Harikae, T.
Osaka J. Math.
28 (1991), 639-648

THREE-FOLD IRREGULAR BRANCHED COVERINGS
OF SOME SPATIAL GRAPHS

Tosuio HARIKAE

(Received May 22, 1990)

1. Introduction

A spatial graph is a graph embedded in a 3-sphere S® In this paper, we
consider three-fold irregular branched coverings of some spatial graphs. In
particular, we investigate those of some of #-curves and handcuff graphs in S3
and prove that there exists at least one three-fold irregular branched covering of
these graphs. Further, we identify these branched coverings. Hilden [4] and
Montesinos [6] independently showed that every orientable closed 3-manifold is
a three-fold irregular covering of S3, branched along a link.

Let L be a spatial graph and G=#,(S*—L). Then there is a one-to-one
correspondence between n-fold unbranched coverings of S®*—L and conjugacy
classes of transitive representations of G into S,, the symmetric group with n
letters {0, 1, ---,s—1}. Let u be such a representation, called a monodromy
map, and T=y(G). Define T, as the subgroup of T that fixes letter 0. Then
w~Y(T,) is the fundamental group of the unbranched covering associated with
u. To each unbranched covering of S3—L there exists the unique completion
M(L) called the associated branched covering (see Fox [1]).

In this paper we investigate a monodromy map p: G—S, which is surjective,
i.e. the covering is jrregular. We call u an S,-representation of L. Further we
only consider the case that the branched covering associated with g is an ori-
entable 3-manifold.

The author of the paper would like to express his sincere gratitude to Pro-
fessor S. Kinoshita and Dr. K. Yoshikawa for their valuable advice.

2. Three-fold branched coverings of spatial §-curves

In this section, let L denote a spatial §-curve that consists of three egdes
e, e, and e;, each of which has distinct endpoints 4 and B. Suppose that each
of ¢, e, and e, is oriented from A to B. Then G==,(S*—L) is generated by
Xy o0y X5 V1 %y Yms 21 2y, Where each of x;, y; and 2, corresponds to a meri-
dian of each of ¢, e, and ¢;, respectively. Note that every element of .S; can be
expressed as a®h®, where a=(01), b=(012); =0, 1, =0, 1,2. We assume that
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p(x)=a%ub%i, p(y;)=aPibfs, p(z,)=a"uwb’. Let r,=xy,2,=1 be the relation
corresponding to A. By applying ba=ab™* to r,=1, we have ay+By+7u=0
(mod 2). We put ay=pR,=1 and 7,=0 without loss of generality. Since
u(x;) is a conjugation of wu(x;-,) with a®4®, we have a;=1. Similarly we have
Bj=1and v,;,=0. Hence we have

Il'(xi) = abd’} i = 1’ °*% l’
¢)) w(y;) =abfs, j=1,-,m, and

w(2s) = B, E=1,.,n.
Let F be the free group generated by xy, ==+, ;; ¥y, ***y Ym} 21s ***» 2 and ¢ the
canonical projection from F to G. Further let 4r: G—>H={t)>, where Jr(x;)=
7, ¥(y;)=t"' and Y(2,)=1. Then the Jacobian matrix A(G, ) of G at  is de-

fined as follows (see Kinoshita [5]): Let 7 be the p-th relation of G. Then the
p-th row of A(G, +r)(?) can be expressed as

((5)" (5,)" (32))

where 0/0x;, 8/0y;, and 8/0z, are the Fox’s free derivatives. Let » be the nullity
of A(G, )(—1) in Zs-coefficients. Note that »>>1. Then we have

Theorem 2.1. The number of conjugacy classes of Ss-representations of L,
each of which satisfies (1), is equal to (3*—3)/3!.

Since one of the relations of G is a consequence of the others, the deficiency
of G is equal to two. Hence v>2. Therefore we have

Collorary 2.2. There exists at least one Sy-representation of L which satisfies

(1).

