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We have given some characterizations of right Nakayama rings related to
almost relative projectives or almost relative injectives [12]. In this paper we
shall study particularly the condition (C) (resp (C¥) in [12]. Let R be a right
artinian ring and let M,N,U and V be R-modules. (C): M is almost N/N’-
projective for any submodule N’ of N, provided M is almost N-projective (resp.
(CY: U is almost V'-injective for any submodule V' of V, provided U is almost
V-injective). We shall replace the role of N (resp. V) by that of M (resp. U)
in the above.

We shall give several characterizations of semi-primary rings whose Jacob-
son radical is square-zero in the above manner and in the similar manner for
relative projectives, respectively. Further from those viewpoints we shall char-
acterize a certain type of hereditary rings over which every submodule of any
indecomposable quasi-projective module is also quasi-projective (cf. [6]), and
two-sided Nakayama rings with radical square-zero, respectively.

1. Relative projectives

In this paper we always assume that R is a ring with identity. Every
module M is a unitary right R-module. We shall denote the length, the Jacobson
radical and an injective hull of M by |M|, J(M) and E(M), respectively. By
Soc(M) and Soc;(M) we denote the socle and the ith lower Loewy series of M.
We follow [4] and [11] for definitions of almost relative projectives and almost
relative injectives.

In this section we study some conditions below, when M is N-projective
for R-modules M and N (resp. U is V-injective for R-modules U and V).

(E) M|M' is N-projective and
(F) M' is N-projective

for any submodule M' of M, provided M is N-projective.
(resp.

(E% U’ is V-injective and

(F% U/U'" is V-injective
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for any submodule U’ is of U, provided U is V-injective).

We first give a remark on the above conditions. Take any R-module T
Then R is always T-projective as R-modules. If we assume (E) (resp. (F)) for
R, then every factor module R/I (resp. I) is T-projective, and hence R/I (resp.
I) is projective, where I is a right ideal of R. Therefore R is semi-simple (resp.
right hereditary). Further let M be a quasi-projective module. Then M is M-
projective. If (F) holds true, IV is M-projective for any submodule N of M,
and hence N is N-projective (cf. [16], §16), i.e. N is quasi-projective. Hence
(F) implies
(G) every submodule of finitely generated and quasi-projective module

P is quasi-projective,

which was studied in [6].

In the following we shall skip proofs for injectives if they are dual to ones
for projectives.

Lemma 1. Let MCN be R-modules and S a simple R-module. Assume
that S is isomorphic to a sub-factor module TN of M. If S is M-projective, then
there exists a simple submodule S’ of M such that T=S'PN.

Proof. This is clear from the following diagram:

oo
/, k
v l
M — M|[N—0

where 4 is the given isomorphism of S to T/N.

Proposition 1. Let R be a semi-perfect ring. Then the following conditions
are equivalent :

1) (E) holds ture when M and N are any local modules.

1¥) (E%) holds true when U and V are any uniform modules.

2) R is semi-simple.

Proof. 1)—2) Let e be a primitive idempotent. Since eR is eR-projec-
tive, eR/e] is eR-projective by (E). Hence ¢/=0 from Lemma 1. The re-
maining parts are similar.

Theorem 1. Let R be a (right) artinian ring. Then the following condi-
tions are equivalent :

1)  (F) holds true when M and N are any local modules.

1¥)  (F¥) holds true when U and V are any uniform modules.
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2) R s a (right) hereditary ring with J*=0.

3)  Ewvery proper submodule of any local module is projective.

3% Every proper factor module of any uniform module is injective.

4) (F) holds true when M and N are any finitely generated R-modules.
4%)  (FY) holds true when U and V are any finitely generated R-modules.
5)  (F) holds true when M is finitely generated and quasi-projective.

6) (G) holds ture.

Proof. 1)—2) Lete be a primitive idempotent and ef/eJ*=3,;PS;, where
the S; are simple. Assume S;~ fR/f] for a primitive idempotent f. eR/eJ?is
fR|f]J*-projective by [1], p. 22, Exercise 4. Since S;CeR/eJ?, S, is fR/f]J?-pro-
jective by (F). Hence f/=0 by Lemma 1, and S, is projective. Accordingly
efleJ? is projective and hence eJ=e/*PZ;PS;’; S;'~S; for all i. Therefore
eJ]=3,DS,;’ is projective and so ¢J?’=0. Thus R is a (right) hereditary ring
with J?=0 [2].

2)—3) We assume that R is a hereditary ring with J?=0. Since eJ is
projective and semi-simple, every factor module of eJ is projective. Hence
every proper submodule D/A4 of eR/A4 is projective.

3)=1) This is trivial.

1¥)—2) and 2)—3%) They are dual to 1)—2) and 2)—3), respectively.

