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1. Introduction

In the present paper we are concerned with the integrodifferential equation

u(t, x) = φ(x)+ Ψ(x)~\ \ (t—s)*'1 Au(s, x) ds

(IDE). r ( ' + i ) Γ«"J°
ί>0, x^R

for l < α < 2 . Here T(x) is the gamma function and A=(djdx)2. When ψ = 0 ,
(IDE)! is reduced to the heat equation. For α = 2 , (IDE)2 is just the wave
equation and its solution u2(t, x) has the expression called the d'Alembert's
formula:

1 1 Cχ+t

u2(t, x) = ± [φ(χ+t)+φ(x-t)]+±
L L Jx-t

The present paper is the continuation of [6] the aim of the present paper,
which is different from that of [6], is to investigate the structure of the solution
of (IDE)* by its decomposition for every a, l<sa<2.

In Theorem B below, we shall show that (IDE)Λ has the unique solution
ua(t, x) (l<a<2) expressed as

(1) ujt, x) = ± E[φ(x+ YJjή)+φ(χ- γtl(t))] + ±.E
Z L J x-Y*(>t)

where YΛ(i) is continuous, nondecreasing and nonnegative stochastic process
with Mittag-Leffler distributions of order a/2, and E stands for the expectation.
We remark that the expression (1) has the same form as that of the d'Alembert's
formula.

In Theorem A below, we shall consider the decomposition of uΛ(t, x) (1 <a<
2). We decompose uΛ into two functions ul and u~ defined by

(2) uϊ(tyx) = ±
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and

(3) u~a{t, x) = ±E[φ{x+

S x

ψ(y) dy. It is easy to see that uΛ~ui+uΰ. The function u%,
o

which consists of the element x— YΛ(t), represents the disturbance moving into
the positive direction of the x—axis. Similarly, the function tQ, which consists
of the element x-\-YΛ(t)> represents the disturbance moving into the negative
direction of the x—axis. Furthermore the functions u% and u~ are characterized
as the unique solutions of the integrodifferential equations

(IDE)ί/2 u(t, * )+j^2 j (I (t-s)^'1 V«(*, x)ds = ± [φ

and

(IDE)̂ /2 u(t9 *)~ϊ^2) SI ί'-')^"1 v «k *>ds = \ [*

respectively, where V=(9/8#). Let us denote by /p the Riemann-Liouville integ-

ral operator of order p>0 defined by / p / ( ί ) = - J _ Γ (t—s)p"lf(s)ds. It has the

Γ(p)Jo
property such that (1-Γ Δ ) - ( l ± / * / 2 V) (l=F/*/2 V), where 1 stands for the
identity operator (see Proposition 2 below). Thus the above decomposition of uΛ

corresponds to the decomposition of the operator (1— I* Δ) of (IDE)Λ into the
product of two operators ( l + / * / 2 V) of (IDE)ί/2 and (I-1"'2 V) of (IDE)ϊ/2.

The present paper is organized as follows. First, using the probability
theory, we shall show that MJ is the unique solution of (IDE)ί/2 (Theorem A).
Next, using this result and the above decomposition of (1—/* Δ), we shall show
that uΛ is the unique solution of (IDE)* (Theorem B).

2. Theorems and their proofs

Let XΛ(t) ( l < α < 2 ) be the stable process defined on a probability space
(Ω, £F, P) such that its characteristic function E exp {is XΛ(t)} (s^R, t>0) is
givne by

E exp {is XJt)} = exp {-1 \ s \ 2ί« e" «i/2) ( 2^ ) s g n ( s )} .

We choose a version such that XJf) is right continuous and has left limit. We
remark that X2(t)=ΐ and Xλ{t) is a Brownian motion with mean 0 and variance
2t. Put

sup

Proposition 1. Let 1 < a < 2.
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(I) With probability \, YJt) is continuous, nondecreasing and nonnegative process
with YJ0)=0.
(II) YJt) has the Mittag-Leffler distributions of order a/2:

(4) Etxp{-s YJt)} = Σ {~SfΛί}\ (*eC, t>0).

