# INTEGRODIFFERENTIAL EQUATION WHICH INTERPOLATES THE HEAT EQUATION AND THE WAVE EQUATION (II) 

Yasuhiro FUJITA

(Received November 27, 1989)

## 1. Introduction

In the present paper we are concerned with the integrodifferential equation $(\mathrm{IDE})_{\alpha}$

$$
\begin{array}{r}
u(t, x)=\phi(x)+\frac{t^{\alpha / 2}}{\Gamma\left(1+\frac{\alpha}{2}\right)} \psi(x)+\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha-1} \\
\Delta u(s, x) d s \\
t>0, x \in \boldsymbol{R}
\end{array}
$$

for $1 \leq \alpha \leq 2$. Here $\Gamma(x)$ is the gamma function and $\Delta=(\partial / \partial x)^{2}$. When $\psi \equiv 0$, $(\mathrm{IDE})_{1}$ is reduced to the heat equation. For $\alpha=2,(\mathrm{IDE})_{2}$ is just the wave equation and its solution $u_{2}(t, x)$ has the expression called the d'Alembert's formula:

$$
u_{2}(t, x)=\frac{1}{2}[\phi(x+t)+\phi(x-t)]+\frac{1}{2} \int_{x-t}^{x+t} \psi(y) d y
$$

The present paper is the continuation of [6]; the aim of the present paper, which is different from that of [6], is to investigate the structure of the solution of (IDE) ${ }_{\alpha}$ by its decomposition for every $\alpha, 1 \leq \alpha \leq 2$.

In Theorem B below, we shall show that (IDE) ${ }_{\alpha}$ has the unique solution $u_{\alpha}(t, x)(1 \leq \alpha \leq 2)$ expressed as

$$
\begin{equation*}
u_{\alpha}(t, x)=\frac{1}{2} \boldsymbol{E}\left[\phi\left(x+Y_{a}(t)\right)+\phi\left(x-Y_{\alpha}(t)\right)\right]+\frac{1}{2} \boldsymbol{E} \int_{x-Y_{\alpha}(t)}^{x+Y_{a}(t)} \psi(y) d y \tag{1}
\end{equation*}
$$

where $Y_{\alpha}(i)$ is continuous, nondecreasing and nonnegative stochastic process with Mittag-Leffler distributions of order $\alpha / 2$, and $\boldsymbol{E}$ stands for the expectation. We remark that the expression (1) has the same form as that of the d'Alembert's formula.

In Theorem A below, we shall consider the decomposition of $u_{\alpha}(t, x)(1 \leq \alpha \leq$ 2). We decompose $u_{\alpha}$ into two functions $u_{\alpha}^{+}$and $u_{\alpha}^{-}$defined by

$$
\begin{equation*}
u_{\alpha}^{+}(t, x)=\frac{1}{2} \boldsymbol{E}\left[\phi\left(x-Y_{\alpha}(t)\right)-\Psi\left(x-Y_{\alpha}(t)\right)\right] \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
u_{\alpha}^{-}(t, x)=\frac{1}{2} \boldsymbol{E}\left[\phi\left(x+Y_{\alpha}(t)\right)+\Psi\left(x+Y_{\alpha}(t)\right)\right] \tag{3}
\end{equation*}
$$