2)—>4) Let R be a right artinian hereditary ring with radical square-zero.
Then J is semisimple and projective. Let M be a finitely generated R-module
and P=¢,RPe,RP+:-Pe,R a projective cover of M, i.e. M~P|/Q. Let A be
any submodule of P containing Q. Since P is a lifting module, P=P,®P,, AD
P, and ANP, is small in P,. Let z; be the projection of P onto P;. Put Q,=
ONP; and O'==,(Q). Then h: 0?/Q,~0"/0, (see [11], p. 449) and P/(Q,DQ,)
=P,/0, BP0, D 4/[(QiDQ:) =P/, D(AN P,)/ Q. D 0/(QDQ;). Since ANP,
=ny(A)C J(P,), AN P, is semisimple and projective. Hence (4N P,)/Q,=0?
0,D0*/Q, for some submodule O* of 4 and P,/QO,B(4N P,)/Q,=P,|O:B(0?
Q,) (NDQ*/Ds; Q1B Qo) = (Q°/Qo)(h) = {9+ Qa+h(g+0:) [¢E Q. There-
fore A/O~(A/(Q:D2NNQNADQ2)~Pi/DO*/Q,. Now P, is a projective

cover of P,/Q,, since P is that of M, and we assume that M is N-projective for
a finitely generated R-module N. Let § be any homomorphism of P, to N.
Then @ is trivially extendible to a homomorphisms 6’ of P to N. Since §'(Q)
=0 by [1], p. 22, Exercise 4, §(Q,)=0. Therefore P,/Q, is N-projective. Since
(AN P,)/Q, (and hence O*/Q,) is projective, A/Q is N-projective. Therefore (F)
holds true for any finitely generated R-modules.

4)—1) and 4%)—1¥ Those are trivial.

2)—>4%) Assume that R is (right) hereditary. Let UD U’ and V be finitely
generated R-modules. We may assume E=E(U)=E(U")®E, and put E(U")=
E,. Since U’ is essential in E), U'DSoc(E,). Furthermore since E,/Soc(E,) is
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semisimple and injective by 2), so is U*/U,’ for any submodule U*(5U’) in E,.
Now E=E|U'=E,®E,> U/U'=U, where E,=E,/U’ and E,=(E,+U")|U’'~E,
(via p). Let z; be the projection of E onto E;. Put U'=x,U) and U,=E,nT.
Then k: U%U,~U"U, and E,=U,»U*DE*, since E, is semisimple, where 7:
UYU,~U*. Let » be the natural epimorphism of U? to UU, UYU,(cE,)
being injective, 7/v is extended to ¢: E,—E; with o(U,)=0. Further E=E,®
Eyo) and U=U,BE,(c)NU. Assume that U is V-injective and take a homo-
morphism §: V—E,(¢). We have the natural isomorphism u: Ey(o)—>E,, (u(x+
o(x))=x for x€FE,). Put 0*=pud: V—-E,CE®DE, Then 6*(V)CE,NU by
[1], Proposition 4.5. Hence 8(V)C p~p YE,N U)=pn Y(E,N U)=(E,N U)(c)=
E,nUCcU for ¢(U,)=0. Accordingly (V) UN Eys) and hence UN Ey(q) is
V-injective. Furthermore U, is injective. Therefore U is V-injective.

4)—>5) This is trivial.

5)—6) This is shown before Lemma 1.

6)—2) This is due to [6].

In Proposition 1 we have used a fact that (E) (resp. (E%) holds true for
local modules M=eR/A and N=eR|B, i.e., M and N have the same projective
cover eR, where e runs through over all the primitive idempotents (resp. for
unifrom modules U and V in E(S), where S runs through over all the simple
modules). On the other hand, we have used, in Theorem 1, a fact that (F)
holds true for local modules eR/A4 and fR/C. From this observation we restrict
ourselves to a case e~f in (F). By (H) (resp. (H*)) we denote the condition (F)
(resp. (F¥)) satisfied only for M=eR/A and N=eR|B, where A, B are submodules
of eR and e is any primitive idempotent (resp. only for U and V in E(S) and S is
any simple module). Similarly we define (I) where the quasi-projective module
P in (G) is indecomposable.

We note the following fact. Let T be the basic ring of R. It is well known
that the category of all the right R-modules is equivalent to that of all the right
T-modules. Further the local modules correspeond to each other. Hence we
may assume that R is a basic ring when we study local modules.

In general we do not know a characterization of rings with (H). However
we study it in a praticular case.

Lemma 2. Assume J*=0. Let A be an R-module. Consider a diagram

A

, I

eR/B — eR|C —> 0

for BCCCeR. If h is not an epimorphism, then there exists h: A—eR|B with
vh=h.
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Proof. The above diagram induces

y |

I

v (H(A)) — KA)—> 0

If h(A)=*eR|C, h(A)Ce]|C. Since ef is semi-simple and »~Y(k(4))Ce]/B,

the lemma is clear.

