Fujita, Y. Osaka J. Math. 27 (1990), 797-804

INTEGRODIFFERENTIAL EQUATION WHICH INTERPOLATES THE HEAT EQUATION AND THE WAVE EQUATION (II)

YASUHIRO FUJITA

(Received November 27, 1989)

1. Introduction

In the present paper we are concerned with the integrodifferential equation

(IDE)_a
$$u(t, x) = \phi(x) + \frac{t^{\alpha/2}}{\Gamma\left(1 + \frac{\alpha}{2}\right)} \psi(x) + \frac{1}{\Gamma(\alpha)} \int_0^t (t-s)^{\alpha-1} \Delta u(s, x) ds$$
$$t>0, x \in \mathbf{R}$$

for $1 \le \alpha \le 2$. Here $\Gamma(x)$ is the gamma function and $\Delta = (\partial/\partial x)^2$. When $\psi \equiv 0$, (IDE)₁ is reduced to the heat equation. For $\alpha = 2$, (IDE)₂ is just the wave equation and its solution $u_2(t, x)$ has the expression called the d'Alembert's formula:

$$u_2(t, x) = \frac{1}{2} \left[\phi(x+t) + \phi(x-t) \right] + \frac{1}{2} \int_{x-t}^{x+t} \psi(y) \, dy \, .$$

The present paper is the continuation of [6]; the aim of the present paper, which is different from that of [6], is to investigate the structure of the solution of (IDE)_{α} by its decomposition for every α , $1 \le \alpha \le 2$.

In Theorem B below, we shall show that $(IDE)_{\alpha}$ has the unique solution $u_{\alpha}(t, x)$ $(1 \le \alpha \le 2)$ expressed as

(1)
$$u_{\boldsymbol{\alpha}}(t,x) = \frac{1}{2} \boldsymbol{E}[\phi(x+Y_{\boldsymbol{\alpha}}(t)) + \phi(x-Y_{\boldsymbol{\alpha}}(t))] + \frac{1}{2} \boldsymbol{E} \int_{x-Y_{\boldsymbol{\alpha}}(t)}^{x+Y_{\boldsymbol{\alpha}}(t)} \psi(y) \, dy$$

where $Y_{\alpha}(i)$ is continuous, nondecreasing and nonnegative stochastic process with Mittag-Leffler distributions of order $\alpha/2$, and **E** stands for the expectation. We remark that the expression (1) has the same form as that of the d'Alembert's formula.

In Theorem A below, we shall consider the decomposition of $u_{\alpha}(t, x)$ $(1 \le \alpha \le 2)$. We decompose u_{α} into two functions u_{α}^+ and u_{α}^- defined by

(2)
$$u_{\boldsymbol{\alpha}}^{+}(t,x) = \frac{1}{2} \boldsymbol{E} \left[\phi(x - Y_{\boldsymbol{\alpha}}(t)) - \Psi(x - Y_{\boldsymbol{\alpha}}(t)) \right]$$

Y. FUJITA

and

(3)
$$u_{\boldsymbol{\omega}}^{-}(t,x) = \frac{1}{2} \boldsymbol{E} \left[\phi(x+Y_{\boldsymbol{\omega}}(t)) + \Psi(x+Y_{\boldsymbol{\omega}}(t)) \right]$$

where $\Psi(x) = \int_0^x \psi(y) \, dy$. It is easy to see that $u_x = u_x^+ + u_x^-$. The function u_x^+ , which consists of the element $x - Y_x(t)$, represents the disturbance moving into the positive direction of the x-axis. Similarly, the function u_x^- , which consists of the element $x + Y_x(t)$, represents the disturbance moving into the negative direction of the x-axis. Furthermore the functions u_x^+ and u_x^- are characterized as the unique solutions of the integrodifferential equations

$$(IDE)_{\alpha/2}^{+} \quad u(t, x) + \frac{1}{\Gamma(\alpha/2)} \int_{0}^{t} (t-s)^{(\alpha/2)-1} \nabla u(s, x) \, ds = \frac{1}{2} \left[\phi(x) - \Psi(x) \right]$$

