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1. Introduction

This paper studies two kinds of linear random difference equations

(1.1) AX(n) = -

(1.2) AX(ή) = -β, ( * ( " ) + * ( " - ! ) ) _ U . m . ( γ 2 > ί * Δ Z) (n)+a2l(n)

a.s.(»GZ)

with infinite delays. Here

(1.3) AX(ή) = X(n)-X(n-ί) (n(=Z),

α;. and /3; (/=l, 2) are positive constants and, for j=l, 2 and £>0, γy>8 is de-
fined by

(1.4) 7,.f(n) = %Q.«)(I

with a bounded Borel measure p, on [—1, 1] such that

(1.5) P / ({- l , 1}) = 0, j 1 ^ -1^ P j (dx)<ί .

B=(ξ(ή);ne.Z) in (1.1) is a normalized Gaussian white noise or a sequence
of independent Gaussian random variables with mean 0 and variance 1. / =
(I(ri); n&Z) in (1.2) is a real stationary Gaussian process named the Kubo noise
associated with the solution X=(X(n)\ n^.Z) of (1.2). The Kubo noise / is
related to X through the following relation

(1.6) X(n) = --L= Σ R2(n-m)I(m) a.s. ( » G Z )
v 2π "»=-**

(Theorem 4.1 in [11J), where R2 is the correlation function of X. For the
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precise definition of Kubo noise, see [11] as well as section 2. The equation
(1.1) (resp. (1.2)) is a slight modification of the first (resp. second) KMO-Langevin
equation of Okabe [10,11]. We call (1.1) (resp. (1.2)) the modified first (resp.
second) KMO-Langevin equation.

In [13] and [4], the Alder-Wainwright effect or the long time behavior of
the correlation function was studied in the case of continuous time and it was
shown that the Alder-Wainwright effect can be characterized completely in
terms of the decay of the delay coefficient 7 of KMO-Langevin equations.
On the other hand, Okabe [10, 11, 12], as a discrete analogue of [8, 9], developed
the theory of KMO-Langevin equations for a class of discrete-time real sta-
tionary Gaussian processes with reflection positivity. In particular, he showed
that the time evolution of such a process X can be described in terms of two
kinds of linear random difference equations named the first and the second dis-
crete KMO-Langevin equations. Then it seems to be natural to expect a
discrete analogue to the Alder-Wainwright effect for continuous KMO-Langevin
equations and that is what we show in this paper.

In so doing, we encounter two problems to be considered. The first problem
is that, to state the Alder-Wainwright effect, the KMO-Langevin equations of
Okabe [10, 11] are a little inconvenient. Therefore we modify them as (1.1) and
(1.2). It seems to be interesting to see that, for this modified second KMO-
Langevin equation, the Einstein relation

(i.7) D

holds, where D is the diffusion constant of X defined by

(1.8) D = lim -L E((± X(n)Y) = £ R(n)-Zψ-.

The second problem is that, in contrast with the continuous case, the cor-
relation function Rj(j=l, 2) and the delay coefficient 7y(i=l, 2) are not neces-
sarily monotone in the discrete case. Since the Tauberian theorem, which is
our main tool to show the Alder-Wainwright effect, needs some monotonicity,
we have to suppose a condition. Let X1=(Xι(n);n^Z) (resp. X2=(X2(n);
nEzZ)) be the unique real stationary Gaussian solution of the equation (1.1) (resp.
(1.2)) with mean 0 and covariance Rt (resp. R2) of the form

(1.9) ϋχn) = J1_iίi '<r/Λ) (neZ) 0=1,2).

Here σj(j=l, 2) is a non-zero bounded Borel measure on [—1, 1] such that

(1.10) σ,({-l, 1}) = 0, £ (_JL+_i-) σj(dt)<oo .
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The property (1.9) is called the reflection positivity. Our assumption for p=Pj
is

ASSUMPTION A.

supppc[0,1] .

We note that Assumption A for pj does not necessarily imply

(1.11) βupp<ryc[θ,l]

but we can show that σy is "almost" of the form (1.11). This observation is
essential in our argument and once this correspondence is established, the char-
acterization of the long time tail of Rj in terms of jj is proved almost in parallel
with the continuous case.

Give a slowly varying function L at infinity. For/=1, 2, we define

(1.12) y,(ιι) = %[1>M)(n) j ^ t-1

 Pj(dt) (neZ).

The following two theorems are our main results.

Theorem 1.1. Suppose that px satisfies Assumption A. Let 0<p<oo.
Then the following (1.13) and (1.14) are equivalent:

(1.13) yx{n)r^fΓpL{n) (n-*oo),

(1.14) Rτ(n)~^l£ n-α+Λ L{n) (n-+oo).
βi

Theorem 1.2. Suppose that ρ2 satisfies Assumption A. Let 0<p<oo.
Then the following (1.15) and (1.16) are equivalent:

(1.15) Ύ2(ή)~n->L(n) (n-oo) ,

(1.16) R2{ή)^2π^P n-α+Λ L(n) (w->oo).

