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1. Introduction and results

Let us denote a coordinate of T*(Rn) by the following notation:

T*(Rn) = i(x,y; ξy v): x, ξ G ^ and yy -η^R"*} .

Here n=n1+n2. In this paper, we shall study the hypoellipticity of semi-
elliptic operators in Rn which degenerate at x=0. It is well known that non-
degenerate semi-elliptic operators are hypoelliptic. For the definition of semi-
elliptic operators, see Kumano-go [5, p.85]. We consider a differential operator
of the form

(1.1) L = a(x9y, Dx)+g(x) b(x,y, D,) in Rn = RZxR? ,

satisfying the following conditions. (Throughout this paper, the coefficients of
differential operators are assumed to be functions of the class C°°.)

(A.I) g(0) = 0 and g(x)>0 for *
(A.2) a(x, y, Dx) is a differential operator of order 2/ and

Re α ^ ^ C , HI2'

holds for sufficiently large | ξ \.
(A.3) b(xy yy Dy) is a differential operator of order 2m and

holds for sufficiently large \η\. Here Cx and C2 are positive constants and /,

m are positive integers.

Our main result is the following:

Theorem 1. Let L be an operator of the form (1.1) satisfying (AΛ)-(A.3).

Then L is hypoelliptic, i.e.,

sing supp Lu = sing supp u for M G ^ ) ' .

Taniguchi [12] showed that L is hypoelliptic if g(x) is non-negative and
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for any x° there exists a multi-index a suth that Z)?£(#°)=f=O, under the assump-
tions (A.2) and (A.3). Morimoto [7] showed that L is hypoelliptic if L satisfies
(A.I)—(A.3) and the following condition (G).

(G) For any multi-index β there exists a constant C such that

\Dβ

xg(x)\^Cg(xγ-'W near * = 0,

where σ satisfies 0<σ<ll(21m+2m—2l).

Theorem 1 implies that (G) can be eliminated for L to be hypoelliptic.
Next we study the hypoellipticity of the following operator in R3

,2*
(1.2) L = DΪ+g(x)D?+D2

t

satisfying (A.I), where /, m and k are positive integers. Note that the following
operator in R2

L0 = DV+g(x)D?

satisfying (A.I) is hypoelliptic, in view of Theorem 1 (Cf. Theorem 5 in Fediί
[1]). But it is known that for L to be hypoelliptic, we have to restrict the vani-
shing order of g(x) at #=0. The following theorem is about a sufficient condi-
tion for the hypoellipticity.

Theorem 2. Let L be an operator of the form (1.2) satisfying (-4.1). As-
sume moreover that

(A.4) l im|* | '/* | log£(*) | = 0 .

Then L is hypoelliptic.

In the case where l=m=k, the hypoellipticity of L was studied in Mori-
moto [9]. Hoshiro [4] studied more general case. Morimoto [9] showed
that L is hypoelliptic under the assumption l=m=k if g(x) satisfies (A.I), (A.4)
and the following condition (G)\

(G)' For any/ there exists a constant C such that

I^WI^QίΛ?) 1 -^ near * = 0,

where gω(x)=DJ

xg(x) and σ satisfies 0<σ<l/(2/2).

Theorem 2 implies that (G)' can be eliminated for L to be hypoelliptic.
We also remark that a certain condition which is almost complementary to

(A.4) is also sufficient for the non-hypoellipticity of L. Indeed, Morimoto
[8] has shown that L is not hypoelliptic Ίίg{x)^Q and

(A.5) lim inf | x | ι / k \ log g(x) | Φ 0 .
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EXAMPLE 1. Let σ be a positive constant. Theorem 2 and the condition
(A.5) show that the operator

L = DV+e~wσ D2

y

m+D)k

is hypoelliptic if and only if σ<J,\k (Cf. Proposition 3.1 in [9]).

