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Introduction. Let M be a strictly pseudoconvex CR manifold of dimen-
sion 2w+l. In case a volume element is specified on M, the Szegϋ projector
S: L2(M)->L\M) is defined as the orthogonal projector onto the subspace
ker Bb thus S is not CR-invariant. Assuming that M is the boundary of a
strictly pseudoconvex domain Ω c Cw+1, Fefferman [5] constructed a volume
element on M, by using the complex Monge-Ampέre operator, in such a way
that a natural transformation law for the Szegϋ projectors holds under CR
isomorphisms, cf. (4.1) below. The purpose of this note is to generalize his con-
struction to the case in which M is not necessarily the boundary of a domain.

What we have to do is to seek a right condition on the vloume element on
M so as to get the transformation law. Keeping in mind that volume element
on M is uniquely determined by contact form, we first specify a family of locally
defined contact forms—a step, due to Farris [2], of making Fefferman's con-
struction intrinsic (cf. also Fefferman [4]). As is observed in Farris [2], this
is equivalent to giving a family of (n+1, 0)-forms on Λf, closed and nonvanishing.
In order to achieve our construction of volume element, it is at first necessary to
assume the local existence of a nonvanishing closed (n+l,0)-form in a neigh-
borhood of every point on M. The simplest situation is that there exists a
globally defined contact form θ obtained by gluing the (w+1, 0)-forms above;
if the volume element is given by θΛdθ", then the transformation law for the
Szegϋ projectors (Theorem 1) is derived just as in Fefferman's construction.
However, there is a topological obstruction to the global existence of such a
contact form. The vanishing of c(KM), the Chern class of the canonical bundle
with real coefficients, is a necessary condition for the global existence. It is not
known whether this condition is sufficient (cf. Lee [6] and Remark 1 below);
to avoid this difficulty we generalize the notion of the Szegϋ projector. We
construct a complex line bundle, by using the assumption c(^ M )=0, via transi-
tion of the locally defined contact forms in order to define the space of L2 sec-
tions of the bundle, the space on which the Szegϋ projector is acting; then,
the required transformation law (Theorem 2) follows naturally.
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In deriving the transformation law, we assume the topological condition
H\M, R) = 0. This assumption ensures the univalence of a "Jacobian" in
Theorem 1, and, in Theorem 2, the uniqueness of the hermitian line bundle
on which sections the Szegϋ projector acts.

The plan of this note is as follows. We introduce some definitions and
notation in section 1. In section 2 we present a condition on contact forms
which characterizes Fefferman's volume element in the general case, a natural
condition leading to the transformation law. Then, we can state and prove,
in section 3, our main result (Theorem 1)—a transformation law for the Szegϋ
projectors in case M admits a globally defined contact form which satisfies the
condition in section 2. In section 4 we apply the result of section 3 to the case
of domains in Cn+ι (which was treated by Fefferman). In section 5 we prove
Theorem 2, a generalization of Theorem 1 to the case of CR manifolds satisfy-
ing c(KM)=0 (see also Remark 2).

I would like to thank Professor J.M. Lee for pointing out an error in the
earlier version.

1. CR manifolds. In order to state our results, we shall briefly recall
definitions and notation. Let M be a real, (2#+l)-dimensional, orientable, C°°
manifold. A CR structure on M is defined by giving a complex w-dimensional
complex subbundle T1*0 of the complexified tangent bundle CTM satisfying:

(i) Γ1'0Π T 0 ' 1 - {0}, where Γ0 '1^T^°;
(ii) if X and Y are sections of Γ1'0, so is [X, Y].

We will assume that the structure is strictly pseudoconvex, that is, for some choice
of a real one-form θ annihilating Γ1*0, the Levi form LΘ(V, W)=— idθ{V/\W)
is positive definite on Γ1>0. Such a one-form θ is called a contact form associated
with the CR structure.