where $\Psi(x)=\int_{0}^{x} \psi(y) d y$. It is easy to see that $u_{\alpha}=u_{\alpha}^{+}+u_{\alpha}^{-}$. The function $u_{\alpha}^{+}$, which consists of the element $x-Y_{\alpha}(t)$, represents the disturbance moving into the positive direction of the $x$-axis. Similarly, the function $u_{\bar{\alpha}}$, which consists of the element $x+Y_{\alpha}(t)$, represents the disturbance moving into the negative direction of the $x$-axis. Furthermore the functions $u_{\alpha}^{+}$and $u_{\alpha}^{-}$are characterized as the unique solutions of the integrodifferential equations
$(\mathrm{IDE})_{\alpha / 2}^{+} u(t, x)+\frac{1}{\Gamma(\alpha / 2)} \int_{0}^{t}(t-s)^{(\alpha / 2)-1} \nabla u(s, x) d s=\frac{1}{2}[\phi(x)-\Psi(x)]$
and
$(\mathrm{IDE})_{\bar{\omega} / 2}^{-} \quad u(t, x)-\frac{1}{\Gamma(\alpha / 2)} \int_{0}^{t}(t-s)^{(\alpha / 2)-1} \nabla u(s, x) d s=\frac{1}{2}[\phi(x)+\Psi(x)]$
respectively, where $\nabla=(\partial / \partial x)$. Let us denote by $I^{\rho}$ the Riemann-Liouville integral operator of order $\rho>0$ defined by $I^{\rho} f(t)=\frac{1}{\Gamma(\rho)} \int_{0}^{t}(t-s)^{\rho-1} f(s) d s$. It has the property such that $\left(1-I^{\alpha} \Delta\right)=\left(1 \pm I^{\alpha / 2} \nabla\right)\left(1 \mp I^{\alpha / 2} \nabla\right)$, where 1 stands for the identity operator (see Proposition 2 below). Thus the above decomposition of $u_{\infty}$ corresponds to the decomposition of the operator $\left(1-I^{\alpha} \Delta\right)$ of (IDE) $)_{\alpha}$ into the product of two operators $\left(1+I^{\alpha / 2} \nabla\right)$ of (IDE $)_{\alpha / 2}^{+}$and $\left(1-I^{\alpha^{2}} \nabla\right)$ of (IDE $)_{\bar{\alpha} / 2}$.

The present paper is organized as follows. First, using the probability theory, we shall show that $u_{\alpha}^{ \pm}$is the unique solution of (IDE) $)_{\bar{\alpha} / 2}^{ \pm}$(Theorem A). Next, using this result and the above decomposition of $\left(1-I^{\alpha} \Delta\right)$, we shall show that $u_{\alpha}$ is the unique solution of (IDE) $)_{\alpha}$ (Theorem B).

## 2. Theorems and their proofs

Let $X_{\alpha}(t)(1 \leq \alpha \leq 2)$ be the stable process defined on a probability space $(\Omega, \mathscr{F}, \boldsymbol{P})$ such that its characteristic function $\boldsymbol{E} \exp \left\{\right.$ is $\left.X_{\alpha}(t)\right\}(s \in \boldsymbol{R}, t \geq 0)$ is givne by

$$
\boldsymbol{E} \exp \left\{\text { is } X_{\alpha}(t)\right\}=\exp \left\{-t|s|^{2 / \alpha} e^{-(\pi i / 2)(2-2 / \alpha) \operatorname{sgn}(s)}\right\}
$$

We choose a version such that $X_{\alpha}(t)$ is right continuous and has left limit. We remark that $X_{2}(t)=t$ and $X_{1}(t)$ is a Brownian motion with mean 0 and variance $2 t$. Put

$$
Y_{\alpha}(t)=\sup _{0 \leq s \leq t} X_{\alpha}(s)
$$

Proposition 1. Let $1 \leq \alpha \leq 2$.
(I) With probability 1, $Y_{\alpha}(t)$ is continuous, nondecreasing and nonnegative process with $Y_{a}(0)=0$.
(II) $\quad Y_{\alpha}(t)$ has the Mittag-Leffler distributions of order $\alpha / 2$ :

$$
\begin{equation*}
\boldsymbol{E} \exp \left\{-s Y_{\alpha}(t)\right\}=\sum_{n=0}^{\infty} \frac{\left(-s t^{\alpha / 2}\right)^{n}}{\Gamma\left(1+\frac{n \alpha}{2}\right)} \quad(s \in \boldsymbol{C}, t \geq 0) \tag{4}
\end{equation*}
$$

(III) For every $A \geq 0$, there exists some constant $C(A, \alpha)>0$ such that

$$
\boldsymbol{E} \exp \left\{A Y_{\alpha}(t)\right\} \leq C(A, \alpha) \exp \left\{A^{2 / \alpha} t\right\} \quad(t \geq 0)
$$