The plan of this paper is as follows. In Section 2, we introduce Sobolev
spaces which are necessary to prove Theorem 1. In Section 3, we explain our
microlocal energy method and complete the proof of Theorem 1. The proof of
Theorem 2 will be given in Sections 4 and 5. Finally in Section 6, we prove the
lemma in Section 3.

2. Preliminaries

We begin this section by preparing the following Sobolev spaces which are
necessary for the proof of Theorem 1.

DEFINITION. We denote by HdJ{~oo<cd,j<oo) the space of all distribu-
tions u^.S\Rn) satisfying

\\
d<y>2j dξdv<oo

\ i?Gβ"2), where ύ is the Fourier transform of u and <£>=
00 means u€ΞH°'k for any k.

Furthermore we say that a distribution u is locally of the class HdJ at (x°, y°)
/ G R ; 2 ) if there exists a function φ^Co(Rn) with φ = l in a neighbor-

hood of (x°, / ) such that φu^HdJ.
Now let L be an operator of the form (1.1) satisfying (A.1)-(A.3), then we

have the following proposition.

Proposition 2.1. If Lu<=C°° and u^H°J at (0,/), then it follows that
utΞlP00 at(0yy°).

Proposition 2.2. In the case where LU^LCQ at (0,y°), there exists a function
φ(xyy)^Co(Rn) with φ=\ near x=0 such that for any M

(2.1)

where a={(ξ,η)tΞRn\ | ? | P ^ M > «rfώ p=min (l,//(w+l)).

Theorem 1 follows from Proposition 2.1 and 2.2. Indeed, it follows from
(2.1) that ueΞH0J at (0,/) for some j . Note that 2\v\

2/p^\ξ\2+\v\
2 for

(ξ, η)φίl, 1971 ̂ 1 . Then from Proposition 2.1 we see that utΞH0'00 at (0,/).
Therefore we have



566 T. MORIOKA

(2.2) j j ^ Q \φu{ξ, v)\\ξ, v>™dξdη<oo

for any M. From (2.1) and (2.2) we see that MEC°° at (0,/).
The remaining part of this section is devoted to the proof of Proposition 2.2.

We say that r(xyy, ξ, ^ e C ^ K ^ x / ? ! ^ ) belongs to *S/δ if for any multi-indices
a and β there exists a constant CΛβ suth that

\Ί8(χ,y, ξ, v)\ ̂ cΛβ<ξ,,y-'i-ι+ ι« ,

where r[$=d*t7lD%tyr. Furthermore we say that the pseudo-differential opera-
tor R belongs to OPSJ

Pt8 if the symbol of R belongs to S/fβ.
Now take four non-negative functions ^ ( ί ) G C ^ ( β ) , ^=1,2,3,4 with

φk= 1 in {111 <* 9—2&} and φk=0 in {| £ | ̂  10—2^}. Take moreover four non-
negative functions λ*eC°°(#), ft=l, 2, 3, 4 with λ A = l in { | ί | ^ 2 ^ + l } and
λ*=0 in {I * I ̂  2fe}. We define ψA(f, v) by

where p=min (1, lj(m-\-\)). It is easy to check that ψm<&/rA (Λ=l, 2, 3),.i.e.,
the support of ψk+i is contained in a neighborhood of the closed set where
ψk=l. We define the pseudo-differential operator Ψk by Ψk=ψk(DyyDy).
Take ί=ψ'1/p, where/) denotes the symbol of L. Then the pseudo-differential
operator R is defined as follows:

(2.3) R = Q L - Ψ ! ,

where Q=q(x,y, Dx, Dy). Now we see that R e OPS^P

0. Indeed, the asymptotic
expansion gives

where σQL denotes the symbol of QL. Observing that ψAGSp"
po and

in the support of ψx together with the assumption (A.2), we have q(y) p(Ί) G 5^CIYI.
Therefore it follows that R^OPS'^. From (2.3) we have

(2.4) Ψ2QL = Ψ2(I+R).