To define the Szegϋ projector, we need to give a contact form θ on M—a
choice of contact form is called a pseudohermitian structure on M. A pseudo-
hermitian structure permits us to define the Hubert space L\M) of square
integrable functions with respect to the volume element θ Λdθn, so that the opera-
tor Bb: C~(M)-*C"(M9 T0'1*) defined by Bbf=df \τo,i extends naturally to a
closed operator in L\M). Then, the Szegϋ projector is defined as the ortho-
gonal projector onto the closed subspace ker ϋb, the space of L2 CR holomor-
phic functions.

Recall that the canonical bundle of M is a complex line bundle KM of
(n+1, 0)-forms given by

KM = { reCΛ w + 1 Γ*M; V]ζ = 0 for F e Γ 1} .

We shall later use the following fact on the canonical bundle KMy or, rather,
Kfc=KM\{0}. Given closed sections ξ\ ξ" of Kit, we have ζ=fζ\ where /
is CR holomorphic.
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2. Condition on contact forms. In order to derive the transformation
law, we start with the observation of Farris [2] that a nonvanishing (w+1, 0)-
form determines a contact form.

Proposition 2.1 ([2, Proposition 3.2]). Let U be an open set in M. If
t/, KM) there exists a unique contact form θζ defined on U such that

(2.1) θζΛdθl=in2nWζΛ(T]ς)Λ(T]ξ) whenever θζ(T)= 1, TZΞTM.

Furthermore, if f is a nowhere zero complex valued function on U, then

(2.2) θ/ζ

This contact form θζ is said to be normalized with respect to ζ. This
normalization is used in order to define our condition.

DEFINITION 2.2. A pseudohermitian structure θ is said to satisfy Con-
dition F if, in a neighborhood of every point, there exists a closed section ζ
of KM which normalizes θ.

The most important example of a pseudohermitian structure satisfying
Condition F is the one induced by an embedding MdCn+1. In this case,
ζ=dzιΛ -Λdzn+1 gives a closed section of KMy and hence θζ satisfies Con-
dition F. We will see in section 4 that the associated volume element θζf\dθ\
coincides with the volume element constructed by Fefferman.

REMARK 1. If d imM>5, then Condition F arises from a geometric pro-
blem which was posed by Lee [6]: Find a pseudohermitian structure for which
the pseudohermitian Ricci tensor (i.e. the Webster Ricci tensor) is a scalar
multiple of the Levi form. A pseudohermitian structure satisfying this con-
dition is said to be pseudo-Einstein, This condition is nontrivial only when
dim M >5 . In this case, Lee showed in [6] that the pseudo-Einstein condition is
equivalent to Condition F. For global existence of a pseudo-Einstein structure,
he gave a simple necessary condition—the vanishing of the first Chern class of
Γ1'0 with real coefficients, or, equivalently, c(KM)=0. (In three-dimensional
case, it is easy to see that this is also a necessary condition for the existence of
a pseudohermitian structure satisfying Condition F.) He conjectured that the
Chern class condition is also sufficient, and proved it positively under some
geometric restrictions.

3. Transformation law on pseudohermitian manifolds. We are
now in a position to derive a transformation law for the Szegό projectors on
pseudohermitian manifolds satisfying Condition F. Our result is the following:

Theorem 1. Let (Mv θ^, (M2> θ2) be pseudohermitian manifolds satisfying
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Condition F and let Φ: Mι-*M2be a CR isomorphism. Assume that H\MU R)
= 0 . Then, there exists a CR holomorphic function f on Mx which satisfies Φ*0 2=
I j i Wn+VQ^ and the Szegϋ projectors transform according to

(3.1) S1(/.(9oφ))=/.((S#)oΦ) for

where Sj is the Szegϋ projector on Mjforj=l, 2.

Before proving this, we rewrite (3.1) in terms of kernel functions. Boutet
de Monvel and Sjϋstrand [1] showed that if M bounds a relatively compact
set in a Stein manifold, or if M is compact and dim M >5, then the Szegϋ pro-
jector is written as a Fourier integral operator. In this case, we can write (3.1)
as

(3.2) s1{x,y)=f(x)s2(Φ(x),Φ(y))f(y) for (

where Sj is the Schwartz kernel of Sj foτj=l, 2.