Proof of Theorem 2.1. We may deform a diagram of any spatial §-curve
so that there is no crossing on ¢; (see Figure 2.1). In Figure 2.1 let T be a
2-string tangle. Then G has generators x, «++, %;; ¥, ***, ¥m; 2 and relations,

»
L 4

Fig. 2.1
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Fig. 2.2

each of which can be expressed as one of the following six types: n,=x,y,2, 7,=
Xy Yms Ta=X 20,0705, 1y =2;9;y7 98, rs=2; ;%7 "' and rg=y,x; y7'x3*, where r,
and 7, correspond to vertices A and B, and r,, r,, 75 and 7, correspond to four
types of crossings as shown in Figure 2.2, respectively. Since u(r;)=1, i=1, -+,

6, we have the following equations which correspond to 7;, i=1, .., 6, respec-
tively:
(2.1) o;—B;—v=0 (mod 3),
(2.2) & —Bp—v=0 (mod 3),
(2.3) 20;—a;—a;,=0 (mod 3),
(2.4) 28;—B;—B:=0 (mod 3),
(2.5) 20;—B;—B:=0 (mod 3),
(2.6) 2B8;—aj—o; =0 (mod 3).
On the other hand, for six types of relations of G we have

or )\M <3r )M <6r o )
3.1 1 1, 1) =1, —1 1;
3-1) (ax o 62>

or ar, \¥* ar, \*¢
32)  (22)" - (&) =, (4) ~1;
(3.3) <67'3 >‘N’ —1—t, (%)W =t, <%>W =—1;

Gx,- Xy

or, Yo -1 o7, Yé _ or, Yo
W @ (@)ee (G-
G4 0y; < ylz>
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¥ 2 r. \Vé
0 (@ e (G (8-
¥ 23 23
(3.6) (%) —1—1, (2—,':,) — 1, (gx’s:) — 1.
Therefore we have the following equation:
a
@l
“4) A(G, ) (—1) ,81 = (O) (mod 3).
B
-7

Since the nullity of A(G, y)(—1) is v, there are 3" solutions for (4). In order
to count the number of S,-representations, we must omit three solutions a;=
B;=0, y=0; a;=R;=1, y=0; a;=B;=2, y=0, since each of the correspond-
ing monodromy maps is not surjective. 'The monodromy map corresponding to
any other solution is surjective. Hence, by taking into account the six inner
automorphisms of S;, the number of solutions corresponding to S;-representa-
tions (up to conjugation) is (3*—3)/31.

ExampLEs. (1) Let L be a @-curve illustrated in Figure 2.3, where T is a
1-string tangle. Let K be a constituent knot e, U e, of L.

22

3

Fig. 2.3

Case 1. Suppose that pu(z)=>", where v is equal to 0, 1 or 2. Let M,(K)
be the two-fold branched covering of K and M,(K) the three-fold irregular
branched covering of K. If we denote the Betti number of H,(M,(K); Z;) by
A, then »=%+2. Note that the number of conjugacy classes of S,-representa-
tions of K is equal to (3**'—3)/3!. By Theorem 2.1, the number of conjugacy
classes of u is equal to (3**2—3);3!. Actually, the set of Myu(L) consists of one
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M(K), (3*1—3)/3! My(K)’s and 2 (3**1—3)/3! M,(K)#(S?x S)’s.

Case 2. Suppose that u(x;)=b%, where @; is equal to 1 or 2, i=1, .-+, L.
Then we have »=2. Hence, the number of conjugacy classes of y is equal to
one. Actually, Myu(L) is the three-fold cyclic branched covering of K.

(2) Let L be a rational @-curve 6(p, q) illustrated in Figure 2.4, where
1
2_ — al-f—,_.___

q a2+. 1 1
T,

(see Harikae [2]). Note that L has the symmetry for ¢, and e,.

b-right hand half twists

Fig. 2.4

Case 1. Suppose that y(2)=>5", where v is equal to 0,1 or 2. Then we
have »=2. Hence, the number of conjugacy classes of u is equal to one.
Actually, My(L) is an S°.

Case 2. Suppose that pu(x;)=>0%, where a; is equal to 1 or 2, =1, -, L
Then we have v=2. Hence, the number of conjugacy classes of yx is equal to
one. Further, we can see that My(L) is a lens space.

(3) Let L be a pseudo-rational §-curve 6(py, ¢,; P», ¢.) illustrated in Figure
2.5, where

B S
) a3+ 1 1
.y : iy

Q..
a+— -

&=al+- 1 and ﬁzal—f—
41 a2+ qZ
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(see [2]).

n;even

n; odd

Fig. 2.5

Case 1. Suppose that u(2)=>0", where v is equal to 0,1 or 2. Then we
have »=2. Hence, the number of conjugacy classes of y is equal to one. Ac-
tually, if p,=0 (mod 3), then My(L) is an S%. If p,==0 (mod 3), then ML) is
a real projective 3-space P3.