Since R^OPS^P

0, we can define E^OPSp0 to have the following asymptotic
expansion:

(2.5) E~i+ii(-iy#

and then,
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(2.6)

Now from (2.4) we see that

(2.7) Ψ3EΨ2 QL = Ψ3E(I+R)-Ψ3E(l-Ψ2) (I+R).

Since ψ3^ψ2i it follows that Ψ3E(ί~Ψ2)e0P5-°°. Then in view of (2.6) and
(2.7), we have

(2.8) BL = Ψ3+K

with B=Ψ3EΨ2Q and K(ΞθPS-°°.

REMARK. Q belongs to OPS^0

ι and so does B.

Now we consider the case where Lu^C°° at (0, y°). We may assume w e ί ' .
Let φ(#,3;)eC;Γ be a function with φ = l near (0,^°) such that Lu^C09 in a
neighborhood of the support of φ. Then from (2.8) we have

(2.9) φBLu = φΨ3u+φKu .

Since J5 has the pseudo-local property, we see that φBLu^C^. So we obtain
φψ3u e CJΓ. Moreover we have

(2.10) Ψ4{φu) = Ψ4φψ3u+Ψ4φ{ί-Ψ3) u .

Since ^ 4 Cty 3 , we see that ψ4(φu)<^H°°. This implies (2.1) holds and the
proof is completed.

The proof of Proposition 2.1 will be given in Section 3.

3. Microlocal energy method

In this section we give the proof of Proposition 2.1. Here we use the
microlocal energy method of Mizohata [6].

First we define the microlocal smoothness of distributions as follows.

DEFINITION. Let {x°,yQ)^Rn^χRn

y2 and η°<=Rn2 with |^°| = 1. For
we say that u is microlocally of the class H0'00 at (#°, y°; η°) if there exists a func-
tion φ^Co(Rn) with φ = l in a neighborhood of (x°yy°) and a conic neighborhood
r o (c# w 2)of 97° such that

J Δ

for any positive number sy where

Δ = 1 2 M i χ Γ 0 = i{ξiV):

REMARK, M G H000 at (x°, y°) if and only if u is microlocally of the class HOf{
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at (x°,y°; v°) for all ^ G ^ with \η°\=l.

Now let Φ G C ^ Λ ^ ) be a function satisfying

Φ = 1 in {z: \z\^

and

Φ = 0 in {z: \z\^

Here we assume that 0 < r ' < r < l .
Our microlocalizers {an(η)> β(y)} are defined in such a way that

a.(v) = Φ(^-V°) , β{y) = φ(y-y°),

where n is a positive integer.
Our microlocal energy is

SN,nu= Σ \\cn

Pqaίp\Dy)(βiq)u)\\2

L2, u^S\Rn)

with cn

Pq=n^2)^"^K

REMARK. aip) and β(q) denote 3̂  an and Dq

y β, respectively.

Now we have the following lemma whose proof will be given in Section 6.

Lemma 3.1. Let ueH°>J at (0,y°) for some j . Then ut=H°'°° at ( 0 , / v°)
if and only if there exists a function X(x)^C%(R"ι) with X=l in a neighborhood
of χ=0 such that

SN,n(Xu) = O(n-2*)

when w-> oo, for any fixed N and s.

REMARK. In general, cn=O(n~k) means that there exists a constant B such
that I cn I ̂ Bn~k when n is large.

Let us now begin the proof of Proposition 2.1. The semi-ellipticity of L
except at # = 0 enables us to know that the right hand side of the equation

ψL(Xu) = ψ[a(x,y, Dx), X(x)] u+XψLu

is of the class CJΓ if Lu is of the class C°° at (0, y°). Here we supposed that
X(x)^Co(Rnή and ψ(^)eCo(R n ή have their supports in small neighborhoods
of # = 0 and y=y°, respectively. So we can write

(3.1) ψLv = h ,

where v=Xu and h^C%. In view of Lemma 3.1, our aim is to show that
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SNt1tv=O(n~2s) for any N and s. We choose r > 0 sufficiently small such that
/3&/r. Let us operate cάp) β(q) to the both sides of (3.1), namely,

(3.2) aί

The asymptotic expansion gives

Re (Lva.Pιq, va>fj = Re (-[«<» β(qh L] v+kn,p q, vn>p>q

(3.3) = R e Σ Λ

with

Λ = -

Is = (K.t.v
 v«.p,t) >

where N is a large integer whose definition will be given later.