Proposition 2. Let R be semi-perfect. If (H) holds true, then 1): eJe=0
for each primitive idempotent e, and 2): (I) holds true.

Proof. 1): Let x be an element in eRe. Then eRDxeR~eR|A for some
A. Since eR is eR-projective, eR/A4 is also eR-projective by (H). Hence A=0
or A=eR by [1], p. 22, Exercise 4. Therefore ¢Je=0. 2) is given before
Lemma 1.

Corollary 1. Let R be a basic and right artinian ring. Let 1=e,+e,~+ -
~+e,, where {e;} is a set of mutually orthogonal primitive idempotenmts. 1): If n=
1, (H) holds ture if and only if R is a division ring. 2): If n=2, (H) holds true
if and only if J?=0 and ¢; Je;=0 for i=1,2. 3): If J?=0, (H) holds true if and
only if e, Je,;=O0 for all i. 4): If (H) holds true, then J"=0.

Proof. 1) is clear from Proposition 2. Assume 1=¢,+¢, and (H). Then
if ¢, J#0, by Proposition 2 Soc(e,R)~(e,R/e, J)*'; the direct sum of #-copies of
eRle,]. Since ¢,R is e, R-projective, e,R/e, ] is e R-projective by (H). Hence
e,Je,J=0. Similarly e,Je, J=0. Therefore =3¢, Je;J=0. In the same
manner we can show that for each ¢; there exists e,(#¢;) such that ¢; Je, J=0.
Hence J"=0. Finally assume J?=0 and ¢; Je;=0 for all &. Then e] is smi-
simple, and hence (H) holds true by Lemma 2.

We refer [7], [11] and [12] for definitions of Nakayama rings and co-
Nakayama rings.

Corollary 2. Let R be a right Nakayama ring. Then (H) holds true if and
only if ¢; Je;=0 for all 1.

Proof. “‘only if” part is given in Proposition 2. We note that if R is
right Nakayama, then ¢; Je;=0 if and only if any two of distinct (simple) sub-
factor modules of ¢;R are not isomorphic to each other for all .. We suppose
¢;Je;=0. Assume that eR/e]’ is eR/eJi-projective. Then i<j. Take any dia-
gram:
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eJ¥ [e]’

|

14
eRle]i —> eR[e]* —> 0

Put e]*[eJ'~fR/f]* for a primitive idempotent f. Since A(e]* [eJ’)=e]* [e]*

by the initial remark, the above diagram induces the following

FRIfT

o

FRIT* — FRIfJ# — 0

where y<x, fR/fJ*"*~h(eJ¥ e]’) and fR|fJ¢?~e]¥ |eJi. Since k' is given by a
unit in fRf and y=j—i =0, we obtain k': fRIf]*— fR|f]*? with »'h’=h'. There-
fore we get %: eJ* [eJ’—eR|e]’ with vh=h.

If R is right Nakayama, then (I) holds true, however (H) does not in gen-
eral. Hence though (G) and (F) are equivalent over right artinian rings, (I)
and (H) are not. Further we have ¢; Je;=0 for every hereditary ring, and we
shall show in the next section that (H) holds true only on very special hereditary
rings.

2. Hereditary rings with (H)

In the last part of the previous section, we consider the property (H). We
shall study artinian hereditary rings with (H) in this section. Now we assume
that R is a (basic and artinian) hereditary ring. Then R has the following form
by [8], Theorem 1

Kl M1z M13 """ Mln
0 K, My - M,,
O Kn—] Mn—ln
0 0 K,

where the ¢;; are matrix units, the K;=e¢;;Re;; are division rings and the M;;=
€;;Re;; are K;—K; bimodules.

Let R be as in (1) and ¢;=e¢;;. We observe submodules in R, Let BDA4
be any submodules in ¢, J. Then ¢R/A is always ¢ R/K,A-projective by [1],
p. 22, Exercise 4. Since B is projective, and hence a lifting module, B=B,®B,
and ADB,, BN A=4, is small in B;. We can assume B,=(¢,R)*“ P (¢,R)**»
@D B(e,R)*"w, where a<<b<---<m, f;: e;R~(e;R)* is given by an element in
M,;. Let A be the projection of 4, into the jth component of ((¢;R)*)").
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Then A4,CS@®A, . Since B, is a projective cover of B,/A,, B/A(=B,/4,) is
e,R/K, A-projective if and only if

(%) KiAD 3% 3t Myfi (A7), where K,—e,Re;.