and

$$(IDE)_{\sigma/2}^{-} \quad u(t, x) - \frac{1}{\Gamma(\alpha/2)} \int_{0}^{t} (t-s)^{(\alpha/2)-1} \nabla u(s, x) \, ds = \frac{1}{2} \left[\phi(x) + \Psi(x) \right]$$

respectively, where $\nabla = (\partial/\partial x)$. Let us denote by I^{ρ} the Riemann-Liouville integral operator of order $\rho > 0$ defined by $I^{\rho} f(t) = \frac{1}{\Gamma(\rho)} \int_{0}^{t} (t-s)^{\rho-1} f(s) ds$. It has the property such that $(1-I^{\alpha} \Delta) = (1 \pm I^{\alpha/2} \nabla) (1 \mp I^{\alpha/2} \nabla)$, where 1 stands for the identity operator (see Proposition 2 below). Thus the above decomposition of u_{α} corresponds to the decomposition of the operator $(1-I^{\alpha} \Delta)$ of (IDE)_{α} into the product of two operators $(1+I^{\alpha/2}\nabla)$ of (IDE)_{$\alpha/2} and <math>(1-I^{\alpha'2}\nabla)$ of (IDE)_{$\alpha/2}.</sub>$ </sub>

The present paper is organized as follows. First, using the probability theory, we shall show that u_{α}^{\pm} is the unique solution of $(IDE)_{\alpha/2}^{\pm}$ (Theorem A). Next, using this result and the above decomposition of $(1-I^{\alpha} \Delta)$, we shall show that u_{α} is the unique solution of $(IDE)_{\alpha}$ (Theorem B).

2. Theorems and their proofs

Let $X_{\sigma}(t)$ $(1 \le \alpha \le 2)$ be the stable process defined on a probability space $(\Omega, \mathcal{F}, \mathbf{P})$ such that its characteristic function $\mathbf{E} \exp \{ \text{is } X_{\sigma}(t) \}$ $(s \in \mathbf{R}, t \ge 0)$ is given by

$$E \exp \{ is X_{\alpha}(t) \} = \exp \{ -t |s|^{2/\alpha} e^{-(\pi i/2) (2-2/\alpha) \operatorname{sgn}(s)} \}.$$

We choose a version such that $X_{a}(t)$ is right continuous and has left limit. We remark that $X_{2}(t)=t$ and $X_{1}(t)$ is a Brownian motion with mean 0 and variance 2t. Put

$$Y_{\boldsymbol{\alpha}}(t) = \sup_{0 \leq s \leq t} X_{\boldsymbol{\alpha}}(s).$$

Proposition 1. Let $1 \le \alpha \le 2$.

798

(I) With probability 1, $Y_{\alpha}(t)$ is continuous, nondecreasing and nonnegative process with $Y_{\alpha}(0)=0$.

(II) $Y_{\alpha}(t)$ has the Mittag-Leffler distributions of order $\alpha/2$:

(4)
$$\boldsymbol{E} \exp \{-s Y_{\boldsymbol{\alpha}}(t)\} = \sum_{n=0}^{\infty} \frac{(-s t^{\boldsymbol{\alpha}/2})^n}{\Gamma\left(1+\frac{n\alpha}{2}\right)} \quad (s \in \boldsymbol{C}, t \ge 0).$$

(III) For every $A \ge 0$, there exists some constant $C(A, \alpha) > 0$ such that

 $\boldsymbol{E} \exp \left\{ A Y_{\boldsymbol{\alpha}}(t) \right\} \leq C(A, \alpha) \exp \left\{ A^{2/\boldsymbol{\alpha}} t \right\} \quad (t \geq 0) .$