REMARK. ([«<»> βw, a] v, v.tM) = J 8 + / 4 and ([α?> ̂ ( ί ) , ^(*) ft] *,»..,.,) =

Now we are going to estimate each \Ik\. From Garding's inequality, it
follows that

\\A^w\\2^C1Ke(bw,w)+C2\\w\\2 for w(=S(Rn),

where Q and C2 are positive constants.
Taking w=g(x)1/2 vnιP>q and noticing that c'1 n^ \ η \ ̂ cn for ^Gsupp ctn, we

have the following estimate:

1 ^ Q Re (^(*) K.# > ί, f..

On the other hand, we see that for any K>0

I

Noticing that the order of έ$) is 2m— \ v \, we obtain from (3.4) and (3.5)

(3.6) + Q ||p..#>f||
ί)+JKfi-«V|(C7 Re (g(χ)
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Since Garding's inequality is also applicable to a(xyy, Dx)t we obtain

|J,|3S Σ {KT ReKM.0
ISIWSΛ -lί+JI

(3.7) +C10 \KPJ
2)+K(CU Re (aβ,,^. f, w.lH#.f)

We estimate 1721, 1741 and \I5\ in the following way:

(3.8) 1121

(3.9) IJ

(3.10) | /

Writing the symbol of r%tPq by an oscillatory integral together with the
fact that c~ιnS \η\ ̂ cn for T esupp an, and introducing the partition of unity
in the 97-space, we see that

where |ω | i ; ) denotes a seminorm in Sif0(Rnή, i.e.,

I ω I ψ = max sup | ω$(y, V) \ <v>'i+^ .

For detail, [6, ρ.58]. Therefore we have

113, <P,q v\\^c»pq \KP>q\\Hoj+ι2 llψi ll^y^const. r

for \p+q\£N.

Then if we choose N sufficiently large such that —— N-{-2tn—j—l<—s>
we obtain

(3.11)

for \p+q\<Z:N. By the parallel way, we also obtain

(3.12) lleJ.τί:,..»ΊI = O(Λ-')

for |/>+ϊ| ^N if we choose N sufficiently large.
Let us now observe that cn

Pq=n-im<m'm) c?+(1>ί+v, then from (3.3) and
(3.6)-(3.12) we have for any £>0

— Re (βw,.Λ f, w..p.,)+-j Re (g(x) bwn>p>q, w, t Λ f )

(3.13) ^ ^ ι s , μ + v Σ w + | » - | W | ( C l l Re



HYPOELLIPTICITY FOR SEMI-ELLIPTIC OPERATORS 571

+K
i

+ c 1 6 IK,+(ιJ|2)+£ IK, Jl2

+K\\c»Pςhn,pJ\2+O(n-*),

by taking K sufficiently large. Here tvnfPtq==cPq vntPq.
Summing up the both sides of (3.10) with respect to (p, q) satisfying

\p+q\ ^Ny then we see that

(3 14) T Λ N ' Λ \ B»-^KC* n AN.n+KC18 n-i BNtn

+2£SNtnv+KSNtnh+O(n-2*)y

where

B N > n =

By Garding's inequality, BNn^0 holds for sufficiently large n. SNnh=
O(n~2s) since h<=CZ. So from (3.14) we have

(3.15) jANtn£6SN.uv+O(n-*).

Recall that S can be any positive number.

Lemma 3.2. If we choose the supports of X(x) sufficiently small, then we
have

for some δ>0.

Proof of Lemma 3.2. By Garding's inequality, we have

R e ^ ^ ^ ^ H Λ ^ I P - ^ I H I 2 for wt=S(Rn).