Conversely if ¢, R/A is e,R/C-projective, then K, ACC by [1], p. 22, Exercise 4,
and furthermore if B/4 is ¢,R/K,A-projective, then B/A4 is e, R/C-projective for
CDOK,ADHomg(B, ¢,R)A. Therefore

(H) holds true if and only if (%) holds ture, where e, and AC B run through

over all the primitive idempotents and the submodules in e R, respectively.

We shall consier the same criterion for (I). Assume K;4=4 in the above.
Let A4;, B; be as above. Then B/A4 is quasi-projective if and only if for the
same decomposition of B, as above

Ay = 5,353,551 fi,My f;((A,), where the indices i,j and k run
(*) in the decomposition of B, and f,,=f}: e,R—(the p-th component of
(e kR)*(“)°

From now on we always assume that R is a basic and hereditary ring with
(I) given in (1). Since ¢, J is projective,

@ o] & (R®eRD -,

where ¢;=e¢;; and 1<k, s+ .
We put g7Y(e;R)=(¢;R) e, J and g™{(M,,)=M,,' Ce,].

Proposition 3. Let R be a basic and hereditary ring with (I). Assume
e J~e,RPe, RSB as in (2), where k<s. Then 1): either M;,=0 or M,,=0
(s=<p), provided M,,+0 for some ¢(>p) (M,=K,). 2): If (H) holds and e, ]+
0, M,, is cyclic as a K,-K, bimodule.

Proof. 1) Since Homg(e'R, ¢,'R)=0, K,M,,'RCZ,<,D(e,R)' Ce, J, where
the & are indices in (2). Hence K;M,,'RNM,,'RC(2;5D(e:R)") N (e,R)'=0.
Now we may assume M,,'=0 for all ¢'(p<q¢'<<q) and M,,+0. We note
K\M,,’'R=K\M,, DK,M;,’ M, D+ DKM, ,’M,, and M,,'R=M,'S©M,'M,,
DM, Mgy - BM,,'M,,. Put A=K M,,"(M,DM,14,D-)+B, where B=
KM,/ (Mg ®-++). Since BCM,py; BB M, and K,M,,’RNM,,'R=0,
(KyMy,'R+M,,'R+B)[A~K\M,,' ®M,,' ®M,,' M, (=D). A being character-
istic in eR, eR/A is eR/A-projective, and hence D is quasi-projective by (I).
Since K,M,," and M,," are K,-modules, we obtain a non-zero homomorphism
h: K,M,,'—M,,’, provided M;,+0 and M,,+0. Take a diagram
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D
L
~ e
h //, 177,'
e
’
KM,
’
/,/ h
£V

D— DIM,,'M,,=K,M,,’®M,,’ —> 0

where # is the projection and » is the natural epimorphism. (Note that all the
maps are R-homomorphisms.)

Then there exists 2: D— D with vh=vh. Hnce 0+h(K,M,, )T (M,,'+M,,'M,,)
NM,,=M,,'. However K\M,,’M,,CA and the natural map M, ,QxM,—
M,,M,, is an isomorphism by [8], Theorem 1, a contradiction. Therefore either
M,,=0 or M,,=0.

2) Assume (H) and ¢,J40. We apply (%) to A=mye,JCB=(eR)’,
where my;,#0 in M, gives f;. 'Then Kymye, J=Km,K,e, J=Me, J. Since the
natural maps M, ® gre, J—>M,,e, ] and Kym K, Q gre, J—>Km K,e, J are isomor-
phisms by [8], Theorem 1, Kim,, K,=M,,.

Corollary 1. Let R be a hereditary ring as in Proposition 3 and let k and
s be as above. We assume (I). If either M,, & Soc(eR) or M,, & Soc(e,R) for
some p', then M,,=0 or M,,=0. Hence any simple sub-factor modules of R
are never isomorphic to any ones of e,R, provided they are not derived from their
socles.

Proof. From the assumption and [8], Theorem 1, there exists an integer
q’ such that M, =0.

Corollary 2. Let R be as in Corollary 1. We gather together isomorphic
components in (2) and put e, J=((e,R)") "D ((e,R)")*)D++-. Then ((e,R)")"¥ is
characteristic in e,R, provided e, ] 0.

Proof. Let u,4’ and % be indices in (2). If k>u, M,,=0 from Proposi-
tion 3, and hence Homg(eR, e,"R)=0 for any u's=k. Therefore K(e,R)'C
((exR)")™».

We shall study the remaining part on Corollary 1, namely M,,CSoc(e,R).
Let D, and D, be division rings and M,, M, D,—D, bimodules. Put M=M,®
M,. Consider the following condition: for any element m=m,+m,; m,= M;

3) DymD,=Dym, D, Dym,D,, i.e., for any D;— D, submodule N of M, N=
M,NN®BM,NN.
If D,=D, are fields and the M; are usual D;—D, bimodules, then M does not

satisfy (3). Assume next that there exists a non-trivial automorphism ¢ of D,.
Let M;=D,my=m, D, be a usual D,—D, bimodule. Put M,=D;m, and define
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myd=d"m, for deD,. Then M=DM,DM, satisfies (3) as D,—D, bimodules.