Theorems 1.1 and 1.2 show that quite a good analogue holds between the
continuous and the discrete case if we consider the equations (1.1) and (1.2)
under the Assumption A.

This paper is organized as follows. In section 2, we rewrite the KMO-
Langevin equations of Okabe [10, 11] in a form which is suitable to the Alder-
Wainwright effect. Sections 3 and 4 characterize Assumption A for p2 in
terms of σ2. This characterization is used when we apply a Tauberian theorem
in section 6. Section 5 is a miscellaneous preliminary of the proof of Theorems
1.1 and 1.2. In section 6, we prove Theorems 1.1 and 1.2. The last proofs
are parallel with the continuous case but we include them for completeness.
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The problem studied here was proposed by Professor Yasunori Okabe.

The author is grateful to him for his valuable advices.

2. The modified KMO-Langevin equations

The main purpose of this section is to rewrite the discrete KMO-Langevin
equations of Okabe [10, 11] in a form which is suitable to state the Alder-Wain-
wright effect. In what follows Δ stands for the difference operator

We define

(2.1) Σ = {σ; σ is a bounded Borel measure on [—1, 1] such that

σ({-l,l}) = 0 and J^(_J_+-±-) σ(Δ)<oo} ,

(2.2) X = {{a> βy p); a>0, β>0 and p is a bounded Borel

measure on [—1, 1] such that

p({-l , l }) = 0 and

Let σ e Σ and X=(X(n); neZ) be a real stationary Gaussian process with mean
zero and covariance function R of the form

(2.3) #(w)=f t^σ{dt) (n(ΞZ).

The condition σ e Σ implies that R^P(Z). We define a function [R] (z) on

(2.4)
-i 1—tz

Theorem 2.1. The relation

(2.5)

defines a bijection σ-^φ2(σ)=(a2, β2, p2)from 2 onto X.

Proof. By Theorem 3.1 in [11], the relation

-*+(i-* 2) Γ ^
J-i 1—t
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defines a bijection σ-+φ2(<r)=(όt29 &> A) fr°m 2 onto X, where s e ί/,(0) and

(2.6) .£ = {(#, β,ρ);a>0,β>0 and p is a bounded

Borel measure on [—1, 1] such that β({—l, 1}) = 0} .

Then the theorem follows easily if we consider the bijection (όt2, /§2> A)~*

(a2f β2, ρ2) from X onto X defined by

fry η\ θt2 r* ^'&2

{ ] U2 " 1 + A ( [ - 1 . ID' Ά " 1+A([-1.1])'

We recall the definition of Kubo noise according to [10, 11]. Let Δ, h
and £ be the spectral density, outer function and canonical representation
kernel of X respectively:

(2.8) R(ή) = Γ «-'"• Δ(0) dθ ( n e Z ) ,

(2.9) A(β)

(2.10) A(β») = limA(rβ' ) a.e. θ(Ξ(-π,π) ,

(2.11) E(n) = A(«) = (* *-'•• h{e">) dθ (neZ).

Then we know that £ e / 2 ( Z ) , E(n)=0 (n= — 1, — 2, •••) and there exists a nor-
malized Gaussian white noise Ξ=(ξ(ή);n&Z) such that

(2.12) X(n) = —L= ± E(n-m)ξ(tn) in

(2.13) σ(X(m);m<tn) = σ(ξ(m);m<tn)

The Kubo noise 7=(/(/ι); n^Z) associated with X is the stationary Gaussian
process defined by

(2.14) I(n) = —L= Σ EI(n-m)ξ(m) a.s.
\/ 27Γ «=-°°

where

(2.15) £7(n) = ί (») = Γ ^ ί Λ β A7(β'

By Theorem 4.1 in [11] we see that / has the following properties:
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(2.17)

(2.18)

Now

(2.19)

(2.20)

X(n\ —
V

σ(X(m)

for any £ > 0 we

ΎM =

1 »

2π --

;m<,n)

define

°x&-)(

γ 2 o ( M )

A.INOUE

] R(n-m).

- <r(I(m);

(rteZ).

a.s.

(n<=Z).

By using the Kubo noise / and the triple (α2, β2, p2), the time evolution of X is
described as follows.

Theorem 2.2.

(2.21)

AX(n) = -β2 ( X

a.s.

any

2 / 8ψO

Proof. Let (<3ί2, /§2, ft) be an element of X defined by (2.7). We put for

(0 («=-l,-2, .),

( " = 2 >

Then we have

(2.22)

(2.23) = ( l + γ 2 ( 0 ) ) Δ72,e(/) (/ = 2, 3, •••).

On the other hand, by Theorem 5.1 in [11], we know that the time evolution
of X is governed by the following second KMO-Langevin equation

(2.24) AX(n)= -$2(X(n)+X(n-l))-{%*X)(n)+a2I(n) a.s.(rceZ).