Proof. (I) By the definition of $Y_{\alpha}(t)$, it is nondecreasing. Since $X_{\alpha}(0) = 0$, $Y_{\alpha}(t)$ is nonnegative process with $Y_{\alpha}(0) = 0$. It remains to prove that $Y_{\alpha}(t)$ is continuous. The stochastic process $X_{\alpha}(t)$ has no positive jump, i.e., $X_{\alpha}(t-) \ge X_{\alpha}(t)$ for every t > 0 (cf. pp. 276 of [2]). Thus, we have $Y_{\alpha}(t-) \ge Y_{\alpha}(t)$. The opposite inequality $Y_{\alpha}(t-) \le Y_{\alpha}(t)$ is trivial, so that $Y_{\alpha}(t-) = Y_{\alpha}(t)$ and $Y_{\alpha}(t)$ is left continuous. The right continuity of $Y_{\alpha}(t)$ is obvious. Hence $Y_{\alpha}(t)$ is continuous a.s..

(II) This is trivial for $\alpha = 2$, since $Y_2(t) = t$. Thus, assume that $1 \le \alpha < 2$. By Proposition 1 of [2], the equality (4) holds for $s, t \ge 0$. Here we remark that the constant c_1 of §1 (9) of [2] is equal to 1 in our case. Since $\limsup_{n \to \infty} [\Gamma(1 + \frac{n\alpha}{2})]^{-1/n} = 0$ by Stirling's formula, the right hand side of (4) is an analytic function of $s \in C$ for every $t \ge 0$. On the other hand, by Proposition 3b of [2], there exist some constants $A_{\alpha}, B_{\alpha} > 0$ such that

$$\boldsymbol{P}\left(Y_{\boldsymbol{\alpha}}(t) \geq x\right) \sim A_{\boldsymbol{\alpha}}(xt^{-\alpha/2})^{-\frac{1}{2-\alpha}} \exp\left\{-B_{\boldsymbol{\alpha}}(xt^{-\alpha/2})^{-\frac{2}{2-\alpha}}\right\} \quad (x \to \infty, t > 0),$$

so that the left hand side of (4) is also an analytic function of $s \in C$ for every $t \ge 0$ (for t=0, this is trivial). Therefore the equality (4) holds for $s \in C$ and $t \ge 0$ by the theorem of identity.

(III) By (II), we have for $t \ge 0$

$$\boldsymbol{E} \exp \left\{ A Y_{\boldsymbol{\alpha}}(t) \right\} = \sum_{n=0}^{\infty} \frac{\left(A t^{\boldsymbol{\alpha}/2}\right)^n}{\Gamma\left(1 + \frac{n\alpha}{2}\right)}$$

By (10) of pp. 208 of [4], it holds that

$$\sum_{n=0}^{\infty} \frac{(A t^{\alpha/2})^n}{\Gamma\left(1+\frac{n\alpha}{2}\right)} \sim \frac{2}{\alpha} \exp \left\{A^{2/\alpha} t\right\} \quad (t \to \infty) .$$

Thus the assertion (III) follows easily.

This completes the proof of Proposition 1. \Box

Now we shall consider the solutions of $(IDE)_{\alpha}$ and $(IDE)_{\frac{1}{\alpha}/2}$.

DEFINITION. (I) The function u=u(t, x) on $[0, \infty)\times \mathbf{R}$ is said to be a solution of $(IDE)_{\alpha}$, if u and Δu are continuous on $[0, \infty)\times \mathbf{R}$ and u satisfies $(IDE)_{\alpha}$ for every $(t, x) \in (0, \infty) \times \mathbf{R}$.

(II) The function u=u(t, x) on $[0, \infty) \times \mathbf{R}$ is said to be a solution of $(IDE)_{\overline{a}/2}^{\pm}$, if u and ∇u are continuous on $[0, \infty) \times \mathbf{R}$ and u satisfies $(IDE)_{\overline{a}/2}^{\pm}$ for every $(t, x) \in (0, \infty) \times \mathbf{R}$.

REMARK. In [6] we defined the solution of $(IDE)_{\alpha}$, adding the condition that the solution was in $C([0, \infty): \mathcal{S}(\mathbf{R}))$ ($\mathcal{S}(\mathbf{R})$: the Schwartz class). This condition is not imposed in the present paper.