(III) For every A>0, there exists some constant C(A, a)>0 such that

Etxp {A YJt)}<C(A, a) exp {A2ί« t} (t>0).

Proof. (I) By the definition of YJt), it is nondecreasing. Since ^ ( 0 ) =
0, YJt) is nonnegative process with YJ0)=0. It remains to prove that YJt)
is continuous. The stochastic process XJt) has no positive jump, i.e., XJt—)>
XJt) for every t>0 (cf. pp. 276 of [2]). Thus, we have YJt-)> YJt). The
opposite inequality YΛ(t—)< YJt) is trivial, so that YJt—)= YJt) and YJt)
is left continuous. The right continuity of YJt) is obvious. Hence YJt) is
continuous a.s..
(II) This is trivial for a=2, since Y2(t)=t. Thus, assume that l<a<2. By
Proposition 1 of [2], the equality (4) holds for s, t>Q. Here we remark that
the constant c1 of §1 (9) of [2] is equal to 1 in our case. Since lim sup [Γ(l +

^tf^j-i/n—O by Stirling's formula, the right hand side of (4) is an analytic

function of s^C for every t>0. On the other hand, by Proposition 3b of [2],
there exist some constants AΛ, BΛ>0 such that

~AJxΓ*'2)-^ exp i-BJxr«<2)-τh} (*-> <χ>, f>0),

so that the left hand side of (4) is also an analytic function of s^C for every
t>0 (for t=0, this is trivial). Therefore the equality (4) holds for s e C and
t>0 by the theorem of identity.
(Ill) By (II), we have for *>0

Eexp{AYJt)}=±

By (10) of pp. 208 of [4], it holds that

-?- exp {A*« t} {t-> oo).

Thus the assertion (III) follows easily.
This completes the proof of Proposition 1. •

Now we shall consider the solutions of (IDE)rt and (IDE)ί/2.



800 Y. FUJITA

DEFINITION. (I) The function u=u(t,x) on [0, oo)χjR is said to be a

solution of (IDE)Λ, if u and Au are continuous on [0, oo)χR and u satisfies

(IDE), for every (ί, *)e(0, oo)χjR.

(II) The function u=u(t, x) on [0, oo)χR is said to be a solution of (IDE)£/2,

if u and T7u are continuous on [0, oo)χR and w satisfies (IDE)J/2 for every

REMARK. In [6] we defined the solution of (IDE)Λ, adding the condition

that the solution was in C([0, oo): S{R)) (S(R): the Schwartz class). This

condition is not imposed in the present paper.

We shall construct the solutions of (IDE)Λ and (IDE)£ / 2 in the following

spaces. Let S(R) be the space of the continuous functions f on R such that

there exist some constants A, 0 0 satisfying \f(x)\ <CeMA for any x^Ry and

β([0, oo)χR) the space of the continuous functions v on [0, oo)χjK such that

there exist some constants A', C " > 0 satisfying \v(t> x)\ <C eA'*-Wx^ for any

(ί, Λ?)e[0, oo)χR. For every positive integer tn, define £m(R) and β°'m([0y oo)

χR)bySm(R)=if: Vsf(=β(R) for 0<j<m} and5° -([0, oo)χR)={v: yJ V(Ξ

β([0, oo)χR) for 0<j<m} respectively. Throughout this paper, we use the

notation Ψ(#)=\ y]r(y) dy (we assume that ψ is always locally integrable on R).
Jo

The main results of the present paper are the following:

Theorem A. Let φ and Ψ be in 6\R) Then, for 1 <a<2, ui defined by

(2) and u* defined by (3) are the unique solutions of (IDE)*/2 and (IDE)ά/2 re-

spectively in S0 \[0, oo)χR).