Since we have for any 6Ξ>0,

and

1=2 J-I - l
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it follows that

(2.25) E[\{%*X) (»)-(72)β*X) («) | 2 ]^i?(0)(Σ|γ 2 (/)-T 2 . e (/)l) 2 -0 (€ J 0).

From (2.22), (2.23) and (2.25) we have

{%*X) («) = (l+72(0)) lim (<y2,ε*ΔX) (n)+72(0) AX(ή).

Then the theorem follows from (2.24) and the above. •

DEFINITION 2.3. We call the stochastic difference equation (2.21) the
modified second KMO-Langevin equation and the triple (α2, β2y ρ2) or (α2, β2, 72)
the modified second KMO-Langevin data.

In the next theorem we express <x2 and β2 in terms of <r=<p2~
1((a2y β2, p2))

Theorem 2.6.

(i) a2 = ^λ σ ( [ - l , 1]) J1^ J L σ ( Λ )J^ σ(Λ) ( j ^
(ii) A = 2σ([-l, 1]) (J1

Proof. By substituting ^ = 0 into (2.5) we have

and making z f 1 in (2.5) we obtain

2π J-i \—t

The theorem follows from these two equalities. •

Let D be the diffusion constant of X defined by (1.8). By Theorem 6.1
(iii) in [11] and (2.7), we see that the Einstein relation

(2.26) D = ^ ί Ώ

A
holds between Z) and β2. We remark that for the second KMO-Langevin data
of Okabe [11] there is a deviation from the Einstein relation.

Next, according to the above modification of the second KMO-Langevin
equation, we rewrite the first KMO-Langevin equation of Okabe [10]. Let
(&v βv Pi)^-C be the first KMO-Langevin data of [10] characterized by the
relation

\/L7t
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where h is the outer function of X. In the same way as Theorem 2.1, by ap-
plying a similar substitution

\L,LI) ax —
Pi([-i> 1]) i+PiCL—1> 1])

to (αx, /§!, pJ^X, we obtain from Theorem 4.1 in [10] the following theorem.

Theorem 2.5. 7%£ relation

(2.28) A(*) = - ^ (A ί!±?)-+l-,+»(l-,)

defines a bisection σ-»<^1(σ-)=(α1, /32, pijfrom Σ

For any f>0we define

(2.29) ΎI..(Λ) = Xn.-)(«) ί1 i " ' f t ( ώ ) (»

(2.30) ri(») = 7 i » ( » e Z ) .

Then the time evolution of Xis described by using the triple (av βu px) and the
white noise Ξ in (2.14) and (2.15) as follows.

Theorem 2.6.

(2.31)

AX(n) = - A
2 / 8*0 '

Since Theorem 2.6 follows from Theorem 6.1 in Okabe [10] almost in the
same way with Theorem 2.2, we omit the proof.

DEFINITION 2.7. We call the stochastic difference equation (2.31) the
modified first KMO-Langevin equation and the triple (av βv ρx) or (av βly γx) the
modified first KMO-Langevin data.

EXAMPLE 2.8. For any ρ>0 , we put

(2.32) p = %(Oil) (0 - i - J _ (-log ty-i dt,
1(PJ ^ *

where dt is the Lebesgue measure on [0,1] We define

(2.33) p =

Then for any a>0 and /3>0, we see that (a> β, ρ)^X. By a direct calcula-
tion, we obtain

(2.34) Ύ(n) = XhMn) \[ ̂  p{dt) = x . , („) ̂ - i ^ 1
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EXAMPLE 2.9. For any^>>0, we put

(2.35) p = χ(0>i) (t) Λ - -L-. (-log ί)>- dt,

and define p by (2.33). Then we have

(2.36) * . ) - %„..,(„) £ , - „(•*) - W > ^ ^

3. Relation between the supports of measures (1)

In this and next sections we characterize Assumption A in section 1 for
p in terms of σ=φJ1((a> β, p)). The main results are Theorem 3.1 and Corol-
lary 3.2 below.

; supp p c [ 0 , 1]} ,

= 0i - o o < | - 1 + Γ 1
Z Jo ί

= 0 , 4 ~ 1 + Γ ~ P(Λ> = 0} '
2 Jo ΐ

= 0 , 0<-f—1 + Γ -
Z Jo ^

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)

We define

X+ =

Xt =

Xt =

χt =

XX =

{(a,

{(«,

{(a,

{(a,

β,

β,

β,

β,

β,

We note that X+=Xt U «Γ2

+ U -£3

+ U -i^ί (disjoint union). Next we define

(3.6) Σ f = { σ G Σ ; s u p p σ C [ O , 1] , (^}) ,
Jo t

(3.7) Σ 2

+ ={σGΣ; supp σ c [ 0 , 1], ( —
JCo,i3 ί

(3.8) Σo" = { σ G Σ ; σ - <7o δ,0 , σ o>O , -

(3.9) Σo+"

(3.10) Σ3

+ =

(3.11) Σ4

+ = ί σ G Σ ί " ; ί1 — σ(Λ) - 0} ,
J-i t

(3.12) Σ + = ΣΓ U Σ2

+ U Σ3

+ U Σ ί ,

(3.13) Σ + ~ = { σ ^ Σ ; σ=σ- + σ+ , σ_ = σ0 δ/,0 , cro>O,

-l<po<O and σ
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Note that 2 + c Σ + " . In (3.5) and (3.7), the integrand r 1 is assumed to be
+ co atO.