We shall construct the solutions of $(IDE)_{\sigma}$ and $(IDE)_{\pi/2}^{\pm}$ in the following spaces. Let $\mathcal{E}(\mathbf{R})$ be the space of the continuous functions f on \mathbf{R} such that there exist some constants A, C>0 satisfying $|f(x)| \leq C e^{A|x|}$ for any $x \in \mathbf{R}$, and $\mathcal{E}([0, \infty) \times \mathbf{R})$ the space of the continuous functions v on $[0, \infty) \times \mathbf{R}$ such that there exist some constants A', C'>0 satisfying $|v(t, x)| \leq C' e^{A'[t+|x|]}$ for any $(t, x) \in [0, \infty) \times \mathbf{R}$. For every positive integer m, define $\mathcal{E}^m(\mathbf{R})$ and $\mathcal{E}^{0,m}([0, \infty) \times \mathbf{R})$ by $\mathcal{E}^m(\mathbf{R}) = \{f: \nabla^j f \in \mathcal{E}(\mathbf{R}) \text{ for } 0 \leq j \leq m\}$ and $\mathcal{E}^{0,m}([0, \infty) \times \mathbf{R}) = \{v: \nabla^j v \in \mathcal{E}([0, \infty) \times \mathbf{R}) \text{ for } 0 \leq j \leq m\}$ respectively. Throughout this paper, we use the notation $\Psi(x) = \int_0^x \psi(y) dy$ (we assume that ψ is always locally integrable on \mathbf{R}).

The main results of the present paper are the following:

Theorem A. Let ϕ and Ψ be in $\mathcal{E}^1(\mathbf{R})$. Then, for $1 \le \alpha \le 2$, u_{α}^+ defined by (2) and $u_{\overline{\alpha}}^-$ defined by (3) are the unique solutions of $(IDE)_{\alpha/2}^+$ and $(IDE)_{\overline{\alpha}/2}^-$ respectively in $\mathcal{E}^{0,1}([0, \infty) \times \mathbf{R})$.

Theorem B. Let ϕ and Ψ be in $\mathcal{E}^2(\mathbf{R})$. Then, for $1 \le \alpha \le 2$, u_{α} defined by (1) is the unique solution of $(IDE)_{\alpha}$ in $\mathcal{E}^{0,2}([0,\infty)\times \mathbf{R})$. Furthermore it holds that $u_{\alpha} = u_{\alpha}^{+} + u_{\alpha}^{-}$.

REMARK. For $\phi \in \mathcal{S}(\mathbf{R})$ and $\psi \equiv 0$, the expression (1) and the one obtained in (1.6) of [6] coincide mutually. This is due to the simple properties of the stable processes (see §2 (17) and Proposition 1 (iii) of [2]).

To prove Theorem A, we need a lemma.

Lemma Let $1 \le \alpha \le 2$, and A a positive constant such that $\sup_{x \in \mathbb{R}} \{e^{-A|x|} | f(x)| \} < \infty$ for $f \in \mathcal{E}(\mathbb{R})$. Then we have for $\lambda > A^{2/\alpha}$

(5)
$$\int_0^\infty e^{-\lambda t} \mathbf{E}[f(Y_{\alpha}(t))] dt = \lambda^{(\alpha/2)-1} \int_0^\infty f(y) e^{-y\lambda^{\alpha/2}} dy.$$

Proof. Since

$$\int_{0}^{\infty} e^{-\lambda t} \mathbf{E}[f(Y_{\alpha}(t))] dt = \int_{0}^{\infty} f(y) d_{y}[\int_{0}^{\infty} e^{-\lambda t} \mathbf{P}(Y_{\alpha}(t) \leq y) dt],$$

it is sufficient to show that for every $y \ge 0$

(6)
$$\int_0^\infty e^{-\lambda t} \mathbf{P}(Y_{\mathbf{a}}(t) \le y) dt = \frac{1}{\lambda} \left[1 - e^{-y\lambda^{\alpha/2}} \right].$$