Proof. (I) By the definition of $Y_{\alpha}(t)$, it is nondecreasing. Since $X_{\alpha}(0)=$ $0, Y_{\alpha}(t)$ is nonnegative process with $Y_{\alpha}(0)=0$. It remains to prove that $Y_{\alpha}(t)$ is continuous. The stochastic process $X_{\alpha}(t)$ has no positive jump, i.e., $X_{\alpha}(t-) \geq$ $X_{\alpha}(t)$ for every $t>0$ (cf. pp. 276 of [2]). Thus, we have $Y_{\alpha}(t-) \geq Y_{\alpha}(t)$. The opposite inequality $Y_{\alpha}(t-) \leq Y_{\alpha}(t)$ is trivial, so that $Y_{\alpha}(t-)=Y_{\alpha}(t)$ and $Y_{\alpha}(t)$ is left continuous. The right continuity of $Y_{\alpha}(t)$ is obvious. Hence $Y_{\alpha}(t)$ is continuous a.s..
(II) This is trivial for $\alpha=2$, since $Y_{2}(t)=t$. Thus, assume that $1 \leq \alpha<2$. By Proposition 1 of [2], the equality (4) holds for $s, t \geq 0$. Here we remark that the constant $c_{1}$ of $\S 1(9)$ of [2] is equal to 1 in our case. Since $\lim _{n \rightarrow \infty} \sup [\Gamma(1+$ $\left.\left.\frac{n \alpha}{2}\right)\right]^{-1 / n}=0$ by Stirling's formula, the right hand side of (4) is an analytic function of $s \in \boldsymbol{C}$ for every $t \geq 0$. On the other hand, by Proposition 3b of [2], there exist some constants $A_{\alpha}, B_{\alpha}>0$ such that

$$
\boldsymbol{P}\left(Y_{\alpha}(t) \geq x\right) \sim A_{\alpha}\left(x t^{-\alpha / 2}\right)^{-\frac{1}{2-\alpha}} \exp \left\{-B_{\alpha}\left(x t^{-\alpha / 2}\right)^{-\frac{2}{2-\alpha}}\right\} \quad(x \rightarrow \infty, t>0)
$$

so that the left hand side of (4) is also an analytic function of $s \in \boldsymbol{C}$ for every $t \geq 0$ (for $t=0$, this is trivial). Therefore the equality (4) holds for $s \in \boldsymbol{C}$ and $t \geq 0$ by the theorem of identity.
(III) By (II), we have for $t \geq 0$

$$
\boldsymbol{E} \exp \left\{A Y_{\alpha}(t)\right\}=\sum_{n=0}^{\infty} \frac{\left(A t^{\alpha / 2}\right)^{n}}{\Gamma\left(1+\frac{n \alpha}{2}\right)}
$$

By (10) of pp. 208 of [4], it holds that

$$
\sum_{n=0}^{\infty} \frac{\left(A t^{\alpha / 2}\right)^{n}}{\Gamma\left(1+\frac{n \alpha}{2}\right)} \sim \frac{2}{\alpha} \exp \left\{A^{2 / \alpha} t\right\} \quad(t \rightarrow \infty)
$$

Thus the assertion (III) follows easily.
This completes the proof of Proposition 1.
Now we shall consider the solutions of (IDE) ${ }_{\alpha}$ and (IDE) $)_{\bar{\alpha} / 2}^{ \pm}$.

Definition. (I) The function $u=u(t, x)$ on $[0, \infty) \times \boldsymbol{R}$ is said to be a solution of (IDE) $)_{\alpha}$, if $u$ and $\Delta u$ are continuous on $[0, \infty) \times \boldsymbol{R}$ and $u$ satisfies (IDE) ${ }_{\alpha}$ for every $(t, x) \in(0, \infty) \times \boldsymbol{R}$.
(II) The function $u=u(t, x)$ on $[0, \infty) \times \boldsymbol{R}$ is said to be a solution of (IDE) $)_{\bar{\alpha} / 2}^{ \pm}$, if $u$ and $\nabla u$ are continuous on $[0, \infty) \times \boldsymbol{R}$ and $u$ satisfies (IDE) $)_{\alpha / 2}^{ \pm}$for every $(t, x) \in(0, \infty) \times \boldsymbol{R}$.

Remark. In [6] we defined the solution of (IDE) $)_{\alpha}$, adding the condition that the solution was in $C([0, \infty): \mathcal{S}(\boldsymbol{R}))(\mathcal{S}(\boldsymbol{R})$ : the Schwartz class). This condition is not imposed in the present paper.