Proposition 4. Let R be a hereditary ring with (I) as in Proposition 3.
1): Let ¢R and e,R be as in (2). Assume 0=4M;,CSoc(e;R)Se;R for some p
and i=k, s(k=s). Then K.M,,’ and KM, satisfy (3) as K,—K, bimodules.
2): If m>1 in Corollary 2 and e, J+0, we assume ((e,R)")"?=X,DX,; the X
are characteristic in e R. If X, contains a monm-zero right K,-module Y, con-
tained in Soc(e,R")"® for i=1,2, then K.Y, and K.Y, satisfy (3) as K;—K,
bimodules.

Proof. Assume k<<s. Then K,M;,'((¢;R)")" from Corollary 2 for i=
k,s. Let m; be any element in K;M;," and put A=K, (m,+m,)K, which is a
characteristic submodule in R and is contained in ((¢;R)")"? @D ((e,R)')* (=F).
Then F|A is F|A-projective from (I). Hence 4 is also a characteristic submodule
in F, since A4 is small in F. Accordingly ADKmK K mK,DA. We can
show 2) in the same manner.

In the above, we studied the structure of R, provided e, J was a direct sum
of distinct projective modules ¢,R. We can not easily describe the structure
of R, even though ¢ J~e,R. Here we shall explore several examples. It is
clear, from Proposition 2, that every hereditary ring with J?=0 satisfies (H).
Let K,DK, and Kj; be fields such that K| has a K,-automorphism ¢ and [K;:
K,]=2. Take the M=M,BDM, after (3). Then M satisfies (3), if o1, and
put

K, K, M K, K, M,
R,=|0 K M (R,,':(O K, M,|),
0 0 K \0 0 K; |

where the M;; are any K;—K, bimodules such that R,’ is hereditary. Set
M,=(m+my)K, in M and A=e,M,e,; in R,. Then e,4 is a characteristic
submodule of e,R. However A(CB~ve,]) is not a characteristic submodule
of exR, provided o+1. We note e, J~enR. Hence (I) does not hold true
from (). If o=1, (H) holds true (see R, below). Further R, is a K,-algebra
and satisfies all the conditions in Theorem 2 below, except the condition: K;=
K,. On the other hand R,’ satisfies (H) from (¥).
We can easily show

K, KA KK M K, K, K, M
0 K, 0 M, , 0 K, 0 M,
R = 1 1 (R = 1 1 )
0 0 K M, 0 0 K M,
0 0 0 K 0 0 0 K

is hereditary ring with (H), provided o#1. ¢, J~euR @PegR,;, and (0, 0, 0, M)
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=Soc(e,R,), (0,0,0,M,)=Soc(e;R,), and R, does not satisfy (I), provided o=1.
R,’ does not satisfy (I) for all o.

Put
'K, K, K\ 'K, K, K,
R2=(0 K, Kz) (R2'=(0 K, K, ).
0 0 K,/ 0 0 K,

Then R, is hereditary and e, J~e,R,PenR,. R, satisfies (H). Contrarily R,’
does not satisfy (I) by Proposition 4.
Put

( Kl Kl Kl? Kl
(cf. Ry)

R3=(O K, K
0 0 K,

R; does not satisfy (I) from (*'). In R, Soc(e,R,) does not contain proper
characteristic submodules, however Soc(e, R;) does a characteristic submodule
Ki(0,0,1Q1+vQ®1) (=4) in R,, which does not satisfy (*') for ACB=e¢, ],
where K,=K,PvK,.

It is very hard for the author to interpret generally (*’) in terms of struc-
tures of R. Hence in the last part of this section, we shall determine the struc-
ture of a basic and hereditary algebra over a field K which satisfies (I) and as-
sumption:

K, =K,=+ =K, =Kin(1).

From now on we always assume that R is such an algebra. Then every sub-

module in ;R is characteristic. Further (3) is never staisfied. Hence ¢; J~

e;yRDe;RD -+ ; i(k)=1(s) for k=s, from Proposition 4, if ;R is not simple.
Thus if R satisfies (I), then

4) el]~ei(l)R®ei(2)R®"'Gaei(p)R
D (e;0R) "D (e, R) ™D+ D(e;pR) ™",

where ¢;,)J+0 for each u and e, J=0 for each v. We note
5) if My=0 for any k and t=some j(a) in the above, then My, C Soc(e,R).

