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1. Introduction with problem setting

Homogeneous programming problems (=HP) were first studied by Eisen-
berg [1]. His duality theorem for HP has been generalized by Schechter [8],
Fujimoto [3], Gwinner [4,5] and the author [7]. The result in [5] seems to be
most general among these results.

In the present paper, we introduce linear programming problems related
to HP by means of “ray” and the axiom of choice. By our method, we obtain a
new sufficient condition for duality in HP.

More precisely, let X and Y be convex cones with vertices at the origins in
real linear spaces Ey and Ey respectively. For simplicity, we assume that X,
Y are pointed and hence X, Y contain the origins of Ey, Ey respectively. Let
f, g and & be real valued functions on X, Y and XX Y respectively. Assume
that f is sublinear, that is, f is positively homogeneous and convex on Y, g is
superlinear, that is, —g is sublinear, %(x, ) is sublinear on Y and A(-,y) is
superlinear on X for each x€X and yeY.

We call the quintuple {X, Y, &, f, g} the primal homogeneous programming
(=PHP). The value of PHP is defined by

(PHP) M=inf{f(x); x€V},
where V is the set of feasible solutions of PHP, i.e.,
V={xeX;h(x,y)=g(y) forall yeY}.

We call the quintuple {Y, X, —h, —g, —f} the dual homogeneous program-
ming (=DHP). The value of DHP is defined by

(DHP) M* = sup{g(y); yEW} ,
where W is the set of all feasible solutions of DHP and given by
W= {y€Y;h(x,y)<f(x) forall xX}.

In this paper, we use the convention that the infimum and supremum on the
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empty set are equal to oo and —co respectively. Obviously, M*<M. A
result which assures the equality M=M* is called a duality theorem for HP.

To state Gwinner’s result in [5], we introduce some notation. For any
nonempty set S, denote by R® the set of all real functions on S. We assume
that RS is assigned the canonical product topology unless otherwise stated.
Let C be the key set in the duality theorem due to Gwinner defined by

C= U,ex{ucsR¥; u>f(x)—h(x, ) on Y}.
Gwinner gave the following duality theorem in [5; §8]:

Theorem 1.1. Assume that V and W are nonempty, or equivalently, M and
M* are finite. If the set C is closed, then M=M™* holds and PHP has an opti-

mal solution.

Gwinner stated this theorem as an application of [5; Theorem 2.1] which
is a result of Farkas type. He noted that the closedness of C follows from any
one of conditions given in [1], [3], [4], [7] and [8].

In the next section, we shall introduce the set X of rays of a convex cone
X and define two linear programming problems related to PHP and DHP.

The author wishes to thank Professor M. Yamasaki for many valuable
suggestions.

2. Linear programming problems related to HP

We say that two elements x; and «x, are equivalent and denote it by x;~xx,
if there exists a positive number ¢ such that x,=fx,. It is clear that this is an
equivalence relation. Denote by X the set of all equivalence classes, i.e.,
X=X/~ (the quotient space) and call it the set of rays of X. For x&X, denote
by % the equivalence class containing x. Note that {0} is an element of X, i.e.,
0={0}. In this paper, we assume the axiom of choice. Namely, there exists a
mapping 7y from X to X such that r,(¥)XCX. We fix such a mapping.

Similarly we define an equivalence relation ~y on Y, and the set ¥ of rays
of Y and a mapping 7y from ¥ to Y.

Denote by L(X, R) the set of all real functions on X such that #(0)=0 and
by Ly(X, R) the set of all uL(X, R) such that #(%)=0 only for finitely many
#eX. Itis clear that Ly(X, R) and L(X, R) are linear spaces which are in duality
with respect to the bilinear form:

lu, >y = Siex u(X)v(X) for ucLy(X,R) and veL(X,R).

Similarly, L(¥, R) and Ly(¥, R) are linear spaces which are in duality with res-
pect to the bilinear form:

<u,v)y = Sjer w(F)v(F) for ueL(Y,R) and veLy(Y,R).
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Let us put
Ey=L(X,R), E¥=L(X,R); E, = L(Y,R), E¥ = LY, R).

Let Py and Py be convex cones with vertices at the origin in Ey and E}
defined by

Py = {uckE,; u(%)>0 forall X},
P, = {veFy; v(5)>0 forall ye¥}.

Related to the given functions f, g and & in PHP, we define elements fe E%,
Z€ Ey and a linear mapping 4 from EY to Ey by

F(®) =f(rx(®) for ZEX,

£(3)=g(ry(3)) for JEY,

Au(¥) = Siex u(®) h(rx(E), ry(3)) for ucEy and je¥.

Denote by w(Ey, E%) the weak topology Whic~h is compatible with the duality.
Then Py and Py are w(Ey, E¥)- and w(E,, E¥)-closed respectively. Further-
more A is w(Ey, Ef)-w(Ey, E¥) continuous. Thus the quintuple {4, Py, Py,
f, & is a linear programming problem in Kretschmer’s sense in [6]. We call

this the linearized homogeneous programming (=LHP). The value of LHP is
given by

(LHP) M, = inf {(u, fOx; us S},
where S is the set of all feasible solutions of LHP, i.e.,
S = {ucsPy; Au—FcPy} .