We shall construct the solutions of (IDE) $)_{\alpha}$ and (IDE) $)_{\bar{\alpha} / 2}^{\frac{1}{2}}$ in the following spaces. Let $\mathcal{E}(\boldsymbol{R})$ be the space of the continuous functions $f$ on $\boldsymbol{R}$ such that there exist some constants $A, C>0$ satisfying $|f(x)| \leq C e^{A|x|}$ for any $x \in \boldsymbol{R}$, and $\mathcal{E}([0, \infty) \times \boldsymbol{R})$ the space of the continuous functions $v$ on $[0, \infty) \times \boldsymbol{R}$ such that there exist some constants $A^{\prime}, C^{\prime}>0$ satisfying $|v(t, x)| \leq C^{\prime} e^{A^{\prime}[t+|x|]}$ for any $(t, x) \in[0, \infty) \times \boldsymbol{R}$. For every positive integer $m$, define $\mathcal{E}^{m}(\boldsymbol{R})$ and $\mathcal{E}^{0, m}([0, \infty)$ $\times \boldsymbol{R})$ by $\mathcal{E}^{m}(\boldsymbol{R})=\left\{f: \nabla^{j} f \in \mathcal{E}(\boldsymbol{R})\right.$ for $\left.0 \leq j \leq m\right\}$ and $\mathcal{E}^{0, m}([0, \infty) \times \boldsymbol{R})=\left\{v: \nabla^{j} v \in\right.$ $\mathcal{E}([0, \infty) \times \boldsymbol{R})$ for $0 \leq j \leq m\}$ respectively. Throughout this paper, we use the notation $\Psi(x)=\int_{0}^{x} \psi(y) d y$ (we assume that $\psi$ is always locally integrable on $\boldsymbol{R}$ ).

The main results of the present paper are the following:
Theorem A. Let $\phi$ and $\Psi$ be in $\mathcal{E}^{1}(\boldsymbol{R})$. Then, for $1 \leq \alpha \leq 2, u_{\alpha}^{+}$defined by (2) and $u_{\bar{\alpha}}^{-}$defined by (3) are the unique solutions of (IDE) ${ }_{\alpha / 2}^{+}$and (IDE) $\bar{\alpha} / 2$ respectively in $\mathcal{E}^{0,1}([0, \infty) \times \boldsymbol{R})$.

Theorem B. Let $\phi$ and $\Psi$ be in $\mathcal{E}^{2}(\boldsymbol{R})$. Then, for $1 \leq \alpha \leq 2, u_{\alpha}$ defined by (1) is the unique solution of $(\mathrm{IDE})_{\alpha}$ in $\mathcal{E}^{0,2}([0, \infty) \times \boldsymbol{R})$. Furthermore it holds that $u_{\alpha}=u_{\alpha}^{+}+u_{\alpha}^{-}$.

Remark. For $\phi \in \mathcal{S}(\boldsymbol{R})$ and $\psi \equiv 0$, the expression (1) and the one obtained in (1.6) of [6] coincide mutually. This is due to the simple properties of the stable processes (see $\S 2$ (17) and Proposition 1 (iii) of [2]).

To prove Theorem A, we need a lemma.
Lemma Let $1 \leq \alpha \leq 2$, and $A$ a positive constant such that $\sup _{x \in \boldsymbol{R}}\left\{e^{-A|x|}\right.$ $|f(x)|\}<\infty$ for $f \in \mathcal{E}(\boldsymbol{R})$. Then we have for $\lambda>A^{2 / \alpha}$

$$
\begin{equation*}
\int_{0}^{\infty} e^{-\lambda t} \boldsymbol{E}\left[f\left(Y_{\alpha}(t)\right)\right] d t=\lambda^{(\alpha / 2)-1} \int_{0}^{\infty} f(y) e^{-y \lambda \alpha / 2} d y \tag{5}
\end{equation*}
$$

Proof. Since

$$
\int_{0}^{\infty} e^{-\lambda t} \boldsymbol{E}\left[f\left(Y_{\alpha}(t)\right)\right] d t=\int_{0}^{\infty} f(y) d_{y}\left[\int_{0}^{\infty} e^{-\lambda t} \boldsymbol{P}\left(Y_{\alpha}(t) \leq y\right) d t\right]
$$

it is sufficient to show that for every $y \geq 0$

$$
\begin{equation*}
\int_{0}^{\infty} e^{-\lambda t} \boldsymbol{P}\left(Y_{\alpha}(t) \leq y\right) d t=\frac{1}{\lambda}\left[1-e^{-y^{\alpha} / 2}\right] . \tag{6}
\end{equation*}
$$

