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Introduction

Let M be a minimal surface in Rn. The minimality of M is equivalent to
the property that the area of M is critical for all compactly supported varia-
tions of M. So problems on the index of the Jacobi operator associated to M
arise naturally. We define here the index of M as the supremum of the indices
of the Jacobi operator on relatively compact domains in M. The condition
that M be stable is just the condition that the index of M be equal to zero.
Fischer-Colbrie [3], Gulliver and Lawson [4], [5] have proved independently that
a complete oriented minimal surface in R3 has finite index if and only if it has
finite total curvature. More recently Lopez and Ros [10] have proved that
the catenoid and the Enneper's surface are the only complete oriented minimal
surfaces in R3 with index one. This result has also been obtained by Cheng
and Tysk [1] in the case of embedded ends.

The results mentioned so far deal with surfaces in R3. In this paper we
study the index of minimal surfaces, in Rn. We first prove in Theorem 1 that
if a complete oriented minimal surface in Rn has finite total curvature, then it has
finite index. Thus we generalize, to the higher codimensional case, the "if"
part of the result mentioned above due to Fischer-Colbrie and aslo due to Gul-
liver and Lawson.

We now restrict our attention to w=4. In view of Theorem 1 and the
well-known fact that holomorphic curves in C2 (=Λ 4) are stable, we propose
here the following question. Suppose M is a complete orierded minimal surface
in R4 with finite index. Is M of finite total curvature or a holomorphic curve with
respect to some orthogonal complex structure on J?4? Related to this question
we point out the work of Micallef [11], who proved, among other things, that
any complete orineted parabolic stable minimal surface in R4 is a holomorphic
curve with respect to some orthogonal complex structure on R4.

Following Osserman we say that the Gauss map of an oriented surface in Rn

is degenerate if the Gauss image lies in a hyperplane of Pn~\C) (see §3). The-
orem 2 provides an affirmative answer to the question mentioned above when
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the Gauss map of M is degenerate and M is of finite type (that is, conformally

equivalent to a compact Riemann surface with finitely many punctures). As a
corollary of Theorem 2 we obtain a result on the index of entire 2-dimensional
minimal graphs in R4.

In view of the result of Lopez and Ros, complete minimal surfaces with
index one are of particular interest. Our final result is to give examples of
such surfaces which lie fully in R4. They are obtained by deforming the cate-
noid and the Enneper's surface in R3.

If M is an oriented surface in Rn, then isothermal coordinates for the in-
duced metric together with the orientation give rise to a complex structure on
M. Throughout this paper we consider M as a Riemann surface with the com-
plex structure just mentioned.

This paper is divided into four sections. The first section is devoted to
the preliminary discussion about the index of the Jacobi operator. In the se-
cond and the third sections we prove Theorem 1 and Theorem 2 respectively.
In the last section examples of index one minimal surfaces in RA are given.

After the completion of this paper the author learned that Ejiri [14] has
proved that the index of a complete oriented minimal surface in Rn is bounded
by a constant (which depends only on n) times the total curvature.

The author would like to express his hearty thanks to Professors H. Ozeki
and A. Kasue for their constant encouragement and valuable advice.

1. Preliminaries

Let M be a minimal surface in Rn. We denote by L the Jacobi operator
associated to M, which is a differential operator acting on sections of the normal
bundle NM of M. Let i3 denote an endomorphism of NM defined by

& = Σ2ij-i(B(ei9 ej).s) B(eiy *,.), s<ΞΓ(NM),

where B is the second fundamental form of M, {ev e2} is a local orthonormal
frame for the tangent bundle of M and S't is the inner product of s, t^T(NM)
taken with respect to the fiber metric on NM. Then L is given by L=—Δ—iS,
where Δ is the Laplacian in NM defined by means of the normal connection.
We denote by Q the quadratic form associated to L. Thus, for s
with compact support

Q(s, s) = (Ls's) dA ,

where dA is the area element corresponding to the induced metric on Λf.
For any relatively compact domain Ω in M, we define Ind (Ω), the index

of Ω, as the number of negative eigenvalues (counted with multiplicities) of the
Dirichlet eigenvalue problem
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Ls = Xs in Ω, s = 0 on 9Ω .