Theorem 3.1.

(i) φ2(τt) = -ct, φ2(τt) = £t> φ2(zt) = £t, φz&i) = xt.

(ii) Let σ e Σί U Σa" and (a, β, p) = φ2(σ). Then

Corollary 3.2.

(3.15)

Before going into the details, we make several comments on the method
of the proof. We show Theorem 3.1 first for discrete measures and in the
general case by approximation by discrete measures. Originally this approxima-
tion method was used in Okabe [7] for the continuous case. The results of
[7] were applied to the discrete case in Okabe [10,11]. It should be noted that
though we use some results in [10, 11], which were proved by reducing to the
continuous case, we can also prove them by this approximation method. It
means that if we wish, we can develope the theory of the discete case inde-
pendently of the continuous case.

Theorem 3.1 is proved finally in the next section. In this section, as a
first step, we prove it for discrete measures. We define

(3.16) 4 , i = { ( α , / 3 , p ) e 4 ; p = Σ p , S f , for some N(ΞN,

where Pn>0(n = 1, - , N), 0<qι<q2<-<qN<\}

(i = 1 or 3),

(3.17) Ί,t.d = {σeΣ ; σ = Σ σ . ί , for some NeN, where
»=0 "

σtt>0(n = 0, -.,JV) and

(3.18) Σίrf = {σ G Σ ί ;<τ = JlσnSp for some N&N, where
o n

(n = 0,-,N), ~l<po<O<p1< <plf<ί} .

Lemma 3.2.

(i) φ£Σ.U) = £t.it ψ2{!<$ιd)=Xt,d.

(ii) Let σ e Σί> U Έ,t,d and (a, β, p) = φ2(σ). Then
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Proof. Step 1. First we assume that (a, β, p)^Xttd{lXt,d. Then p is
of the form Σ ί ^ i pn δ ί n . By Theorem 2.1 we see that

g{z) = (β il±*l-f-l-*) Π (1-ί. *)+*(l-*) Σ/..Π (1-?* *)

(*(-<*>)) = - s g n ( | -

sgn (g(ί)) = 1, sgn

lp(Λ)), sgn(g(-l)) = 1 ,

)"-»+1 (« = 1, - , N),

and so

(3.20)

In view of (3.20) there are iV+1 numbers pn(n = 0, •••, N) and a positive con-
stant cx such that

JSΓ

•S.<

| 0<A<fc<A<-"<i*<f*<l if (a, β, p)eXt.i,

( —l</>o<O<ί1 <p!< <?ΛΓ</>JV<1 if (α, yS,

Therefore we can expand [R] (z) as

(3.21)

(3.22)

[R](z) =
2π »=» * 1—pn2 '

σ« =

(3.21) and (3.22) show that σ=ΣJL+

0

1 <r» δ ^ ^ ^ F ^ α , /S, p)) From (2.5) we have

and letting ^-^cx) we obtain (3.19). Thus i Ί
Step 2. Conversely we assume σ = Σ ^ o σ

have

y and ^
USM. By (2.4) we

π
i

f(z) = J -
27Γ

Π (1-Λ*) =
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and so

(3.24) sgnί/φΓ1)) = (-l)w-» (» = 0, - , N) if

^ ' l β g n ( / ( + ) ) ( l ) *

By (3.24) and (3.25) we see that there are iV numbers qn(n=l, •••, ΛΓ) and a

positive constant £2 such that

We put

<3 2 7 > ^ -

<3 28> < »
Since [Λ] (0) = (2Λ-)-1 cr([—1, 1])>0, [R] (I) = (2π)'1 [ (1-t)-1 σ(dt)>0 and

f1 '

2[R] (1)-[R] (0)=(2τr)-1 I (1+0 ( 1 - 0 " 1 <r(dt)>0, we see that a>0 and yS>0.
Furthermore since a(0)=a(l)=0, there is a polynomial ό(#) of degree <Λ^—1
such that

(3.29) φ ) = ^«\-*)K*) .