Proof of Theorem 1. Since Φ*θ2 is a contact form on Ml9 it follows that
φ*θ2=e2uθ1 with a real a valued function u on Mv We first show that u is CR
pluήharmonic, that is, u is locally the real part of a CR holomorphic function.
Clearly θ} and Φ*θ2 satisfy Condition F, so that there are locally defined,
closed sections ζ, ζ' of KMX which normalize θly Φ*θ2) respectively. If we write
ζ'=e8ζ with a CR holomorphic function g, then (2.2) gives Φ*θ2=e2Re(g)nn+2>θ1.
Therefore u is locally the real part of gl(n+2). Since H\Ml9 Λ)=0, it follows
from Lemma 3.1 of [6] that there exists a globally defined conjugate function v
of u—a real valued function which makes u-\-iv CR holomorphic. Then, the CR
holomorphic function/=β ( Λ + 1 ) ( κ + l t ; ) satisfies the first assertion. With such an/,
we have, for any functions <p, ψGL2(M2),

= I φoφ.ψoφ.φ*(θ2Adθ"2)

= \ f'(φoφ).f.(ψoφ).θ1Λdθϊ .
J Mi

Hence we can define an isomorphism L2(M2)-+ L2(MX) by φt-*f {<p°Φ). Since
/ is CR holomorphic, it follows that this isomorphism preserves the space of CR
holomorphic functions and thus commutes with the Szegό projectors. We
therefore obtain (3.1).

4. Strictly pseudoconvex domains. In this section we shall recall
Fefferman's construction of volume elements and view it from the standpoint of
Theorem 1.

Fefferman, in the epilogue of [5], defined a volume element σ on the boun-
dary of a strictly pseudoconvex domain Ω c C * + 1 by the normalization
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where ψ is a defining function of Ω measured as positive in Ω, dz=dzιΛ # Λ

dzn+1, and / denotes the complex Monge-Ampere operator defined by

zβ) 'd2ψ/dz*dzβ

Then the associated contact form is computed by using an approximate solution
oϊ J(ψ)=ί to first order along 3Ω. Taking a defining function u of Ω which
satisfies J{u)=\ on 3Ω, we consider the contact form θQ=(tl2)(d—d)u. After
some calculation, we see that the volume element ΘQAdθQ satisfies the normali-
zation above. It was further shown by Farris [2] that ΘQ is normalized with
respect to dz. Thus the pseudohermitian manifold (3Ω, ΘΩ) satisfies Condition F.

We now apply Theorem 1. Let Φ: Ω1-»Ω2 be a biholomorphic map be-
tween bounded strictly pseudoconvex domains. Since Φ has a smooth extension
to Πj by Fefferman's theorem [3], it follows that the holomorphic Jacobian Jφ

is defined on Ωx by Φ*dz=Jφ dz. Thus (2.2) gives

In this case, we can take a branch of (j r

φ) ( n + 1 ) / ( w + 2 ) a s / in Theorem 1. Then
(3.2) is written as

(4.1) φ r , to) = (Λ)(w+1)/(n+2)(2>2(Φ(s), Φ W ) ( / Φ ) ( B + 1 ) / ( Λ + 2 ) W

for (z, α ̂ ΘΩjLXθΩ^ This formula is also valid for ( ^ ^ G Ω J X Ω U if we
regard sλ and s2 as the Szegϋ kernels.

5. Transformation law on CR manifolds satisfying c(KM)=0. In
this section we generalize Theorem 1 to CR manifolds such that the real Chern
classes of the canonical bundles vanish. For the purpose, instead of specifying
a volume element, we construct a CR holomorphic line bundle L with a (2w+l)-
form valued hermitian inner product. In view of (2.2), we make L by modify-
ing Kff(n+1)/(n+2)—it is rather symbolic; we assume the Chern class condition
c(KM)—0 in order that the (n+2)-th root makes sense (cf. Remark 2).

To construct such a CR holomorphic line bundle, we need an additional
assumption that KM is a CR holomorphic line bundle in a natural manner. This
amounts to assuming that the canonical bundle admits a nonvanishing closed
section in a neighborhood of every point.