Taking w—vntP>qi we see that

(3.16) Re («»..>.«. »..*.,)^8IK>.,II2.

since we can write

*..U*>y) = x(*) cάt\D9) oβ ( f ) χ, ιι) ( * > y ) ,

where Xx{^Co(Rnή and %cX r

Multiplying the both sides of (3.16) by (cPq)
2 and summing up with respect

to (p, q) satisfying \p-\-q\ ^N, we obtain the desired estimate. Q.E.D.

REMARK. From (2.1) and the definition of an(η), we see that vntPtq
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Since the support of vntPΛ is compact with respect to the x variable, Poincarά's

inequality is applicable.

From Lemma 3.2 and (3.15), it follows that

In view of Lemma 3.1, the proof of Proposition 2.1 is completed.

4. The uncertainty principle

The proof of Theorem 2 is devided into the following two propositions.

Proposition 4.1. Let g(x) be a smooth function satisfying (AΛ) and (AA).
Then for any £>0 there exists a constant N>0 such that

(log\v\fk\\φ(x)\2dx
(4.1) J

for φt=Cΐ(-l, 1) and \η\^N. Here «<'>(*)=(AY φ(χ).
\dxJ

Proposition 4.2. Let L be an operator of the form (1.2). If g(x) satisfies
(4.1), then L is hypoelliptic.

The proof of Proposition 4.2 will be given in the next Section. We shall
devote the remaining part of this section to the proof of Proposition 4.1. We
prepare the uncertainty principle of Morimoto [10]. Consider a symbol of the
form

(4.2) P(x,ξ) = ξ2l+V{x),

where V(x)^0 belongs to C°°(R). For δ>0 and xo^R, we denote by BB(xQ)
a box

{(x,ξ):\xx,\£δ,\ξ\£S} .

Clearly the volume of BB(xQ) is equal to 1.

Theorem A. Let p(x, ξ) be the above symbol and let M be a positive con-
stant. Assume that there exists a constant c>l—2~ι+1 such that for any δ > 0
and any

(4.3) μ({(x9 ξ)^Bδ(x0): p(x, ξ)^M})^c,

where μ is Lebesgue measure on R2. Then there exists a constant K>0 which is
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independent of M and V(x) such that

(4.4) (p(x,D)u,u)^KM\\u\\2 for UΪΞOΪZ(R) .

Theorem A is a paticular case of Theorem 1 in [10]. For the proof of

Theorem A, see Section 1 and 2 of [10].

Now Proposition 4.1 follows from Theorem A. Indeed, taking V(x)=η2m

g(x)> i.e.,

and M=6~\log \η\)2k> by the assumption (A.4) we see that p(x,ξ) and M

satisfy (4.3), when \η\ is sufficiently large. It follows from Theorem A that

(4.4) holds. Clearly, (4.4) implies (4.1). Thus the proof of Proposition 4.1

is completed.

5 Proof of Proposition 4.2

The proof of Proposition 4.2 is quite analogous to the one of Theorem 2 in

[4]. In this section HdJ denotes a space of distributions in S\RZ) satisfying

^, τ>2'' dξ dv dτ<oo ,

where we denote a coordinate of T*(R3) by (x,yy t; ξ, ηy T). The local and

microlocal smoothness of distributions are defined in the same way as in Sections

2 and 3. Now for the proof of Proposition 4.2, it suffices to show that u is

microlocally of the class H0'00 at (0,yQ, t0] η0, τ0) for all (η0, τo)^R2 with ηo+τl=

1, when Lu^C°° and utΞH0'* at (0yy0, t0).