Substituting (3.29) into (3.28), we obtain

(3.30) *(,) =

By (3.30) we see that if we define positive constants pk(k=ί, •••, N) by

then the following polynomial
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of degree <N—ί coincides with b(z) at each value qj~\k=l9 •••, N). Therefore

we have

(3.31) i(»)

By (3.28), (3.29) and (3.31), we obtain

f -x) [ -L- p(dt))'\ p = Σf
Zπ

which shows that <^2(σ-)=(α, /3, ̂ G P . Again by (3.23) we have (3.19). Thus
φ2{σ)^Xttd if σGΣί.j and φ2{σ)^-Ct,d if σGΣί.j. This completes the proof
of the lemma. •

4. Relation between the supports of measures (2)

In this section we complete the proof of Theorem 3.1. First we prepare
two lemmas.

Lemma 4.1. Let (a, β, p)tΞ-C+ Then p([0, 1])<2.

Proof. The lemma follows from the estimate

Lemma 4.2 Let σGΣ. Let a>0, β>0 and p be a bounded Bore! measure

on [_i ? 1] such that supp P c [ 0 , 1], p ({l})=0 and (2.5) hold. Then Γ

p(dt)<l and so J? + 3(α, βy p)=%(σ).

Proof. The lemma follows easily by letting z I — 1 in (2.5). •

Proof of Theorem 3.1. Step 1. Let σGΣ3

+. Then σ is of the form

(4.1) σ = σ - + σ + , σ_ = σ0 δ

We put

(4-2) ^lih

Since σ-+([0, l ] )=/ [ o 1](ί~
1-f-(l — ί)"1) σ+(dt)<ooy &+ is a bounded Borel measure

on [0, 1]. We choose ^ G 2 f > = l , 2, •••) so that w- l im^ σ (ΐ)=&+ on [0, 1].
We put σ? } = ί ( l - 0 σ ϊ \ σ(M)=σ-+σ(

+

M) and (α (Λ), /3(Λ), P^)=φ2(σ

M). Since

(4.3) lim ( -1 σ(w) (Λ) - f — σ(Λ)<0,
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we may assume from the beginning that St~ι.ύ *""* σw(di)<0 for all n. Thus
σ-(Λ)eΣί,</ and, by Lemma 3.2, (a(n\ β(n\ p ( Λ ))G-£3V By Lemma 4.1, we have
supw p(Λ)([0,1])<2. Therefore there exist a subsequence nλ<n2<- and a
bounded Borel measure p on [0, 1] such that w-lim^oo p ( V = p ' on [0,1]. By
Theorem 2.4, α(Λ*} and yδ(n*) converge to a and β as k-> oo respectively, where
α and β are positive constants given by (i) and (ii) in Theorem 2.3. Then it
follows from Theorem 2.1 that for any

(4.4)

2π J-il—t

If we put c=l—p'({l})/2 and define a bounded Borel measure p" on [0, 1] by
p"(A)=p'(A Π [0, 1)), then the right hand side of (4.4) is equal to

\Z2* V c 2 v ' J n u Π - t e c '

and therefore Lemma 4.2 yields φ2{σ)=(a\cy (β+p'({l}))lcy pfrjc)^X+. Here
we note that, by Theorem 2.4, c = l and p'({l})=0. Anyway we obtain
<p2(σ)<ΞX+; so that φ2(Σt)czX+,

In the same way, by approximating any element σGΣf by elements of 2ίfέ/,
we can show that φ2(Σt)c:X+.

Step 2. Let σ G Σ ί We put for any » = 1 , 2, •••,

(n) Λ/ /Ά I / JΓW \ Si / Λ »(Λ) /D(n) (tt)\ / (tι)\

Since / [ 0 > l ] r
1 σ(n)(ώ)<°°» J t follows from Step 2 that (a(n\ β(n\ p(n))^X+.

Then Theorem 2.3 and the monotone convergence theorem yield limn̂ oo α ( n ) =tf
and lim^oo βw=β, where a and β are positive constants given by (i) and (ii) in
Theorem 2.4 respectively. On the other hand, by the Lebesgue's convergence
theorem, we have lim^oo / [ o f l](l—tz)'1 σ(n)(dt)=fίθtl ](l—tz)~ι σ(dt). Then in
the same way as Step 1, we obtain <p2(<r)E X+ and so φ2(Σ2)dX+.

Step 3. Let σ e Σ ί Then σ is of the form (4.1). We put

n °'

Since h-ι,ί\ t'1 σ(n)(dt)<0, we have σ ( n )GΣ3

+ and so, by Step 1, φ2(σw)^X+.
Then in the same way as Step 1, we obtain φ(σ)^X+; so that <p(Σt)dX+.

By Steps 1-3, we conclude that φ2(Σ,+)c:X+.
Step 4. Let (a, β, p)<=Xt. With p({0})=0 in mind, we put β=Γ1 p.