To obtain a dual problem for LHP along the theory due to [6], we calculate
the dual cones Py and P} of Py and Py respectively and the adjoint linear map-
ping A* of A. We have

P} = {u¥*cE¥%; u¥(%)>0 forall X},
P} = {v*e E%; v¥(5)>0 for all yeY},
A* v¥(%) = 37 v¥(F) h(rx(X), r4(F)) for Z€X and o*cE¥.
The quintuple {4*, Py, —P%, —#, f} is the dual problem of LHP. We call

this the dual linearized homogeneous programming problem (=DLHP). The
value of DLHP is given by

(DLHP) M¥ = sup {{g, v*)y; v*&S*},

where S*¥*= {o*€ P} ; f—A* v*€P}}.
To apply Kretschmer’s duality theorem in this case, we define a key set G
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in Ey X R by Kretschmer [6; Theorem 3].
G == {(Au—=z, r+<u, f>5); uEPy, 2Py, rER"} ,

where R* is the set of nonnegative real numbers.
Kretschmer [6; Theorem 3] yields

Theorem 2.1. Assume that S and S* are nonempty. If the set G is
w(Ey X R, E¥ X R)-closed, then M =M% and LHP has an optimal solution.

3. Relation between LHP and PHP

In order to study the relation between LHP (resp. DLHP) and PHP (resp.
DHP), we prepare

DeriniTiON 3.1. For a=X, there exists a positive number s such that
a=srx(@). We define u,& Py by setting u,(@)=s if a%0, and u,(X)=0 if G+%
or a==0.

Lemma 3.1. Let v E, and x€ X satisfy h(x, ry(¥)=v(3) for all =Y.
Then Au,—vE Py and {u,, f>=f(x).

Proof. Let s>0 satisfy x=srx(%). By definition, we have
Au,(3)—v(3) = sh(rx(%), rv(3)—v(3)
= h(x, r¢(3))—v(5)=0
for all y€¥ so that Au,—vEPy. Similarly we see that
<u':n f>X = Sf(fx(x)) :f(x) .
Taking § as v in Lemma 3.1 we obtain

Corollary. Let V and S be the sets of feasible solutions of PHP and LHP.
Then {u,; x€V} CS and M, <M.

Lemma 3.2. Let vEEy and ucPy satisfy Au—vEPy and set a=S3c3
wW(Z)rx(%). Then ac X, {u, f>x>f(a) and h(a, ry(3))=v(3) for all =Y.

Proof. Since {¥€X; u(®)+0} is a finite set, #(%)>0 and rx(X)E X for all
ZeX, we see that a€ X. Furthermore since f is sublinear, we have
f(a) = f(Zzex w(X) rx(X)) <Zzex u(®) f(rx(%))
- E;ET( u(x)f(x) == <u> f>X .

The superlinearity of z(-, y) yields

h(a, ry(3)) = h(Szex u(®) rx(E), (7))
=3Z5ex u(X) h(rg(®), ry(¥)) = Au(F)=v())
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for all Y.

Corollary. Let V and S be the same as in Corollary of Lemma 3.1. Then
{Zzex w(®)rx(X); u Sy CV and M<M,.

By Corollaries of Lemmas 3.1 and 3.2, we obtain

Theorem 3.1. PHP and LHP have the same wvalue, i.e., M=M,;. If
one of PHP and LHP has an optimal solution, then the other also has an optimal
solution.

Proof. By the above observation, we see that if ¥V is an optimal solu-
tion of PHP, then u, is an optimal solution of LHP and that if #& S is an opti-
mal solution of LHP, then a=37c3 #(X) rx(¥) is an optimal solution of PHP.

Similarly we can prove

Theorem 3.2. DHP and DHLP have the same value, i.e., M*=M%.
If one of DHP and DLHP has an optimal solution, then the other also has an opti-
mal solution.

We recall the definition of the key set G in Section 2 and express it in the
following form:

Lemma 3.3. For each xE X, put
N, = {(v,9)€Ey X R; ¢>f(x) and
h(x,ry(F)=0(F) forall FY}.
Then G: UxEX Nx.

Proof. If (v,q)EG, then there exist uPy, 2P, and r&R* such that
v=Au—=z and qg=r+<u, f>x. We set a=3;c3 (%) rx(X). We see by Lemma
3.2 that (v,g)€N,. On the other hand, let (v, g)=N, for some x&X. Then
q> f(x) and h(x, ry(3)) = v(F) for all J¥. We see by Lemma 3.1 that ¢> f(x)
={u,, f>x and Au,(¥)=>v(3) for all €Y, so that Au,—vEPy and g—u,, ox
>0. Taking =Au,—v and r=¢—<u,, f Dy, we obtain that (v, ¢)=(Au,—=z, r+
<ux) f>X) EG

Theorems 2.1 and 3.2 yield the following duality theorem for HP:

_Theorem 3.3.  Assume that V and W are nonempty. If the set G is w(Ey x
R, E¥ X R)-closed, then M=M?* holds and PHP has an optimal solution.