We end the preparation of the proof of Proposition 4.2 by recalling the

microlocal energy method which Hoshiro has used in [3]. Choose first a sequnce

)9 JV=1, 2... with

Ψ * = l in i(yyt

and

Ψ v - 0 in \{y,t):y2+t2^r2}

satisfying

I D ^ ΨNI ^C^CN)^ for \p\£N,

where Cμ and C are constants which are independent of N. We supposed

that 0 < r ' < r < l . We define our microlocalizers as follows:

an(η, r) = ¥»„(-*•-v0, — - τ 0 ) ,
n n

β»{y, t) = ΨNJy-y» t-t,)
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with iVn=[log fl]-f-l.
Our microlocal energy of v^Sf(R3) is defined in such a way that

Sϊv= Σ \Kaίp\DyyDt)(βn(q)v)\\2

L2

with cn

Pq=nW(M log n)-\p+«K Here a^=dpj dp

τ* an and βn(q)=Dp Dp βn with

P=(Pvp2) and £=(&, ft), respectively.
Then we have the following lemma whose proof was given in Section 6 of

[3].

Lemma 5.1. Let u^H0J at (0>y0, tQ)for some j . Then u is microlocally of
the class HQ-°° at (0,y0> to; ηQ, τ0) if and only if there exists a function X(x)^Co(R)
with X=l in a neighborhood of x=0 such that for any positive number s, there
exists a constant M such that

when n is large.

Proof of Proposition 4.2. Let X(x) and ψ(yy t) be smooth functions whose
supports are contained in small neighborhoods of x—0 and (y, t)=(y0, t0), res-
pectively. The semi-ellipticity of L except at x—0 enables us to know that the
right hand side of the equation

ψL(Xu) = ψ[D2

x

k, X(x)] u+XψLu

is of the class C? if Lu is of the class C°° at (0, yo> tQ). So we can write

(5.1) ΛJΓLV = h ,

where v=Xu and %
Assume that \p-\-q\ ^Nn and r > 0 is chosen sufficiently small so that

βn<^ψ. Let us operate aίp) βn(q) to the both sides of (5.1), namely,

(5.2) aPββWLv = a<t>βl,iί)h.

Furthermore the asymptotic expansion gives

(Z*..,.f, *..,.,) = - Σ o (- l ) l v | (^ !)-W v ) ^ . f + v, v..,.,)

where vntPtq=a(

n

p) βn(q) v, hntPtq=aίp) βn(q) h and L ( v ) is the differential operator
whose symbol is 9^τ L(x; ξ> η, T).

Thus we have the following estimate:

y v n , p > q ) |
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where £ > 0 is an arbitrary constant. Moreover, multiplying the both sides of

(5.4) by (cn

Pq)\ we obtain

( L ω m , M 9 w n t P t q ) ^ Σ \ o ( M l o g n ) \ ( L ^ , , + v , t o n t M ) \

where wn,p,q=4q vn,P,r Note that c"q=(M log w) | v | ^ > ? + v .

Now we are going to estimate the first term on the right hand side of (5.5)

under the assumptions that | η0 | ^ | τ01 and | ^01 = I τo I > respectively.

A. In the case where \ ηQ | >̂ | τ01

(1) For v=(d, 0) (i.e., L ( v ) =const, g(x)D2

y

m-d), we see the following. Since

c~ιn^ \η\ ^cn for (97, τ ) e s u ρ p ani we have

= const. I ] J j ^ ) V2m~d Wn.p.q+v(x; y> T) ̂ «,/,,9(^; 17, T) dx dη dτ\

^const. rΓd j j j ^ ) ^ - ( | ω S i ί i f + v | 2 + I«£.*.,

where ^«^ t ί(^; 17, T) denotes the partial Fourier transform of wn,P,q(x>y> t)

respect to (y> t).

Therefore it follows that

<;S{(Lw t O ) + (LO*,p,q, ™n,P,q)} ,

when n is large.