Then p is a bounded Borel measure on [0, 1]. We choose β(n)^'Σΐίd(n=l, 2, •••)
so that w-lim^oo β(n)=p on [0, 1]. We put pw=tβw . Since
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we may assume from the beginning that (a, β, pw)e£t,d{n=\, 2, •••). We put
σw=φϊ\{a, β, pM)). By Lemma 3.2, σ ( s ) is of the form

By (2.5), it holds that

<^([0,1]), *«5Sσ< >([0,1]) - V ^ α

Therefore there exist a subsequence w1<w2< , a bounded Borel measure σ+

on [0,1], /> o e[- l , 0] and * 0e[0, VΊΪΓαGS/Z+l)"1] such that

(4.5) w-lim σ?** = σ+ on Γ0, 1], lim p<**> = ί>0, lim *<•*> = s0.

&-+JL
2

Then it follows from (2.5) that for any a ε U^O),

J
(4.6)

We note that

Hence, by letting jar f 1 i n (4.6), we have σ + ({ l })=0 and fίOtli{ί—t)'1 σ+(dt)<oo,
which show that σ+^Σί" U Σ?. If ^o^O* by letting z \ — 1 in (4.6), we see that

— 1 . Thus we obtain φj\(a, β, p ) ) = ί 0 δ ί 0 + σ + E Σ + " ; so that ^ ( ^ J J c
.
Almost in the same way, we can show that φj\Xι)cz'Σι UΣJ.
Step 5. Let (α, /3, p)s£Xt. We put

)) (ii = 2, 3, •••).

Since /3<B )/2-l+/ [ o > l ] r
1 p(dt)<0, we have, by Step 4, σ ( β ) eΣf UΣί Then, by

using these sequences, we obtain φϊ\(a, β, ρ ) ) e Σ ί US? in the same way as
Step 4; so that φϊι{Xi)<zΊ,i UΣ2

+

Step 6. Let (a, β, p)c£ΐ. We put

i l
t~ι ρ(n\dt) =-\-oo.

o
Hence we see that, for sufficiently large n> (a, β, p{n))^Xt and so, by Step 4,

φ^dcc, βy p(>>)))GΣ+". Then in the same way as Step 4, we see that φj1

((α, /3, p ) ) e S + " ; so that ^ (
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Step 7. Let (ayβiP)^X+ and a=<pj\(a, β, p)). Then by Steps 4-6,

By substituting z in (2.5) by wΓ1, we obtain

(4.8) f(*>)g(™)=—£- (|

where

-i ί—

r—z

Since /(«;) and g(w) are both holomorphic on the domain D=C\({p0} U [0, 1]),
(4.8) holds also on D. Then by letting w \ 0 in (4.8), we see that

~71=(f ~1 +U7
if

0 if (a,β,p)eΛi.

Thus we obtain

Since 9>2(Σ+)C-£"+, this completes the proof of Theorem 3.1. •

EXAMPLE 4.3. We consider the triple (a, β, p) in Example 2.8. Since

we have (α, /8,

EXAMPLE 4.4. We consider the triple (α, /?, p) in Example 2.9. With

I ί"1 p(dt)<l in mind, we define
Jo

(4.9)

Then we have

•f if 0<β<βd,

Xt if /3 = /Sί,

Γ 3

+ if βc<β<°° .

5. Preliminaries

In this section, we prepare some facts which are used when we prove The-
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orems 1.1 and 1.2 in the next section.

Lemma 5.1. Suppose that a real sequence (γ(/z))~=0 converges to 0. Then

(5.1) lim (1-e-η f ] e^n γ(n) = 0 .
iϊψθ » = 0

The proof of Lemma 5.1 is pallarel to Lemma 3.4 in [4], so that we omit
it.

Let N^LZ. A real sequence (a(ή))n=N is called slowly increasing if it holds
that

(5.2) lim lim sup sup (a(m)—a(ή))<0 (hence = 0)

(see [3]). We need the following Tauberian condition.

(5.3) (#(ft)) is eventually positive and (log a(n)) is slowly increasing.

Lemma 5.2. Let (a(ή)) be a positive non-increasing sequence. Let p>0.
Then (np a(n)) staisfies the Tauberian condition (5.3).

The proof of Lemma 5.2 is parallel to Lemma 3.6 in [4], so that we omit
it.

The following Karamata's Tauberian Theorem for sequences plays a
crucial role in our proof of Theorems 1.1 and 1.2 in the next section.

Theorem 5.3. (A discrete version of Theorem 1.7.6 in [3]) Assume that
(a(n))n=o is eventually positive, p> — 1, L is slowly varying at infinity and

(5.4) ά(s): = sjle-sna(n)
n = 0

is convergent for s>0. Then

(5.5) a(n) ~np L(n)/Γ(l+p) (n -> oo)

implies

(5.6) ά(s)~s-9L(lls) (slO).

Conversely, (5.6) implies (5.5) if (a(n)) satisfies the Tauberian condition (5.3).

Theorem 5.3 is reduced to Theorem 1.7.6 in [3] (or Theorem 3.7 in [4])
by the following lemma.