Case 2. Suppose that u(y;)=>0f, where B; is equal to 0,1 or 2, =1, 2.
Then we have v=2. Hence, the number of conjugacy classes of p is equal to
one. Actually, if p,=0 (mod 3), then My(L) is an S°. If p,=0 (mod 3), then
ML) is a P3.

Case 3. Suppose that u(x;)=>0%, where ¢; is equal to 1 or 2, i=1, .-+, L,
Then we have »=2. Hence, the number of conjugacy classes of g is equal to
one.

(4) Let L be the Kinoshita’s f-curve illustrated in Figure 2.6 (see [5]).
Note that L has the symmetry for three edges. We assume that pu(2,)=0"%,
where v, is equal to 1 or 2 for k=1,2,3. 'Then we have »=2. Hence, the

number of conjugacy classes of y is equal to one. Actually, My(L) is a lens space
L(5, 2).

(5) Let L be a @-curve illustrated in Figure 2.7. Note that L has the
symmetry for e, and e;.

Case 1. Suppose that y(z,)=>b", where v, is equal to 1 or 2 for k=1, 2, 3,
4. Then we have v=2. Hence, the number of conjugacy classes of y is
equal to one. Actually, M,(L) is L(4, 1).

Case 2. Suppose that u(x;)=b%, where ¢; is equal to 0, 1 or 2 fori=1, 2.
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Fig. 2.6

2

Fig. 2.7

Then we have v=3. Hence, the number of conjugacy classes of u is equal
to four. Actually, the set of My(L) consists of S%, S2x 8%, L(3, 1) and L(3, 1).

3. Three-fold branched coverings of spatial handcuff graphs

In this section, let L denote a spatial handcuff graph which consists of
three edges e, ¢, and e;, where e; has distinct endpoints A and B, and ¢, and e,
are loops based at A and B, respectively. Suppose that e, is oriented from A4
to B. We shall use the same notations as Section 2. Then G==,(S*—L)
is generated by Xy, «*+, %;5 ¥y, ***, Y3 21, ***, %y, Where each of x;, y; and 2, corre-
sponds to a meridian of each of e, e, and e,;, respectively. Let r,—=xx7'2,=
1 be the relation corresponding to A. By applying ba=ab™! to r,=1, we have
an—ay+vu=0 (mod 2). Further we obtain a;,=a,; by using the argument
in Section 2. Hence we have v, =0, which leads v,,=0. Suppose that a;;=
B,;=1, then My(L) is an orientable 3-manifold. Thus we have equations (1)
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in Section 2. If we define » as similar to Section 2, then we have

Theorem 3.1. The number of conjugacy classes of Ss-representations of L,
each of which satisfies (1), is equal to (3*—3)/3!.

Proof. Using the similar argument to the proof of Theorem 2.1, we can
prove the statement of the theorem.

Since one of the relations of G is a consequence of the others, the deficiency
of G is equal to two. Hence »>2. Therefore we have

Collorary 3.2. There exists at least one Si-representation of L which satis-

fies (1).

N
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Fig. 3.1

Exampres. (1) Let L be a handcuff graph illustrated in Figure 3.1, where
T is a 1-string tangle. Let K be a constituent knot e, of L. Let M,(K) be
the two-fold branched covering of K and My(K) the three-fold irregular branch-
ed covering of K. If we denote the Betti number of H,(M,(K); Z;) by A, then
v=A+2. Note that the number of conjugacy classes of S,-representations of
K is equal to (3***—3)/3!. Suppose that u satisfies (1). Then by Theorem
3.1, the number of conjugacy classes of p is equal to (3**2—3)/3!. Actually, the
set of My(L) consists of one M,(K) and 3(3*1—3)/3! M,(K)#(S?x SY)’s.

(2) Let L be a rational handcuff graph ¢(p, ¢) illustrated in Figure 3.2,
where

R S
az_l_%
"

Aon+1

b _,
q at

(see Harikae [3]). Suppose that y satisfies (1). Then we bave v=2. Hence,
the number of conjugacy classes of  is equal to one. Actually, Mu(L) is an S°.



THREE-FOLD IRREGULAR BRANCHED COVERINGS 647

—a,

Fig. 3.2
) N4
SRR T\
23
-
¢ e
Y2
eﬁ» il

N J

Fig. 3.3

(3) Let L be a handcuff graph illustrated in Figure 3.2 (see [5]). Sup-
pose that yu satisfies (1). Then we have »=3. Hence, the number of conju-

gacy classes of p is equal to four. Actually, the set of Mu(L) consists of S°,
S*x S, L(3, 1) and L(3, 2).
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