We note that Ind(Ω) is finite. Ind(Ω) can also be defined as the maximal di-
mension of a subspace of Γ0(Ω, NM), the space of sections of NM with compact
support in Ω, on which Q is negative definite. We now define Ind(M), the
index of M, as the supremum of the numbers Ind(Ω) over all relatively compact
domains in M. We note that Ind(M)=0 if and only if M is stable, and also
that if Ind(M) is finite, then there exists a compact set C in M such that M—C
is stable (see Gulliver and Lawson [5, Remark 3.18, p. 228], the proof is similar).

2. Complete minimal surfaces in Rn with finite total curvature

In this section we prove the following theorem.

Theorem 1. Let M be a complete oriented minimal surface in Rn with

finite total curvature. Then M has finite index.

We first make preliminary observations which will be needed for the proof
of Theorem 1. Let G2>n denote the Grassmannian of oriented 2-dimensional
subspaces of Rn. Let M be an oriented surface in Rn and F: M->Rn the im-
mersion. The (generalized) Gauss map G: M-*G2,n is defined by G(p)=
F*(TpM)y where TPM is the oriented tangent space of M at p and F*(TpM) is
translated from F(p) to the origin of Rn. We now let M be a complete orient-
ed minimal surface in Rn with finite total curvature. By a theorem of Chern and
Osserman [2], M is conformally equivalent to a compact Riemann surface with
finitely many punctures. Moreover, the Gauss map G extends smoothly (in
fact, as a holomorphic map) to the compactified surface.

We now recall that over G2>n we have the tautological 2-ρlane bundle j2>n
whose fiber over a point Π consists of the vectors in Rn which lie in Π. We
also have the (n—2)-plane bundle γt.n which is the orthogonal complement of
γ2,» in G2>n X R" The tangent and normal bundles of an oriented surface in Rn

are isomorphic (geometrically) to the induced bundles G*(γ2,«) and G*(γt.n)
respectively, where G is the Gauss map of the surface. Thus, in our case, the
tangent and normal bundles of M extend with their fiber metrics to the vector
bundles (?*(γ2 n) and G*(γftn) on the compactified surface M respectively, where
G is the extension of G to M. We let τ=G*(γ2tΛ) and v=G*(<γftn). We note
that the direct sum τ@v is isomorphic to the trivial bundle MxRn. Let N
denote the orthogonal projection from MχRn onto v.

We define a metric connection D on v by

DYs = (dYs)N

y X e Γ ( T M ) , ί G Γ W ,

where dx denotes the derivative in the direction X acting on vector-valued func-
tions on M. We also define a bilinear form B on TMXτ with values in v by
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S{X, t) = (dxt)», X<aT{Tti), ίeΓ(τ).

Now let ds2 be an arbitrary conformal metric on M. We denote by A the
rough Laplacian corresponding to the connection D. Thus, for

As = t r a c e r ΰDs .

We define an endomorphism i3 of v by

«, , tj)-s)S(ei, ίy),

where {eif βj} is a local orthonormal frame for TM with respect to the metric
{th tj} is a local orthonormal frame for T. We set

L is a formally self-adjoint strongly elliptic differential operator acting on Γ(z>).

We denote by Q the quadratic form associated to L. Thus, for

Q{s,s)=[(ls s)dA9
J M

where dA is the area element corresponding it the metric d$2.
We can define the indices of M and M with respect to L as we did for L.

We denote them by Ind (L,M) and Ind (L,M) respectively. We note that
Ind ( I , M) is finite and Ind ( I , Af)<Ind(L, M).

Proof of Theorem 1. Let ds2 denote the original metric on M induced by
the immersion. The metrics ds2 and d§2 are expressed lically as \\dz\2 and
λ|dz\2 respectively, where z=x-\-iy is a local complex coordinate on M. From
the definition of L it is easy to verify that

(2.1) ^ - X L '

where L\M denote the restriction of L to Γ(iVM). Therefore, if s^Γ(NM) has
a compact support in M

Q{s,s)=\ (Ls-s)dΛ

= \ (Ls-s)dA,
M

because dA=X dxdy—— dA. Thus we have proved that

for all such s, and this clearly implies that
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Hence, by the remark preceding the proof, Ind(M) is finite. The proof of

Theorem 1 is complete.

REMARK 1. Actually it turns out from the same argument as in Fischer-

Colbrie [3, Corollary 2, p. 131] that Ind(ΛΓ)=Ind(I, β).

REMARK 2. The definition of L depends on the choice of a metric on M.