Lemma 5.4. Let (a(n)) be a slowly increasing sequence. We define f(x)=
a([x])y where [x] is the greatest integer not greater than x. Then f is a slowly
increasing function.

Proof. For any λ > l , choose M>0 so large that n>M implies (/z
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y/\. Let x>M+l, λ'e(l, vT) and ίe[l, λ']. Then since

we have

f(tx)—f(x)<> χ su{) ̂  (a(m)—a([x])).

Therefore it follows that

lim lim sup sup (f(tx)—f(x))<:lim sup sup (a(m)—a([x]))

=lim sup sup (a(m)—a(ή)).

Since λ is arbitrary, we obtain the lemma. •

Lemma 5.5. Lot p^R, £>0, j > 0 αnrf L be a slowly varying function at
infinity. We assume q—p—£< — \ and the sequence (a(n))^0 satisfies

(5.7) a(n) ~n'p L(ή) (n -• <χ>).

Then

(5.8) lim I?8 fj β-' n β(n) = 0 .

The proof of Lemma 5.5 is almost the same with Lemma 3.5 in [4], so
that we omit it.

Lemma 5.6. Let σ be a bounded Borel measure on [0, 1] such that sup
{/ t e suppσ-} = 1. We put

(5.9) U(n)=-Sfσ{dt) (n= 0, 1,-) -
Jo

Then for any M(=N,

(5.10) lim y ( »
^^ U

1 .
U(ή)

Proof. First we note that U{n+M)<sU{n) (n=l , 2, •••).
Let 0 < a < l . Since σ((l—fi, l])>0, we have

ί5 11)

Furthermore we have

(5.12)
(l-ε,l3
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It follows from (5.11) and (5.12) that

lim inf u ^lvl>>lim (1-6)M 1+ J [o^-g] ι σW = (1-£)M

«•*- t/(w) »->~ V fd^,iitn(τ(dty

Since £e(0,1) is arbitrary, we have

l i m t / (κ+M) = j

This completes the proof. •

Lemma 5.7. Let {E{n))n^ be a real summable sequence and (U(n))n-o be a
real positive non-increasing sequence. Assume that (U(n)) satisfies (5.10). We put

(5.13) R(n) = 5

(5.14) c = fj E{m).

Then

(5.15) R(n)~cU(n) (»-»«,).

Proof. Without loss of generality, we may assume that E(ή)>:0(n=0, 1, •••).
Since U is non-increasing, it follows that for any M=0, 1, ••• and MeN,

(5.16) R(ή)£cU(n)

(5.17) R(n)>(Σ E(m)) U(n+M).
m=0

By (5.10), (5.16) and (5.17), we have

[£(ί«)<l iminf^l^l i r

and making M-^oo we obtain

m=0

•U{ή)

This completes the proof. •

6. Proof of Theorems 1.1 and 1.2

In this section, we complete the proof of Theorems 1.1 and 1.2.

Theorem 6.1. Let a>0, β>0,p>0 and L be a slowly varying function at

infinity. Let (γ(n))^=i be a positive non-increasing sequence which tends to zero

as n-+oo. Let (U(n))^0 be a sequence of the form
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(6.1) U(n) = U+(n)+copl (» = 0,1, •••),

where co>O, —1</> 0 <0 and (t/+(«))Γ-o « « positive, non-increasing and sum-

mable sequence. We assume that, for any η>0,U and <y satisfy

(6.2) ±e-"'U(n) = V ~

(6.3)

if and only if

(6.4)

Proof. We put d=[p], where [j>] is the greatest integer not greater than

p. We divide the proof into two steps.

Step 1. We first assume (6.3). The fundamental idea of our proof is to

differentiate both sides of (6.2) d-\-\ times with respect to η so that we can

apply Theorem 5.3. By Lemma 3.2 in [4], we obtain

(6.5) Σ e - ' «i+1 U+(n) = ( -

where

f(v) = βQ±fl+l-e-*+(l-e-η fj e-'- γ(«)

and Fd+1(η) is a polynomial in {/(/)(?7); / = 0 , 1, •••,*/}. On the right hand side

of (6.5), the first term turns out to be the main term. For each 7=1,2, •••,

the 7-th derivative oίf(η) is given by

where

B,(v) = (-1)' (l-e-») Σ «-*" «' τ(»),

(-I)'"1 &- Σ *-'• n'-1 Ύ(n),
« 1

(-1)'+1 Σ
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Since d+l —p>0 and

nd+1

 Ύ(n) ~nd+ι~p L(n), nd γ(n) ~nd't> L(n) (n -* oo),

Theorem 5.3 yields

(6.6) B

Furthermore, since (d+l—m)—p—2-\d+l—p)< — l(m=2, •••, d+l), it follows
from Lemma 5.5 that

Hence we have

(6.7) lim^ί

By (6.6) and (6.7), we see t h a t / ^ 1 ^ ) decays as

(6.8) /«+!>(,) ~ ( _ i ) < Γ((/+l-i>)i>,-<'+ 1-

On the other hand, it follows from Lemma 5.5 that for any £>0,

lim ,7(/)fo) = 0 (l=l,-,d),

and hence

(6.9) ]imv'Fi+1(v) = 0.