To prove (6), we shall calculate the Laplace-Stieltjes transform of the both sides of (6). For $s \in\left(0, \lambda^{\alpha / 2}\right)$, we have by Proposition 1 and the dominated convergence theorem

$$
\begin{aligned}
\int_{0}^{\infty} & e^{-s y} d_{y}\left[\int_{0}^{\infty} e^{-\lambda t} \boldsymbol{P}\left(Y_{\alpha}(t) \leq y\right) d t\right] \\
& =\int_{0}^{\infty} e^{-\lambda t} \boldsymbol{E} \exp \left\{-s Y_{\alpha}(t)\right\} d t \\
& =\int_{0}^{\infty} e^{-\lambda t}\left\{\sum_{n=0}^{\infty} \frac{\left(-s t^{\alpha / 2}\right)^{n}}{\Gamma\left(1+\frac{n \alpha}{2}\right)}\right\} d t \\
& =\sum_{n=0}^{\infty} \frac{(-s)^{n}}{\Gamma\left(1+\frac{n \alpha}{2}\right)} \int_{0}^{\infty} e^{-\lambda t} t^{(\alpha n / 2)} d t \\
& =\frac{\lambda^{(\alpha / 2)-1}}{s+\lambda^{\alpha / 2}} \\
& =\int_{0}^{\infty} e^{-s y} d_{y}\left\{\frac{1}{\lambda}\left[1-e^{-y \lambda^{\alpha / 2}}\right]\right\}
\end{aligned}
$$

Thus we have obtained for $s \in\left(0, \lambda^{\alpha / 2}\right)$

$$
\begin{equation*}
\int_{0}^{\infty} e^{-s y} d_{y}\left[\int_{0}^{\infty} e^{-\lambda t} \boldsymbol{P}\left(Y_{\alpha}(t) \leq y\right) d t\right]=\int_{0}^{\infty} e^{-s y} d_{y}\left\{\frac{1}{\lambda}\left[1-e^{-y \lambda \alpha / 2}\right]\right\} \tag{7}
\end{equation*}
$$

Since the both sides of (7) are analytic functions of $s$ in $\{s \in C: \operatorname{Res}>0\}$, the equality (7) holds for $s$, Re $s>0$ by the theorem of identity. Note that (6) holds for $y=0$. Then the uniqueness of the Laplace-Stieltjes transform leads to (6). This completes the proof of Lemma.

Proof of Theorem A. We shall prove the case $u_{\alpha}^{+}$only, since the case $u_{\omega}^{-}$ can be proved similarly. By Proposition 1, it is clear that $u_{\alpha}^{+}$belongs to $\mathcal{E}^{0,1}([0, \infty) \times \boldsymbol{R})$. Let $A>0$ be a constant such that $\underset{x \in \boldsymbol{R}}{ }\left\{e^{-A|x|}[|\phi(x)|+|\Psi(x)|]\right\}$ $<\infty$. Applying the Laplace transform to $u_{\infty}^{+}$and using Lemma, we have for $\lambda>$ $A^{2 / a}$

$$
\begin{equation*}
U_{\alpha}^{+}(\lambda, x)=\frac{\lambda^{(\alpha / 2)-1}}{2} \int_{0}^{\infty}[\phi(x-y)-\Psi(x-y)] e^{-y \lambda \alpha / 2} d y \tag{8}
\end{equation*}
$$

where $U_{\alpha}^{+}(\lambda, x)=\int_{0}^{\infty} e^{-\lambda t} u_{\alpha}^{+}(t, x) d t$. Using the change of the variable $z=x-y$ in (8), we get

$$
\begin{equation*}
e^{\lambda^{\alpha} / 2} \boldsymbol{U}_{\alpha}^{+}(\lambda, x)=\frac{\lambda^{(\alpha / 2)-1}}{2} \int_{-\infty}^{x}[\phi(z)-\Psi(z)] e^{z^{\lambda} / 2} d z \tag{9}
\end{equation*}
$$

Differentiating the both sides of (9) with respect to $x$, we have for $(\lambda, x) \in$ $\left(A^{2 / \omega}, \infty\right) \times \boldsymbol{R}$

$$
\begin{equation*}
\boldsymbol{U}_{a}^{+}(\lambda, x)+\frac{\nabla \boldsymbol{U}_{a}^{+}(\lambda, x)}{\lambda^{\alpha / 2}}=\frac{1}{2 \lambda}[\phi(x)-\Psi(x)] . \tag{10}
\end{equation*}
$$