Let d$\=\\dz\2 be another conformal metric on M and Lx the corresponding

operator. Then we have Ly=^r- L. Thus another choice of metric simply

multiplies L by a positive function on M.

3. Complete minimal surfaces in R* with degenerate Gauss maps

Let M be an oriented surface in Rn and F: M-> Rn the immersion. We

recall that G2,n may be identified with the quadric ^ w _ 2 c P " " 1 ( C ) defined by

(wi)2~\ K^»)2=0> where (wlf •••, wn) is a homogeneous coordinate for a point

in Pn~\C). Thus, the Gauss map G of M can be considered as a map from M

into Qn_2aPn~\C). If z is a local complex coordinate on M, then Fz(p) is a

homogeneous coordinate for G(p) (see, for example, [6] or [9]). Following Os-

serman [12, p. 122] we say that the Gauss map of M is degenerate if the Gauss

image lies in a hyperplane of Pn~\C). Thus, the Gauss map of M is degenerate

if there exists a nonzero fixed vector Λ^Cn such that A F2=0, where vw=

Σy Vj Wj for v=(vly •••, vn), w=(wly •••, wn)^Cn. We point out here that orient-

ed surfaces in Rn which lie in an (n— l)-dimensional affine subspace and

holomorphic curves in Cn(=R2n) have degenerate Gauss maps.

A Riemann surface is said to be of finite type if it is conformally equivalent

to a compact Riemann surface with finitely many punctures.

In this section we prove the following theorem.

Theorem 2. Let M be a complete oriented minimal surface of finite type

in i?4. Suppose that M has finite index and that the Gauss map of M is degenerate.

Then M is of finite total curvature or a holomorphic curve with respect to some ortho-

gonal complex structure on R4.

We recall that for an oriented surface M in J?4, NM can be given a complex

structure, namely, rotation by 90° in the anticlockwise direction with respect

to a fixed orientation on NM. Let NcM=NcM
1'oξBNcM

0'1 be the splitting

of the complexified normal bundle into (1,0) and (0, 1) subbundles with respect

to the complex structure just mentioned.

Throughout the proof of Theorem 2 below we shall use the following nota-

tions: for any vector ϋGC 4, let vτ, vN, v1'0 and vOfl denote the orthogonal pro-

jection of v onto TCM, NCM, NcM
h0 and NCM°>1 respectively. We let D de-

note the normal connection and z will be a local complex coordinate on M.
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Proof of Theorem 2. Since the Gauss map of M is degenerate, there exists
a nonzero fixed vector A^C4 such that A*Fg=Q, where F denotes the immer-
sion of M into R4. We note that under the usual action of O(n), the real ortho-
gonal group, any nonzero vector in Cn is equivalent, up to a constant multiple,
to (α, i, 0, •-., 0), 0 < α < l (see [6, Proposition 2.4, p. 28]). Therefore we may
assume, without loss of generality, that A=(a, t, 0, 0), 0 < α < l . If a=ί then
the Gauss image of M lies in a projective line of Q2. Hence, by a proposition of
Lawson [9, Proposition 16, p. 165], M i s a holomorphic curve with respect to
some orthogonal complex structure on R4.

Nest we consider the case 0 < α < l . Since M has finite index, there exists
a compact set C in M such that M—C is stable (see §1). Thus the stability
inequality

(3.1)
M

holds for any section σ of NCM with compact support in M—C, where dσ=
(dzσ)dz and dσ-=(d-zσ)dz (see Micallef [11, pp. 60-61]). We now set σ=fs in
(3.1), where s is the section of NQM1'0 defined by s^^ 1 ' 0 and / is an arbitrary
smooth real valued function with compact support in M—C. Since (3^)^=
DzS=0 (see [11, Claim(i) in the proof of Theorem III, p. 77]), we obtain

(3.2) ( f\(dsY\^\ | 5 / | 2 M 2 = i - ( \df\>\s\*.

Some parts of the following computation also can be found in [11]. We shall,
however, repeat them for completeness. Using the Leibniz rule and the mini-
mality of M, that is, FZz=0y we obtain

Hence

{FAi

where £ is a local unit section of NcM
ι °. Since A Fz=0, we have

But

and so, A'(Fa)N=0, that is,

(3.4) {A 6) (6'F2l)+(A-6) (S Fβ) = 0



MORSE INDEX OF COMPLETE MINIMAL SURFACES 447

We also have

A = - j L (A'F,)Ft+(A'Z)€+(A ε) 6 .