T h e o r e m B. Let φ and Ψ be in £2(/2). Then, for l < α ^ 2 , uΛ defined by

(1) is the unique solution of (IDE) r t in £° 2([0, o o ) χ β ) , Furthermore it holds that

REMARK. For φEϊS(R) and τ/r=0, the expression (1) and the one obtain-

ed in (1.6) of [6] coincide mutually. This is due to the simple properties of

the stable processes (see §2 (17) and Proposition 1 (iii) of [2]).

To prove Theorem A, we need a lemma.

L e m m a Let ί<a<2, and A a positive constant such that sup {e~Λ{x{

\f(x)\}<ooforf(=β(R). Then we have for \>A2ί« X(ΞR

(5) Γ e~« E[f(YΛ(t))] dt = λ ^ " 1 Γ/OO e-**/2 dy .
Jo Jo

Proof. Since

β-* E[f(YJt))] dt = \~f(y) d,[[~ β"** P(Yj®£y) dt],
JO Jo
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it is sufficient to show that for every y>0

(6) (" e-" P(Ya(t)<Cy) dt = A [l-e-**/2].
Jo λ

To prove (6), we shall calculate the Laplace-Stieltjes transform of the both
sides of (6). For s e ( 0 , λα / 2), we have by Proposition 1 and the dominated
convergence theorem

= j " e~** Eexp {-s YJt)} dt

o «=o Γ 1 +

Jo

i + λ β / 2

Jo X

Thus we have obtained for ίG(0, λ*/2)

(7) \~e->d,[\~e-»P(YJ!t)£y)dt]= \~ e-> d, {±
Jo Jo Jo X

Since the both sides of (7) are analytic functions of s in {^eC: βes>0}> the
equality (7) holds for s, Re s>0 by the theorem of identity. Note that (6) holds
for j ; = 0 . Then the uniqueness of the Laplace-Stieltjes transform leads to (6).
This completes the proof of Lemma. •

Proof of Theorem A. We shall prove the case u% only, since the case u»
can be proved similarly. By Proposition 1, it is clear that u% belongs to
£°f l([0, oo) x B). Let A>0 be a constant such that sup {e~A{xl [ | φ(x) \ + \ Ψ(x) | ]}

xt=R

< o o . Applying the Laplace transform to u% and using Lemma, we have for λ >
A**

(8) Ui{\, x) = ^ P Jo°° [φ(χ-y)-Ψ(x-y)] e-*«/2 dy

J oo

e~λt u%(ty x) dt. Using the change of the variable z=x— y
o

in (8), we get
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(9) e*
m»u:(\,x) = ϊ^\' [φ(z)-Ψ(z)]^a/2dz.

Differentiating the both sides of (9) with respect to x, we have for (λ, x)(
{A2",oo)χR

(10) u:(x, χ)+vufy'x) = ~ [Φ(χ)-Ψ(χ)l •

Since (p>0) is the Laplace transform of^/ ,̂ the inverse Laplace transform
1 f'1

— (p>0) is the Laplace transform of— ,

of (10) shows that u% satisfies (IDE)ί/2 for every (ί, *)e(0, oo) χRm Therefore it

is a solution of (IDE)£/2 in <5M([0, <χ>)χ jβ). It remains to prove the uniqueness.

It is sufficient to show that if v^6°*\[0, oo)χR) satisfies

(11) v(t, x ) ^ \[

for (t, Λ?)e(0, oo)χRy then v = 0. Applying the Laplace transform to (11), we

get

(12) F(λ, χ)+\-"'2 VF(λ, x) - 0 (λ, *)e(B, oo)χR

5 OO

e~λt v(t, x) dt and 5 > 0 is a constant such that sup {
0 ^O.ϊEΛ

[\v(t9 x)\ + \Vv{tyx)\]}<oo. By (12), the function V(\, x) exp [λΛ/2x] depends

on only λe(JB, oo). Put C(λ)=F(λ, *) exp [λ*/2 x]. Since there exists a con-
Γ e\B\*

stant C such that | V(\, x)\ < on (B> oo)χR, we have for λ > 5 0 = max
{By B

2"} X ~ B

| C ( λ ) | < - ^ — expi\«'2x+B\x\}->0 (x->-oo),
X—B

so that V(X,x) = 0 on (Z?o, oo)χjR. The uniqueness of the Laplace transform

leads to v(t, x) = 0 on [0, oo)χj?. This completes the proof. •

Next we shall prove Theorem B. For/e<?([0, oo)χjR), define the Rie-

mann-Liouville integral operator Ipf(ρ>0) by

Γ (t-s)p-ιf(s, x) ds (ί>0)

lθ (ί = 0).