We begin with the definition of the Szegϋ projector acting on sections of a
hermitian line bundle. Let L be a CR holomorphic hermitian line bundle with
CΛ2Λ+13π*M-valued pointwise inner product <(,)>. The L2 inner product is
then defined by
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(φy ψ) = \ <^, ψy for the sections φ, ψ of L

Note that <??, ψ> is a (2rc+l)-form on M. Denoting by L\My L) the Hubert
space of square integrable sections of L, we can define the Szegϋ projector as
the orthogonal projector of L\M, L) onto the subspace ker db, where db is re-
garded as an operator acting on the sections of the CR holomorphic line bundle
L.

Our result is the following:

Theorem 2. Let M19 M2 be strictly pseudoconvex CR manifolds with the

CR holomorphic canonical bundles such that the real Chern classes vanish, and

assume that H\Mj} R)=0 for j=l, 2. Then there exists a CR holomorphic her-

mίtίan line bundle Li on each Mi with the following property: for any CR isomor-

phism Φ: Mι-^M2, there exists an isomorphism Φ*: L2(M2, L2)-*L2(M19 Lx)

which commutes with the Szegϋ projectors, i.e,}

where Sj is the Szegϋ projector defined on L2(MjΊ Lj)forj=l, 2.

It turns out that if the CR manifolds above admit pseudohermitian structu-
res satisfying Condition F, then the bundles Lly L2 are trivial CR holomorphic
bundles, and Theorem 2 is reduced to Theorem 1.

In what follows we give a procedure of constructing a CR holomorphic
hermitian line bundle, unique up to isomorphisms, intrinsically from the CR
structure—then the proof of Theorem 2 will be clear.

Assume at first we are given a CR holomorphic line bundle L on M with a
system of transition functions {μjtk}> with respect to an open covering {[/,},
such that

(5.1) l/*y.*l + 2 = l λ , . * | +1 on u,nut,

where i\jtk} is a system of transition functions of KM which comes from local
frames {ζj}. Then we can naturally define a hermitian inner product < , > on
L. For <py ψ in a fiber Lp over a point />£ Ujy we define

e (CΛ2B+1
 T*M)P ,

where φjy ψy are fiber coordinates of <p, ψ* over Ujy and θj is the contact form
normalized by ξj. Since this defintion depends on a choice of the open set Ujy

we must show that this inner product is well-defined. This easily follows from
(2.2) and the transformation rule on Uj Π Uk:

= φkμk,j > Ψj = Ψkβkj and ζj = \jtkζk
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Therefore we have only to find a line bundle L satisfying (5.1). Then the
required hermitian line bundle is given by L with the inner product defined as
above. For this purpose we consider the exact sequence:

0 -• Zn+2 5 0* £ 0* -> 0 ,

where (5* is the sheaf of nowhere zero CR holomorphic functions and α, β are
defined by a{k)=e2*iknn+2\ β(f)=fn+2. The existence of L follows from its
induced cohomology exact sequence:

(5.2) H\M, 0*) ^H\M, 0*) i H\M, Zn+2).

Since c(KM)=09 we can choose FGH\M, S1) in such a way that the integral
Chern class of F®Kfίn+1 vanishes. Then we have S(F®K%n+1) = 0. Thus,
by (5.2), there exists a CR holomorphic line bundle L such that

(5.3) L*u+2sχF®Kin+1.

This implies (5.1). Moreover, we can select L uniquely in such a way that
the integral Chern class vanishes. Here we use the assumption H1(My R)=0.
Since there is ambiguity in the choice of the isomorphisms in (5.3), the hermi-
tian inner product on L is not uniquely determined. Nevertheless, we can show,
by using H\M, R)~ 0, that all such hermitian line bundles are isomorphic—the
proof is essentially the same as that of Theorem 1. We have thus constructed a
CR holomorphic hermitian line bundle unique up to isomorphisms.

REMARK 2. The existence of L satisfying (5.1) follows from a weaker Chern
class condition: c(KM)=c(E®n+2) for some complex line bundle E. However,
there is no canonical choice of L> and the ambiguity of the bundles is described
by H\M, S1).
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