Therefore

(3.5) \A.δ\2+\A-S\2<\A\2

and

(3.6) 2\A-E\\A-£\ = \A-A\ = l - α 2 > 0 .

In particular, \A δ\ and \A G\ never vanish. We now obtain, by (3.4),

(3.7) \(Fay\'= IF. e l '+l i |2

Finally, the Gauss equation can be written as

(3.8) -i^Jί^

where K is the Gauss curvature of M. From (3.3), (3.7), (3.8) (3.5) and (3.6)
it follows that

(3 9) l(9ί)Γ|2 = ] J f fw^(-^)

On the other hand, we have clearly

(3.10) \s\

Using (3.9) and (3.10) in (3.2) yields

< 3 n )

M is of finite type, — K>0 and (3.11) holds for any smooth function/ with
compact support in M—C. Following the argument of Fischer-Colbrie [3, the
proof of Corollary 1, p. 129], we can now conclude that M has finite total cur-
vature. The proof of Theorem 2 is complete.

In the rest of this section we study the index of entire 2-dimensional mini-
mal graphs in i?4. Let M be a complete minimal surface in R* which is a graph
defined over the whole (xly #2)-plane. We recall here a result of Osserman [12,
pp. 37-42] which states that such M is conformally equivalent to the complex
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plane, hence of finite type. Moreover, M is of either of the following two
types:

Type 1. M is a graph of a function f(xl9 x2)=(fi(xi, #2), Λ ^ D #2)), where
f1-\-if2 is a holomorphic or antiholomorphic function of xx-\-ix1% In this case M
is clearly a holomorphic curve with respect to some orthogonal complex struc-
ture on R4.

Type 2. M is given, up to translation, by a conformal minimal embedding

(3.12) F(z) = Re Γ (1, c, —

of the complex plane, where J = l + £ 2 , c is an arbitrary complex constant satisfy-
ing only cφ zizi, Im cφO and if is an arbitrary nonconstant holomorphic function
on C. In this case M is not a holomorphic curve with respect to any orthogonal
complex structure on R4.

Corollary. Let M be a complete minimal surface in R4 which is a graph
defined over the whole plane R2. If M is of Type 1, then M is stable, that is,
Ind (M)=0. If Mis of Type 2, then Ind (M) is infinite.

REMARK. Micallef [11, Corollary 5.1, p. 68] and Kawai [7] have proved in-
dependently that entire 2-dimensional minimal graphs in R4 of Type 2 are
unstable.

Proof. The first assertion is well-known. To prove the second assertion
we first note that the Gauss map of M is degenerate. In fact, A JFZ = 0 with A=
(cy — 1 , 0, 0), where F and c are as in (3.12). Moreover, it is easy to see from
(3.12) that the Gauss map does not extend to S2=C[j {00} as a holomorphic
map. Hence, by a thoerem of Chern and Osserman [2], the total curvature of
M is infinite. The second assertion now follows as an immediate consequence
of Theorem 2. This completes the proof.

4. Examples of complete minimal surfaces in RA with index one

Let M be a complete oriented minimal surface in Rn with finite total cur-
vature. We use the same notations as in §2. We recall that, given a conformal
metric on the compactified surface M, we have the operator L acting on sec-
tions of the extended normal bundle v. First we study the dimension of
Ker(L), the kernel of L. It is worth noting that by Remark 2 in §2, Ker(Z) is
independent of the particular choice of a metric on M. We begin with typical
examples.

EXAMPLE 1. Let M be the plane R2=R2x {0} (ZR\ Then we have
dim K.tr(L)=n~2. In fact, β̂ , •••, e% form a basis of Ker(L), where {ely •••, en}
is the standard basis of Rn and for any vector v^Rn, vN denotes the orthogonal
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projection of v onto v.

Example 2. Let M be the catenoid or the Enneper's surface, which lies
in a 3-dimensional affine subspace of Rn. Then we have dim Ker(L)=/z. In
fact, ex, "-yβn form a basis of Ker(L).

In general we have the following

Proposition. Let M be a complete oriented minimal surface in Rn with
finite total curvature. Then dim Ker(L) is at least n—2. Moreover, if dim Ker
(L) is less than n, then M is a plane.