Since $\frac{1}{\lambda^{\rho}}(\rho>0)$ is the Laplace transform of $\frac{t^{\rho-1}}{\Gamma(\rho)}$, the inverse Laplace transform of (10) shows that $u_{\alpha}^{+}$satisfies $(\operatorname{IDE})_{\alpha / 2}^{+}$for every $(t, x) \in(0, \infty) \times \boldsymbol{R}$. Therefore it is a solution of (IDE) $)_{\alpha / 2}^{+}$in $\mathcal{E}^{0,1}([0, \infty) \times \boldsymbol{R})$. It remains to prove the uniqueness. It is sufficient to show that if $v \in \mathcal{E}^{0,1}([0, \infty) \times \boldsymbol{R})$ satisfies

$$
\begin{equation*}
v(t, x)+\frac{1}{\Gamma(\alpha / 2)} \int_{0}^{t}(t-s)^{(\alpha / 2)-1} \nabla v(x, s) d s=0 \tag{11}
\end{equation*}
$$

for $(t, x) \in(0, \infty) \times \boldsymbol{R}$, then $v \equiv 0$. Applying the Laplace transform to (11), we get

$$
\begin{equation*}
V(\lambda, x)+\lambda^{-\alpha / 2} \nabla V(\lambda, x)=0 \quad(\lambda, x) \in(B, \infty) \times \boldsymbol{R} \tag{12}
\end{equation*}
$$

where $V(\lambda, x)=\int_{0}^{\infty} e^{-\lambda t} v(t, x) d t$ and $B>0$ is a constant such that $\sup _{t \geq 0, x \in \boldsymbol{R}}\left\{e^{-B(t+|x|)}\right.$ $[|v(t, x)|+|\nabla v(t, x)|]\}<\infty$. By (12), the function $V(\lambda, x) \exp \left[\lambda^{\alpha / 2} x\right]$ depends on only $\lambda \in(B, \infty)$. Put $C(\lambda)=V(\lambda, x) \exp \left[\lambda^{\alpha / 2} x\right]$. Since there exists a constant $C$ such that $|V(\lambda, x)| \leq \frac{C e^{|B| x}}{\lambda-B}$ on $(B, \infty) \times \boldsymbol{R}$, we have for $\lambda>B_{0} \equiv \max$ $\left\{B, B^{2 / \alpha}\right\}$

$$
|C(\lambda)| \leq \frac{C}{\lambda-B} \exp \left\{\lambda^{\alpha / 2} x+B|x|\right\} \rightarrow 0 \quad(x \rightarrow-\infty)
$$

so that $V(\lambda, x) \equiv 0$ on $\left(B_{0}, \infty\right) \times \boldsymbol{R}$. The uniqueness of the Laplace transform leads to $v(t, x) \equiv 0$ on $[0, \infty) \times \boldsymbol{R}$. This completes the proof.

Next we shall prove Theorem B. For $f \in \mathcal{E}([0, \infty) \times \boldsymbol{R})$, define the Rie-mann-Liouville integral operator $I^{\rho} f(\rho>0)$ by

$$
I^{\rho} f(t, x)= \begin{cases}\frac{1}{\Gamma(\rho)} \int_{0}^{t}(t-s)^{\rho-1} f(s, x) d s & (t>0) \\ 0 & (t=0)\end{cases}
$$

The following proposition is crucial to prove Theorem B.
Proposition 2. Let $f \in \mathcal{E}^{0,2}([0, \infty) \times \boldsymbol{R})$. Then

$$
\left(1-I^{\alpha} \Delta\right) f(t, x)=\left(1 \pm I^{\alpha / 2} \nabla\right)\left(1 \mp I^{\alpha / 2} \nabla\right) f(t, x)
$$

for any $(t, x) \in[0, \infty) \times \boldsymbol{R}$, where 1 stands for the identity operator.