(2). For i;=(0, d) (i,e., L ( v )=const. D]k'% we have

= const. (Mlog n)rf | \ \ j τ2k~d mtpt9^(x\ v> τ) wϊ.P.q(x> V> r) dx dvdτ\

Observing that for any £>0 there exists a constant K>0 such that

(Mlog n)dIr 12*-rf^

then from (4.1) we have

^const, i f ί iβτ2k+K(Mlogn)2k}

Xi\wΛn.p,q+ϊ\2+\wΛn.P.q\
2} dxdηdr

when n is large. Note that log w^logl??! in the support of w^ιPtq(x; η, T).

Combining (1) and (2), we obtain for any £>0
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,- ~ (LτoUtPtV α ; ^ , ) ^ const. £ Σ (Lwn,P,q+*>
(5.7) m^2m+2k

+e-1lleJ,A..,.,ll
when n is large.

B. /ft the case where \ ηQ | ^ | τ01
(3). For v=(d, 0), we have

— const. (Λf log tt)dI ] J J £(*) ^2wί"rf Wntp.q+v(xm, V> τ) WΪ.P.Q(X> V> T )
 dx dηdτ\.

Observing that for any S>0 there exists a constant i£>0 such that

( M log n) r f I η 1 2 w ί ~ r f ^ ^ 2 w + K M 2 m ft ,

we have

^ const, ( ί ί ^(Λ?) {Sv

2m+KM2m ft}

X {I m.p,9+v 1 2 + I w; f ί i f f 1
2} r

^ c o n s t . S{(LwnfPtq+^ wn>Ptq+v)+(Lwn,p>qy wntPtq)},

when ft is large.
(4). For v=(0, d), we have

= const. I J J J τ 2 W w;^ i ί+v(Λ?; 7̂> T ) wif^fff(Λ?; η> T

when ft is large.
Combining (3) and (4), we also obtain (5.7) for any £>0.
Now, let us sum up (5.7) with respect to (p} q) satisfying | / > + j | ^Nn—2

(m-\-k). Then the first term of the right hand side of (5.5) will be absorbed into
the left hand side (by taking S sufficiently small). Thus we have

(5.8)

since the microlocal energy of h is rapidly decreasing as ft^oo. To establish
(5.8), we used

for sufficiently large M. Cf. Lemma 1 in [2].
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By Poincarό's inequality,

holds for some δ>0. Therefore have

Σ (Lwn Λ Λ, ton

So from (5.8), we see that for any number s there exists a constant M such
that

(5.9) SfίXtt) == O(n~2s).

In view of Lemma 5.1, it follows that u^H0'00 at (0,yQ, tQ; η0, τ0) for any (ηOi τ0)
with ηo-\-τo=l. Now the proof is completed.

6. Proof of Lemma 3.1

Here we give the proof of Lemma 3.1.

Necessity. First we suppose Φ=X{x)-ψ'(y) is a cut-off function which
satisfies φu^H0'00 at ^-direction, i.e.,

\\jMξ,v)\2<V>2Jdξdv<oo for any j

with

where Γo is a small cone which contains η°. Furthermore, choose r>0 suf-
ficiently small so that β€^ψ and supp an^Γ0. Now let us take v=Xu and
consider the following estimate:

n2j | | α ^ β(q) v\\* = ||n> c&\η) (f^v) (f, ^)||2

^ const. | |α^ }(97) (/S(β) v) (ξ9 η) <77>y||2

^) | 2 <^ ^ ^ .

Recall that c"1 n^\η\^cn for 77esupp an. Then we see that

\\aPβ(<)v\\ = O(n-ί) for any j .

So it follows that

SNffl(Xu) = O(n"2 s)

for any iV and ί. Q.E.D.

Sufficiency. If SNtH(Xu) = O(w"2s), we have
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where v=Xu. Let us observe that

Ίl ocn(η)2 n28"1^ const.

for η contained in some conic neighborhood Γo of ηΌ with \η\ ̂ 1 . Then we

see that

/\ , ,

for any s'<s, where A' — AΓ\ i{ξ, η): | τ? |^ l } . Now it follows that u is
microlocally of the class H0'00 at (0, y°; η°) if SNttt v is rapidly decreasing as n->oo.

Q.E.D.
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