To prove (6), we shall calculate the Laplace-Stieltjes transform of the both sides of (6). For $s \in (0, \lambda^{\alpha/2})$, we have by Proposition 1 and the dominated convergence theorem

$$\begin{split} \int_0^\infty e^{-sy} d_y [\int_0^\infty e^{-\lambda t} \mathbf{P}(Y_{\alpha}(t) \le y) dt] \\ &= \int_0^\infty e^{-\lambda t} \mathbf{E} \exp\left\{-s \; Y_{\alpha}(t)\right\} dt \\ &= \int_0^\infty e^{-\lambda t} \left\{\sum_{n=0}^\infty \frac{\left(-s \; t^{\alpha/2}\right)^n}{\Gamma\left(1+\frac{n\alpha}{2}\right)}\right\} dt \\ &= \sum_{n=0}^\infty \frac{\left(-s\right)^n}{\Gamma\left(1+\frac{n\alpha}{2}\right)} \int_0^\infty e^{-\lambda t} \; t^{(\alpha n/2)} dt \\ &= \frac{\lambda^{(\alpha/2)-1}}{s+\lambda^{\alpha/2}} \\ &= \int_0^\infty e^{-sy} d_y \left\{\frac{1}{\lambda} \left[1-e^{-y\lambda^{\alpha/2}}\right]\right\} . \end{split}$$

Thus we have obtained for $s \in (0, \lambda^{\alpha/2})$

(7)
$$\int_0^\infty e^{-sy} d_y \left[\int_0^\infty e^{-\lambda t} \mathbf{P}(Y_{\alpha}(t) \le y) dt \right] = \int_0^\infty e^{-sy} d_y \left\{ \frac{1}{\lambda} \left[1 - e^{-y\lambda^{\alpha/2}} \right] \right\} .$$

Since the both sides of (7) are analytic functions of s in $\{s \in \mathbb{C} : \text{Re } s > 0\}$, the equality (7) holds for s, Re s > 0 by the theorem of identity. Note that (6) holds for y=0. Then the uniqueness of the Laplace-Stieltjes transform leads to (6). This completes the proof of Lemma. \Box

Proof of Theorem A. We shall prove the case u_{α}^{+} only, since the case $u_{\overline{\alpha}}^{-}$ can be proved similarly. By Proposition 1, it is clear that u_{α}^{+} belongs to $\mathcal{E}^{0,1}([0,\infty)\times \mathbf{R})$. Let A>0 be a constant such that $\sup_{x\in \mathbf{R}} \{e^{-A|x|}[|\phi(x)|+|\Psi(x)|]\}$ $<\infty$. Applying the Laplace transform to u_{α}^{+} and using Lemma, we have for $\lambda > A^{2/\alpha}$

(8)
$$U^{+}_{\alpha}(\lambda, x) = \frac{\lambda^{(\alpha/2)-1}}{2} \int_{0}^{\infty} \left[\phi(x-y) - \Psi(x-y)\right] e^{-y\lambda^{\alpha/2}} dy$$

where $U_{\alpha}^{+}(\lambda, x) = \int_{0}^{\infty} e^{-\lambda t} u_{\alpha}^{+}(t, x) dt$. Using the change of the variable z = x - y in (8), we get

Y. FUJITA

(9)
$$e^{x\lambda^{\alpha/2}} U^+_{\alpha}(\lambda, x) = \frac{\lambda^{(\alpha/2)-1}}{2} \int_{-\infty}^x \left[\phi(z) - \Psi(z)\right] e^{z\lambda^{\alpha/2}} dz .$$

Differentiating the both sides of (9) with respect to x, we have for $(\lambda, x) \in (A^{2/\alpha}, \infty) \times \mathbf{R}$

(10)
$$\boldsymbol{U}_{\boldsymbol{\alpha}}^{+}(\lambda, x) + \frac{\nabla \boldsymbol{U}_{\boldsymbol{\alpha}}^{+}(\lambda, x)}{\lambda^{\boldsymbol{\alpha}/2}} = \frac{1}{2\lambda} \left[\phi(x) - \Psi(x) \right].$$