Further from [8], Theorem 1, if a simple component in Soc(e;R) is isomorphic
to a submodule in M;,Ce;R, then M;,CSoc(e;R) (cf. (5)).

The following lemma is well known (see [9]).

Lemma 3. Let M and N be R-modules such that every sub-factor module
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of M is never isomorphic to any one of N. Then P=M NP@N N P for any sub-
module P of M ®N.

In the similar manner to the proof of Proposition 3, we can obtain the fol-
lowing lemma.

Lemma 4. Let R be the algebra as above. We assume (I). Then if M+
0 for some j, k(j k), i.e., M;,d&Soc(¢;R), then | M;;| <1 for all i(<j).

We assume
(6) M;;=u;Kor=0.
The following lemma is clear.

Lemma 5. Let R be a hereditary algebra in (1) whose structure is as in
(6). Then every sub-factor module of e, R is never isomorphic to any sub-factor
module of e; R, where i(r) and i(s) are indices in (4) (s%7r) and e, in (4) runs through
all ;.

Theorem 2. Let K be a field and R a basic and right artinian hereditary
K-algebra such that R|J~Z®K. Then R satisfies (I) if and only if R has the
following structure :

1) R/Soc(R) is an algebra as in (6).

2) Any simple component in Soc(e;R) is never isomorphic to any one in
Soc(e;unR) for k==k’, where i(k), i(k") run through over all the indices in (4) and
e, tn (4) runs through over all the primitive idempotents.

In this case (H) and (I) are equivalent to each other.

Proof. Suppose (I). Then we obtain 1) from Lemma 4 and 2) from
Proposition 4. Conversely we assume 1) and 2). Then from Lemma 5 ¢;J
has the following direct decomposition for each i: ¢ J[~D@Z,DF,; i) D is
semi-simple, and ii) the F, are indecomposable and non-simple projectives
(=epwR) and every simple sub-factor module of F, is never isomorphic to
any one of Fy for all k==k’. Let R be of the form (1). By induction on #,
the degree of matrix, we shall show (H). We assume that (H) holds true for
M=e;;R|A’ and N=e;;R[B’; all j>1, and we shall show that (H) holds true for
eyR/A and eyR/B. Put e;=e, and assume that eR/A is eR/B-projective.
Then ACB. Take a proper submodule C/4 of eR/A and consider a diagram

c/4

,

eR|B — eR|E—> 0

Since A(C[A)Ce]|E, we can derive the diagram from the above
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C/4

o N
eJ]|B— ¢J|[E—> 0

From eJ D A, we can easily see from i), ii), (5) and Lemma 3 that A=(4 N D¥)
D D(ANF,) after a little change of a direct decomposition of ef: =D*@=,D
F,, where D¥ is semi-simple (cf. [9], the proof of Proposition 8). Further not-
ing that AN D* is a direct summand of D*, i.e., D¥*=D¥@® (AN D*) and that
D¥®5,DF,DB|(AN D*)D3,H(ANF,), we obtain further direct decomposi-
tions

e = (AN D*)®D¥ P, DF, DB = (AN D*)B(BN DF) DD
(BNEF)DA = (AND*)DZ,D(ANF).
From the above observation, let C=C'PZ,D(C NF)DA=A'"PZ,B(ANEF),
where C'D A’ are semi-simple. Then C/A=C'|A'®Z,B(CNF)[(ANEF,). In
order to show that C/4 is eR/B-projective, we may show that each simple com-
ponent C¥ of C’'/A’ (resp. (C N F,)/(A N F})) is eR/B-projective. Hence we can
replace C/A by C¥ or (C N F,)/(ANF,) in (7). We have similar decompositions

e] = D'®3,PF,OF = E'®PS,B(ENF,)DB=B®3B(BNF)
and D'DE'DB'DA’.

Then we have v=wv,+v, and h=h,-+h, where v,: D'/B’—D’[E’, v,: 5, D(F,/
(BNF))->=D(F/(ENF,)), hy: X—D'|E" and h,: X -3,D(F,/(E N F,)), where
X=C¥or (CNF,)/(ANF,). Since D'DE’'DB’ are semi-simple, we obtain

ﬁlt X_)D,/.B, With V]iil == hl .

Assume first X=C¥(~e;»HR). If h(C¥)=+0, then there exists & such that
(CH) (M- (ENF))(ENFy) and Mygy,;»CSoc(Fy) by ii) and (5).
Then we can derive the following diagram:

c¥

i

L¢]
(Soc(Fa)+(BNF))/[(BNFy) — (Soc(Fy)+(E N Fy))/(E N Fy) —> 0
Since Soc(F,) is semi-simple, we obtain also
F,: C¥—(Soc(F,)+-(BN Fy))/(BNF,) CF,/(BN Fy) with vylt, = b, .

