X\ μ)

<=> Ppf = f for any/<Ξ3e

<*f=Q q.e. on F iff/=0 q.e. on X for any/eS,

Since F is a quasi-support of μ, we see by Theorem 3.3 that the last condition

is equivalent to

"/=0 μ-a.e. on X iff/=0 q.e. on X for any/<Ξ3V',

which is in turn equivalent to "X is a quasi-support of μ" by the same theorem.
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