The following proposition is crucial to prove Theorem B.

Proposition 2. Let f <Ξ£°'2([0, oo)χΛ). Then

( 1 - r Δ)/(ί, x) = (1±/Λ / 2 V) (lT/* / 2 V)/(ί, Λ?)

/or ΛΛJ; (ί, ΛT)G[0, oo)χ Jί, ^fer^ 1 stands for the identity operator.
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Since the proof is obvious, we omit it (cf. [3]).

Proof of Theorem B. Since φ and Ψ belong to 62(R), both u% and u*

belong to <?°'2([0, oo)χR) by Proposition 1. By Theorem A, they satisfy for

(f,*)6Ξ(0, oo)XR

(IDE)ί/2 (1±/"'2 V) *ί(f, *) = -I [φ(*)=FΨ(*)].

By Proposition 2, we have on (0, oo)χ.R

(1-7- Δ) («:+«»)

= (I-/* ' 2 V) [(l+/«/2 V) ui]+(l+I*'2 V) [(I-/*' 2 V) Ml]

= λ (i_/w» v) [φ(Λ)-ψ(^)]+i-

= Φ(χ)+ ,**'*« Mχ) •
( f )

Since w Λ = « ί + ^ , the function wtf is a solution of (IDE),, in £° 2([0, oo)χ/J). It

remains to prove the uniqueness. It is sufficient to show that if v^.

£°'2([0, oo)χΛ) satisfies (1-Γ A) v=0 on (0, oo)χRy then v = 0. Since (1 +

I«/2 V) v belongs to tf^flΌ, oo)χΛ), Theorem A and Proposition 2 lead to (1 +

1*12 Y) ^ = 0 on [0, oo) x Λ. Theorem A also leads to v = 0 on [0, oo) x R. This

completes the proof. •

References

[1] A.V. Balakrishnan: Fractional powers of closed operators and the semigroups gen-
erated by them, Pacific J. Math. 10 (1960), 419-437.

[2] N.H. Bingham: Maxima of sums of random variables and suprema of stable pro-
cesses, Z. Wahrscheinlichkeitstheorie verw. Geb. 26 (1973), 273-296.

[3] P.L. Butzer and U. Westphal: An access to fractional differentiation via fractio-
nal difference quotients, Lect. Notes in Math. 457, Springer, Berlin Heidelberg
New York, 1975, 116-145.

[4] A. Erdelyi (ed.): Higher transcendental functions Vol. 3, McGraw-Hill, New
York Toronto London, 1955.

[5] W. Feller: An introduction to probability theory and its applications Vol 2,
John Wiley, New York Lodnon Sydney Toronto, 1966.

[6] Y. Fujita: Integrodifferential equation which interpolates the heat equation and the
wave equation, Osaka J. Math. 27 (1990), 309-321.

[7] E. Lukacs: Characteristic Functions, Second edition. Griffin, London, 1960.
[8] H. Pollard: The completely monotonic character of the Mittag-Leffler function

Ea{-x), Bull. Amer. Math. Soc. 54 (1948), 1115-1116.



804 Y. FUJITA

[9] W.R. Schneider and W. Wyss; Fractional diffusion and wave equations, J. Math.
Phys. 30 (1989), 134-144.

[10] CJ. Stone: The set of zeros of a semi-stable process, Illinois J. Math. 7 (1963),
631-637.

Department of Mathematics
Faculty of Science
Toyama University
Toyama 930
Japan