Since the proof is obvious, we omit it (cf. [3]).
Proof of Theorem B. Since $\phi$ and $\Psi$ belong to $\mathcal{E}^{2}(\boldsymbol{R})$, both $u_{\alpha}^{+}$and $u_{\alpha}^{-}$ belong to $\mathcal{E}^{0,2}([0, \infty) \times \boldsymbol{R})$ by Proposition 1. By Theorem A, they satisfy for $(t, x) \in(0, \infty) \times \boldsymbol{R}$
(IDE) $)_{\bar{\alpha} / 2}^{\dagger}$

$$
\left(1 \pm I^{\alpha / 2} \nabla\right) u_{\alpha}^{ \pm}(t, x)=\frac{1}{2}[\phi(x) \mp \Psi(x)] .
$$

By Proposition 2, we have on $(0, \infty) \times \boldsymbol{R}$

$$
\begin{aligned}
&\left(1-I^{\alpha} \Delta\right)\left(u_{\alpha}^{+}+u_{\alpha}^{-}\right) \\
&=\left(1-I^{\alpha / 2} \nabla\right)\left[\left(1+I^{\alpha / 2} \nabla\right) u_{\alpha}^{+}\right]+\left(1+I^{\alpha / 2} \nabla\right)\left[\left(1-I^{\alpha / 2} \nabla\right) u_{\alpha}^{-}\right] \\
&= \frac{1}{2}\left(1-I^{\alpha / 2} \nabla\right)[\phi(x)-\Psi(x)]+\frac{1}{2}\left(1+I^{\alpha / 2} \nabla\right)[\phi(x)+\Psi(x)] \\
&=\phi(x)+I^{\alpha / 2} \psi(x) \\
&=\phi(x)+\frac{t^{\alpha / 2}}{\Gamma\left(1+\frac{\alpha}{2}\right)} \psi(x) .
\end{aligned}
$$

Since $u_{\alpha}=u_{\alpha}^{+}+u_{\alpha}^{-}$, the function $u_{\alpha}$ is a solution of (IDE) $)_{\alpha}$ in $\mathcal{E}^{0,2}([0, \infty) \times \boldsymbol{R})$. It remains to prove the uniqueness. It is sufficient to show that if $v \in$ $\mathcal{E}^{0,2}([0, \infty) \times \boldsymbol{R})$ satisfies $\left(1-I^{\alpha} \Delta\right) v=0$ on $(0, \infty) \times \boldsymbol{R}$, then $v \equiv 0$. Since $(1+$ $\left.I^{\alpha / 2} \nabla\right) v$ belongs to $\mathcal{E}^{0,1}([0, \infty) \times \boldsymbol{R})$, Theorem A and Proposition 2 lead to ( $1+$ $\left.I^{\alpha / 2} \nabla\right) v \equiv 0$ on $[0, \infty) \times \boldsymbol{R}$. Theorem A also leads to $v \equiv 0$ on $[0, \infty) \times \boldsymbol{R}$. This completes the proof.

## References

[1] A.V. Balakrishnan: Fractional powers of closed operators and the semigroups generated by them, Pacific J. Math. 10 (1960), 419-437.
[2] N.H. Bingham: Maxima of sums of random variables and suprema of stable processes, Z. Wahrscheinlichkeitstheorie verw. Geb. 26 (1973), 273-296.
[3] P.L. Butzer and U. Westphal: An access to fractional differentiation via fractional difference quotients, Lect. Notes in Math. 457, Springer, Berlin Heidelberg New York, 1975, 116-145.
[4] A. Erdélyi (ed.): Higher transcendental functions Vol. 3, McGraw-Hill, New York Toronto London, 1955.
[5] W. Feller: An introduction to probability theory and its applications Vol 2, John Wiley, New York Lodnon Sydney Toronto, 1966.
[6] Y. Fujita: Integrodifferential equation which interpolates the heat equation and the wave equation, Osaka J. Math. 27 (1990), 309-321.
[7] E. Lukacs: Characteristic Functions, Second edition. Griffin, London, 1960.
[8] H. Pollard: The completely monotonic character of the Mittag-Leffler function $E_{a}(-x)$, Bull. Amer. Math. Soc. 54 (1948), 1115-1116.
[9] W.R. Schneider and W. Wyss; Fractional diffusion and wave equations, J. Math. Phys. 30 (1989), 134-144.
[10] C.J. Stone: The set of zeros of a semi-stable process, Illinois J. Math. 7 (1963), 631-637.

Department of Mathematics Faculty of Science Toyama University Toyama 930
Japan