Proof. For any vector v^Rn, we have LvN=0 on M (see Simons [13, Co-
rollary 3.3.1, p. 74]). By (2.1) in the proof of Theorem 1 we have LvN=0 on
M", since vN is defined over the whole of M. We define a vector subspace V of
Ker(L) by V= {vN \v^Rn}. To prove the first assertion it is sufficient to prove
that dim V>n—2. Let p be a point in M and {vly •••, vn_2} a basis of vp, the
fiber of v over p. Clearly Vι, •••, v%_2 are linearly independent over R, where
we consider vly •••, vn_2 as vectors in Rn. Therefore we obtain dim V>n—2 as
desired.

Next we prove the second assertion. By the assumption we have dim V<n.
Hence there exists a unit vector vEΐRn such that / Ξ O . This means that, when
considered as a constant vector field along M, v is everywhere tangent to M.
We fix an arbitrary point p^M. Let {ely e2} be an orthonormal tangnet frame
at p with respect to the original metric on M such that e1=v. For any tangnet
vector u at p we obtain

where vτ denotes the orthogonal porjection of v onto TM. In particular, we
have that B(ely e^)~ 0 and B(ely e2)=B(e2y ^^^O. By the minimality of M we
also have that B(el9 e1)

JrB(e2y e2)=0, and therefore that B(e2y e2)=0. We have
thus proved that B vanishes at p. Since p is arbitrary, B vanishes identically.
M must therefore be a plane. This completes the proof.

We can now give examples of complete oriented minimal surfaces with
index one which lie fully in R4. We first recall that the catenoid and the En-
neper's surface in R3 have index one (see Fischer-Colbrie [3, p. 131]). It is
not difficult to verify that when they are considered as minimal surfaces in J?4

via the inclusion R3=R3X {0} CR\ they still have index one.

EXAMPLE 3. For each a, 0 < α < l , we define a conformal immersion FΛ:
C-+R4 by
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It is easy to verify that each FΛ defines a complete oriented simply-connected mi-
nimal surface in R4 with total curvature 4τr. Thus we obtain a smooth one-
parameter family of such surfaces, which will be denoted by {MΛ}0^αJ<1. We
note that Mo is the Enneper's surface and that if αΦO, MΛ lies fully in R4.
Moreover, if α φ α ' , then MΛ and Mj are not congruent to each other (see [6,
p. 64]). In what follows we show that Ind(M Λ )=l for sufficiently small α.

As we observed in §2, the tangent and normal bundles of each MΛ extend
with their fiber metrics to the vector bundles τΛ and vΛ on S2=CΌ {°°} respec-
tively. Thus we obtain two smooth families of vector bundles {τΛ}0^αi<1 and
{VO}Q<IOC<1 on *S2. We now fix an arbitrary metric on S2. Then for each a we
can construct the differential operator La acting on sections of vΛ as in §2. We
note that {£αί}o<;αi<i *s a smooth family of differential operators (for the definition,
see [8, Definition 7.5, p. 325]). Hence for each positive integer k> the &-th
eigenvalue λ,/,(α) of LΛ varies continuously in a (see [8, Theorem 7.2, p. 326]).
From Remark 1 in §2 and Example 2, we know that

λ1(0)<0, λ2(0) = .- =λs(0) = 0, λ6(0)>0 .

On the other hand, the above proposition shows that the multiplicity of 0-eigen-
value of each LΛ is not less than four. It follows therefore that

λχ(α)<0, λ2(α) = .-• = λ5(α) = 0, X6(a)>0

for sufficiently small a. Thus, by Remark 1 in §2, we have that Ind(MΛ)=l
for sufficiently small a.

EXAMPLE 4. For each a, 0 < α < l , we define a conformal immersion FΛ:
C-{0}->R4by

i α ( * + ) 2 V ΐ ^ t f l o g * i Z Ύ ^ 2 ( * ) )FΛ(z) = ( ( ) g (
z z z

Thus we obtain a smooth one-parameter family of complete oriented doubly-
connected minimal surfaces in R4 with total curvature 4τr, which will also be
denoted by {Mα5}0̂ a5<i. We note that Mo is the catenoid and that if αφO, MΛ

lies fully in R4. Moreover, if α φ α ' , then MΛ and MΛ' are not congruent to
each other. By the same argument as in Example 3, we have that Ind(Mα5)=l
for sufficiently small a.
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