Since $\frac{1}{\lambda^{\rho}}$ ($\rho > 0$) is the Laplace transform of $\frac{t^{\rho-1}}{\Gamma(\rho)}$, the inverse Laplace transform of (10) shows that u^+_{α} satisfies (IDE) $^+_{\alpha/2}$ for every $(t, x) \in (0, \infty) \times \mathbf{R}$. Therefore it is a solution of (IDE) $^+_{\alpha/2}$ in $\mathcal{C}^{0,1}([0, \infty) \times \mathbf{R})$. It remains to prove the uniqueness. It is sufficient to show that if $v \in \mathcal{C}^{0,1}([0, \infty) \times \mathbf{R})$ satisfies

(11)
$$v(t, x) + \frac{1}{\Gamma(\alpha/2)} \int_0^t (t-s)^{(\alpha/2)-1} \nabla v(x, s) \, ds = 0$$

for $(t, x) \in (0, \infty) \times \mathbf{R}$, then $v \equiv 0$. Applying the Laplace transform to (11), we get

(12)
$$V(\lambda, x) + \lambda^{-\alpha/2} \nabla V(\lambda, x) = 0 \quad (\lambda, x) \in (B, \infty) \times \mathbf{R}$$

where $V(\lambda, x) = \int_0^\infty e^{-\lambda t} v(t, x) dt$ and B > 0 is a constant such that $\sup_{t \ge 0, x \in \mathbb{R}} \{e^{-B(t+|x|)} | | v(t, x)| + |\nabla v(t, x)| \} < \infty$. By (12), the function $V(\lambda, x) \exp[\lambda^{\alpha/2} x]$ depends on only $\lambda \in (B, \infty)$. Put $C(\lambda) = V(\lambda, x) \exp[\lambda^{\alpha/2} x]$. Since there exists a constant C such that $|V(\lambda, x)| \le \frac{C e^{|B|x}}{\lambda - B}$ on $(B, \infty) \times \mathbb{R}$, we have for $\lambda > B_0 \equiv \max\{B, B^{2/\alpha}\}$

$$|C(\lambda)| \leq \frac{C}{\lambda - B} \exp \left\{ \lambda^{\alpha/2} x + B|x| \right\} \to 0 \quad (x \to -\infty),$$

so that $V(\lambda, x) \equiv 0$ on $(B_0, \infty) \times \mathbf{R}$. The uniqueness of the Laplace transform leads to $v(t, x) \equiv 0$ on $[0, \infty) \times \mathbf{R}$. This completes the proof. \Box

Next we shall prove Theorem B. For $f \in \mathcal{E}([0, \infty) \times \mathbf{R})$, define the Riemann-Liouville integral operator $I^{\rho} f(\rho > 0)$ by

$$I^{\rho} f(t, x) = \begin{cases} \frac{1}{\Gamma(\rho)} \int_{0}^{t} (t-s)^{\rho-1} f(s, x) \, ds & (t>0) \\ 0 & (t=0) \, . \end{cases}$$

The following proposition is crucial to prove Theorem B.

Proposition 2. Let $f \in \mathcal{E}^{0,2}([0,\infty) \times \mathbf{R})$. Then $(1-I^{\alpha} \Delta) f(t,x) = (1+I^{\alpha/2} \nabla) (1 \mp I^{\alpha/2} \nabla) f(t,x)$

for any $(t, x) \in [0, \infty) \times \mathbf{R}$, where 1 stands for the identity operator.

802

Since the proof is obvious, we omit it (cf. [3]).