Finally assume X=(C N F,)/(ANF;). Then h(X)CF,/(ENF,) byii). More-
over since ANF,CBNF,, F,/(ANF,) is F,/(BN F;)-projective. Hence there

exists
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h,: X—F,/(BNF,) with v,ft, = h,

by induction hypothesis.  Therefore C/4 is eR/B-projective. Thus (H) holds
true and hence (I) does.

We can completely determine the styles of hereditary algebras in Theorem
2. Let M,, M, be non-zero K-vector spaces. Then there are only three styles
of the above algebras, when n=3.

'K M, M,\ /KO0 M\ and /K K M,®M,
(OKO (0 K M, 0 K M, )
00 K/, \00 K/ 00 K

We note that R, before Lemma 3 shows that Theorem 2 is not true if K =
K; for some 7 and R,’ is a hereditary algebra with (H) as right R,’-modules, but
not as left R,’-modules, if K;=K,=Kj; and M;;=K,DK,.

3. Almost relative projectives and almost relative injectives

In this section we shall study the same problem for almost relative projec-
tives (resp. injectives). We consider the following conditions:
() MM’ is almost N-projective and
(K) M’ is almost N-projective
for any submodule M’ of M, provided M is almost N-projective.
(resp.
(JY U’ is almost V-injective and
(K% U/U’ is almost V-injective
for any submodule U’ of U, provided U is almost V-injective).

Proposition 5. Let R be a perfect ring. (J) holds true when M and N
are any local modules (resp. any M=eR|A and N—=eR|B for a fixed primitive
idempotent e) if and onld if R is a right Nakayama ring with J*=0 (resp. eR is
a uniserial module with (e])*=0 and |eR | <oo).

Proof. Since fR is almost eR/A-projective for any submodule 4 of eR,
JR/B is almost eR/A-projective by (J). Hence R is a ring stated in the proposi-
tion by [11], Theorem 3. The converse is clear from the same theorem. We
can use [12], Theorem 4 in case of M=eR/A and N=eR|B.

Proposition 5%. Let R be as above. (J*) holds true when U and V are any
uniform modules (resp. any submodules U and V in E(S) for a fixed simple module
S) if and only if R is right co-Nakayama ring with J*=0 (every simple sub-factor
module of E, execpt Soc(E) and E[J(E), is not isomorphic to S).

Similarly to Theorem 2 in [12], we have
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Proposition 6. Let R be a two-sided artinian ring. Then the following con-
ditions are equivalent :

1) (J) holds true for any finitely generated (and indecomposable) modules M
and N.

1¥)  (J¥) holds true for any finitely generated (and indecomposable) modules U
and V.

2) R is a two-sided Nakayama ring with J*=0.

3) Any two of finitely generated R-modules are mutually almost relative pro-
Jective.

Proof. 2)—3) If R is a two-sided Nakayama ring with J?=0, then every
finitely generated and indecomposable R-module is local. Hence 3) holds true
by [11], Theorem 3. .

1)—2) Let (J) hold ture. Assume e, J~e,] via f for primitive idempotents
e and e, Put N=(¢R@Pe,R)/{x+f(x)|xEe J}. Since ¢R is (almost) N-pro-
jective, e;R/e, J is almost N-projective by 1). Then N is decomposable by [12],
Lemma 3. Hence R is left Nakayama by [15], Lemmas 2.1 and 4.3. Therefore
R is two-sided Nakayama.

The remaining implications are clear.

Proposition 7. Let R be a perfect ring. Then the following conditions are
equivalent :

1) (K) holds ture when M and N are any local modules.

1¥) (K¥) holds ture when U and V are any uniform modules.

2) J*=0.

3) Let M and N be any local modules. Then every proper submodule of M
is almost N-projective.

4)  Every module is almost R-projective.

Proof. 1)—2) Let ¢J*'=+0 and assume #>2. We put ZR=eR/eJ* D
gJ"2=¢J*?/eJ*"1. Then &J*? is semi-simple and let &J**=B,®B,HB,D---,
where the B; are simple, and eJ*?DB;DeJ* L. Since efeeJ**Ce]", eR[eJ*
is almost eR/eJ"-projective by [5], Proposition 2. Hence B;/eJ*™! is almost eR/
eJ"-projective by 1). Take a diagram

B;fe]*
| #
eRle]" —> eRleJ*t — 0

where % is the inclusion.
Since n>2, B;CeJ and A is not an epimorphism. Therefore there exists a sim-
ple submodule K in eR/e]" with B;/e]"=K @eJ*~/e]" (cf. Lemma 1). Hence
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B;/e]" C Soc(eR/e]"). Since eJ**=3,B;, eJ**le]"=73,B,le]" C Soc(eR/e]").
Hence 0=Soc(eR/e]") ] D (eJ*?eJ")], and so eJ*'=e]J", a contradiction. Ac-
cordingly n<2.