Furthermore, by Lemma 5.1, we have

(6.10) lim/fo) = β .

It is clear that for any S>0,

(6.11) Umη

tR<d+1>(η) = 0.

Now we return to (6.5). From (6.8), (6.9), (6.10) and (6.11) we conclude

(6.12) η Σ g-»»n'+1 U+(n)^yyΊ^
0

Noting d—p> — l we apply Lemma 5.2 and Theorem 5.3 to (6.12) and obtain

nd+1 U+(n) ~^k<ψP nd~p L(n) (n -> oo).

Thus (6.4) follows.

Step 2. Next, to prove another half, we assume (6.4). By (6.2) and (6.10),
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we have

(6.13) fj U(n) =
n=0 β

Using (6.13), we transform (6.2) as

The fundamental idea of the proof below is similar to Step 1. This time we
differentiate both sides of (6.14) d times with respect to η. Then, by Lemma
3.3 in [4], we obtain

where

and Gd is a polynomial in {W\η)\ /=0,1, - , d-ί} and iga\η); 1=0,1, - , d}.
On the right hand side of (6.15), the first term turns out to be the main term.

(6.13) shows that

(6-16) i i m ^ ) = vqpL.

For each 1=0, 1, •••, the /-th derivatives oίf(η) and g(η) are gievn by

= (-1) ' fj β - ' n1 E/(n), A(7)(97) = (-1) 7 Σ ^""Λ n1 Σ
Λ 0 »=0 Λ = »

Σ
»=0

From the equality

and the monotone density theorem (c.f Theorem 1.7.2 in [3] and its remark), we
have

(6.17) fj U(k) ~ ^ l n a

 n-
p L(n) (n-*oo).

*=« β2

Since d—p> — ί and U(ή) is eventually positive, it follows from (6.17) and
Theorem 5,3 that

(6.18) AWfa)~(-l) ' V 2 ? Γ aV^~P+λ) j-4-ι L { V η )
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On the other hand, for any £ > 0 and 1=0, 1, ••••, d—1, Lemma 5.5 yields

(6.19) lim,eAW(^) = 0.
no

In the same way, for any £>0 and /=0,1, •••, d, we have

(6.20) limv*g«\η) = 0.

By (6.19) and (6.20), we obtain for any £>0,

(6.21) lim η* Gd(η) = 0 .

Now we return to (6.15). In view of (6.16), (6.18) and (6.21), we derive

η fj *-'• nd

 Ύ(n) ~Γ(d-p+l) rf'd L(ίlv) (^10).

Then, by Lemma 5.2 and Theorem 5.3, we obtain

nd γ(n) ~nd~p L(n) (n -> oo).

This shows (6.3) and completes the proof of Theorem 6.1. •

Proof of Theorem 1.2. Let (α2, /32, ρ2)^-C+ and let σ2=9>2"1((Λ2> ^ 2 , p2)).
We consider the correlation function R2 of the form (1.9) and the delay coefficient
γ2 of the form (1.13). By Corollary 3.2, we have σ2GX+, so that R2 is of the
form (6.1). Furthermore, by (2.5), R2 and (α2, β2y 72) satisfy for any η>0,

Σ β-' Λ2(») = V 2^«2 (ft
«=o t

Then Theorem 1.2 follows from Theorem 6.1 immediately. •

Proof of Theorem 1.1. Let (au βly px)^X+ and let σ1=^Γ1((^i> A> Pi))
We consider the correlation function Rx of the form (1.9) and the delay coefficient
rγ1 of the form (1.13). Let X be the solution of (1.1). Let E1 be the canonical
representation kernel of X and let h(z) be the outer function of X. We put
v=φϊ\(aι, A, A ) ) Then, by (2.34), we have

and hence, by Theorems 4.2 and 4.3 in [10],

t" v{dt) (»eZ).

Therefore, by Theorem 1.2, (1.13) is equivalent to

(6.22) Ex{n) ~^2π

2

aΛ n-^» L(n) (n
βi
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On the other hand, we note that since yGΣ + , E1 is of the form

(6.23) E1(ή) = E+(n)+cop
no (n = 0 , l , - ) >

where co>O, l — <po<O and (E+(n))~=0 is a positive, non-increasing and sum-

mable sequence. In the same way with (6.13), we can show

In view of (2.13) in [10] and (6.23), we see that

Rι(n) = ±- Σ E+(n+m) E1(m)+^- (±pζ Eι(m))p"0.Σ
Ln wι=0

Then, it follows from Lemma 5.7 that (6.22) is equivalent to (1.14). This com-

pletes the proof of Theorem 1.1. •
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