Proof of Theorem B. Since ϕ and Ψ belong to $\mathcal{E}^2(\mathbf{R})$, both u_{α}^+ and $u_{\overline{\alpha}}^-$ belong to $\mathcal{E}^{0,2}([0,\infty)\times\mathbf{R})$ by Proposition 1. By Theorem A, they satisfy for $(t,x)\in(0,\infty)\times\mathbf{R}$

$$(IDE)_{\alpha/2}^{\pm} \qquad (1\pm I^{\alpha/2} \nabla) \ u_{\alpha}^{\pm}(t,x) = \frac{1}{2} \left[\phi(x) \mp \Psi(x) \right].$$

By Proposition 2, we have on $(0, \infty) \times \mathbf{R}$

$$\begin{split} &(1-I^{\alpha} \Delta) \left(u_{\alpha}^{*} + u_{\alpha}^{-} \right) \\ &= (1-I^{\alpha/2} \nabla) \left[(1+I^{\alpha/2} \nabla) u_{\alpha}^{*} \right] + (1+I^{\alpha/2} \nabla) \left[(1-I^{\alpha/2} \nabla) u_{\alpha}^{-} \right] \\ &= \frac{1}{2} \left(1-I^{\alpha/2} \nabla \right) \left[\phi(x) - \Psi(x) \right] + \frac{1}{2} \left(1+I^{\alpha/2} \nabla \right) \left[\phi(x) + \Psi(x) \right] \\ &= \phi(x) + I^{\alpha/2} \psi(x) \\ &= \phi(x) + \frac{t^{\alpha/2}}{\Gamma\left(1 + \frac{\alpha}{2}\right)} \psi(x) \,. \end{split}$$

Since $u_{\alpha} = u_{\alpha}^{+} + u_{\alpha}^{-}$, the function u_{α} is a solution of $(IDE)_{\alpha}$ in $\mathcal{C}^{0,2}([0,\infty) \times \mathbf{R})$. It remains to prove the uniqueness. It is sufficient to show that if $v \in \mathcal{E}^{0,2}([0,\infty) \times \mathbf{R})$ satisfies $(1-I^{\alpha} \Delta) v = 0$ on $(0,\infty) \times \mathbf{R}$, then $v \equiv 0$. Since $(1+I^{\alpha/2} \nabla) v$ belongs to $\mathcal{E}^{0,1}([0,\infty) \times \mathbf{R})$, Theorem A and Proposition 2 lead to $(1+I^{\alpha/2} \nabla) v \equiv 0$ on $[0,\infty) \times \mathbf{R}$. Theorem A also leads to $v \equiv 0$ on $[0,\infty) \times \mathbf{R}$. This completes the proof. \Box

References

- A.V. Balakrishnan: Fractional powers of closed operators and the semigroups generated by them, Pacific J. Math. 10 (1960), 419-437.
- [2] N.H. Bingham: Maxima of sums of random variables and suprema of stable processes, Z. Wahrscheinlichkeitstheorie verw. Geb. 26 (1973), 273-296.
- [3] P.L. Butzer and U. Westphal: An access to fractional differentiation via fractional difference quotients, Lect. Notes in Math. 457, Springer, Berlin Heidelberg New York, 1975, 116-145.
- [4] A. Erdélyi (ed.): Higher transcendental functions Vol. 3, McGraw-Hill, New York Toronto London, 1955.
- [5] W. Feller: An introduction to probability theory and its applications Vol 2, John Wiley, New York Lodnon Sydney Toronto, 1966.
- [6] Y. Fujita: Integrodifferential equation which interpolates the heat equation and the wave equation, Osaka J. Math. 27 (1990), 309-321.
- [7] E. Lukacs: Characteristic Functions, Second edition. Griffin, London, 1960.
- [8] H. Pollard: The completely monotonic character of the Mittag-Leffler function $E_a(-x)$, Bull. Amer. Math. Soc. 54 (1948), 1115–1116.

Y. FUJITA

- [9] W.R. Schneider and W. Wyss; Fractional diffusion and wave equations, J. Math. Phys. 30 (1989), 134-144.
- [10] C.J. Stone: The set of zeros of a semi-stable process, Illinois J. Math. 7 (1963), 631-637.

Department of Mathematics Faculty of Science Toyama University Toyama 930 Japan

804