2)—3) Since =0, e] is semi-simple. Let D/4 be any proper submodule
of eR/A. Then D|A is semi-simple. In order to show 3) we may assume that
D|A is simple. Take a diagram:

DA

, I

fR/B —> fR|C— 0

If  is an epimorphism, C=fJ, and hence putting h~'v=7%, we have hh=nv.
If & is not an epimorphism, we can find %: D/A—fJ/BC fR|B with vh=h by
Lemma 2.

3)—1) This is trivial.

1%H—2) and 2)—1¥) Those are dual to 1)—2) and 2)—1), respectively.

4)—2) Since eR/e] is almost fR-projective, 0=fJeeJ=f]e] for any primi-
tive idempotents ¢ and f. Hence J*=Z3;¢; Je, J=0, where 1=3e;.

2)—>4) Let M be an R-module. Take a projective cover P of M. Then
M~P[Q and QCPJ. Let @ be any element in Homg(P, ef). Then 6(Q)C
O(PJ)ceJ*=0. Hence M is almost eR-projective by [13], Theorem 2, and M
is almost R-projective by [10], Theorem 2.

ReMARK. 1) Related to Proposition 7, we note that if every indecomposable
module is R-projective, then R is semi-simple.

2) In the above 1)—2), we have used a fact that (K) holds true only for
hollow modules M=eR/A and N=eR/B. Further the property in Proposition 7
is left and right symmetric.

Finally we study (K) for any finitely generated R-modules M and N.

First we assume (K) only in case of M is an indecomposable and projective
module. Then since eR is a (almost) N-projective for any finitely generated
R-module N, R satisfies (17) in [14] (cf. the remark in §4 of [14]), and hence
R is a right almost hereditary ring given in Theorem 3 of [14]. As a consequence
in this case (K) holds true when M is a finitely generated projective module.

Proposition 8. Let R be a (two-sided) artinian ring. Then (K) holds true
for any finitely generated R-modules M and N if and only if R is a right almost
hereditary ring with J*=0 and (K) holds true when N is local.

Proof. Assume (K). Then R is right almost hereditary as above and J*=
0 by Proposition 7. Conversely, we assume that R is a (basic) right almost
hereditary ring with J?=0. Let M be a finitely generated R-module and P a
projective cover of M. Let T be a submodule of P containing Q (P/Q~M).
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Since J*=0, T/Q~P,/Q,DQ*/0, as in the proof of 2)—4) of Theorem 1, where
O*C J(P,). Hence since Q*/Q, is a direct summand of J(P;), O*/Q, is almost
projective by assumption. Suppose that M is almost N-projective for a finitely
generated R-module N. We first assume that N is indecomposable. If N is
not local, M is N-projective by [10], Theorem 1. Hence P,/Q, is N-projective
by the proof of 2)—4) of Theorem 1. Therefore T is almost N-projective. We
have the same result for a local module by assumption. Hence we obtain (K)

by [10], Theorem 2.

Corollary 1. Let R be a right Nakayama, right almost hereditary ring with
J?*=0. Then (K) holds ture for any finitely generated R-modules M and N.

Proof. Since R is a right Nakayama ring with J?=0, the set of local mod-
ules consists of {eR, eR/eJ},. Hence by Proposition 7 (K) holds true when N
is local.

Next we shall study (K) when M is quasi-projective. The following corol-
lary corresponds to the equivalence 1) and 5) in Theorem 1.

Corollary 2. Let R be a (two-sided) artinian ring. Then the following con-
ditions are equivalent :

1) (K) holds true when M is an indecomposable and quasi-projective module.

2) (K) holds true when M is finitely generated and quasi-projective.

3) R is a right almost hereditary ring with J*=0.

Proof. We assume 1). 'Then J?=0 from the proof of Proposition 7. We
have shown before Proposition 8 that R is a right almost hereditary ring. Hence
we obtain 3). Conversely we assume 3). Let M be a finitely generated and
quasi-projective module. We shall use the same notations as in the proof of
Proposition 8. Then P=P,dP, and Q=0,H0,, since M is quasi-projective.
Hence if P/Q is almost N-projective, so is P;/Q,. Therefore we obtain 2) from
the proof of Proposition 8.

Let K, 2K, be fields. Then

K, K, 0
R = 0 Kl Kl
0 0 K

is a right Nakayama and right almost hereditary ring with J?=0, which is neither
hereditary nor two-sided Nakayama. Since R is not left almost hereditary, (K)
is not left and right symmetric for finitely generated R-modules. We note that
we can not replace “quasi-projective” in 5) of Theorem 1 by “indecomposable
and quasi-projective” (cf. 2) in Corollary 2 above).
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