4. Comparison of the closedness of C and G

Related to the key set C in Gwinner’s theorem, let us put
Y p
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C: = weR"; u(y)<h(x,y)—f(x) forall yeY}
for x€ X and
C_ = U 1€X C; .

Then C-={ucR"; —uc=C}. Hence it is clear that C is closed if and only if
C~ is closed. Furthermore let Hy, be the set of all positively homogeneous
functions on Y and set

Hy+R = {utr,ucsHy, rER} .

Then Hy+R is a closed subspace of RY.
We shall prove

Theorem 4.1. C N (Hy+R) is closed in RY if and only if G is w(Ey xR,
E¥ x R)-closed.

Proof. Assume that CN(Hy+R) is closed in RY. Let {(v;, ¢;)} be a net
in G which converges to (v, )€ Ey xR with respect to w(Ey xR, E¥xR)-
topology. By Lemma 3.3, there exists x;& X such that ¢;> f(x;) and k(x;, 7y(3))
>v,(J) for all €Y. Define v}, v'ERY as follows: If y is a nonzero element
in Y, then using s>>0 such that y=sry(7) we set

vi(y) = sv,(3) and o'(y) = sv().
If y=0, then we set v/(y)=0v'(y)=0. We have

0i(y) = sv(F) <sh(x;, 74(3)) = h(x;, 514(F)) = (%, y) -

Put u;=v!—q; and u=v'—q. Then u,€C~ N (Hy+R) and {u;} converges to u.
Since C N (Hy+R) is closed, C~ N (Hy+R) is also closed, so that ue C~ N (Hy+
R). Thus there exists x&X such that u=C5;, that is,

u(y)<h(x,y)—f(x) forall yeY.

Since v'(0)=4A(x, 0)=0, we obtain ¢=> f(x). We prove that v'(y)<h(x, y) for all
yeY. Since v’, h(x, -) are positively homogeneous and

u(ty) = v'(ty)—q=<h(x, ty)—f(x)

for all ye Y and >0, we have tv'(y)—q<th(x, y)—f(x) for all y&Y and t>0.
Dividing both sides by ¢ and letting £— oo, we obtain v'(y)<A(x, y) for all ye Y.
It follows that o(¥) < h(x, ry(3)) for all 3&Y. Namely, (v, ¢ N,CG by Lemma
3.3 and the closedness of G is proved.

Conversely assume that G is w(Ey xR, E¥x R)-closed and let {u;} be a
net in C~ N (Hy+R) which converges to uR". Since Hy+R is closed, uc Hy
+R. Thus to prove that C~ N (Hy+R) is closed, it suffices to show that usC~.
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Let {x;} be a net in X such that u,&C;. We set ¢,=—u,0), g=—u(0), v,(3)=
u(ry(9))+¢; and v(F)=u(ry(3))+q for all i and y€¥. The relation w,EC,
yields

q; = f(x))
and

u(ty)+q; < h(x;, ty)—f(x;)+q;

for all yeY and t>0. Since u;+gq; is a positively homogeneous function on
Y, dividing the both sides of the latter inequality by # and letting #— o, we obtain

u(Y)+q:<h(x; )

for all y&Y. In particular v(¥)<h(x;, ry(3)) for all F&¥. It follows that
(v;, ¢;)E€N,,CG. Since (v;, g;)—>(v, g) and G is closed, (v, )G and hence by
Lemma 3.3 there exists x& X such that (v, ¢)€N,. Then ¢>f(x) and 2(F)<
h(x, ry(3)) for all €Y. The latter inequality implies that u(y)+q<Ah(x, y) for
all yeVY. It follows that u(y)<h(x,y)—q<h(x,y)—f(x) for all yeY. This
means that uC; CC~. This completes the proof.

Corollary. If C is closed in RY, then G is w(Ey X R, E¥ X R)-closed.

It should be noted that the closedness of G does not imply that of C in
general. 'This is shown by

ExampLE. Let Ey and Ey be the Euclidean space R and X=Y=[0, o).
Define f and % by
flx)=0
for all xe X,
h(x,y) = xy
for all x, y€[0, o0). First we show that the set

C= U,ex{uER"; u(y)=—xy forall ye[0, o)}

is not closed. In fact, consider a sequence {u,} in RY defined by u,(y)=0 if
0<y<1/mand u,(y)=—11if 1/n<y</co. Then u,eC and {u,} converges to
the function u defined by #(0)=0 and u(y)=—1 if 0<y<<oo. Clearly u&C,
and hence C is not closed. To prove the closedness of G, we note that X=

Y={0, 1} and Ey and Ej can be identified with R. Let us take rx(1)=1 and
re(I)=1. Then f=0 on X, Au(0)=0, Au(1)=u(1)h(rx(1), ry(1))=u(1) for
every uc Ey. If 2€Py, then z(6)=0 and z(f)20. Thus we have

G= {(u(f)—z(i), 7); uEPy, 2Py, rER'} = RXR*
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and hence G is closed.
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