Yagi, K. Osaka J. Math. 25 (1988), 909- 932

SUPER MANIFOLDS

KATSUMI YAGI

(Received November 11, 1987)

Introduction

This work is a continuation of a previous work [2] on super differential calculus. We develop herein a foundation of super manifolds according to the same principle used in [2]. That is, we describe the concepts on a super manifold in terms of the non-super differential calculus on the underlying manifold of a super manifolds. Thus, we treat a super manifold as a non-super infinitedimensional manifold with an additional geometric structure. A model of our argument is a study of complex manifolds in which a complex manifold is treated as a real manifold with a complex structure. In section 1 we give some preliminary arguments of a non-super differential calculus on some kind of infinitedimensional Euclidean space and some algebraic preparations on super vector spaces. Also we review the super differential calculus studied in [2] and give a new version of the Cauchy-Riemann equations, which is more practical than the previous one in [2]. Section 2 deals with the definitions of a super manifold and its underlying non-super manifold. In seciton 3 we discuss tangent vectors and show how a super manifold can be regarded as a non-super infintie-dimensional manifold with a geometric structure, called an almost suepr structure. In section 4 we study super vector fields and define a local one-parameter group of local transformations for an even super vector field. In section 5 we prove one of the main theorem in this note, the super version of Frobenius' theorem, which will serve as a basic theorem for the study of super manifolds and super Lie groups.

The author would like to thank his friend Professor T. Ochiai who encouraged him constantly during this work.

1. Preliminary

1.1. Affine bundles

Let \mathbf{R}^n denote the space of all *n*-column real vectors $y=(y^{\nu})(y^{\nu})\in \mathbf{R}$, $1 \leq \nu \leq n$). When \mathbb{R}^n is regarded as an affine space in a natural way, it is sometimes denoted by A^n . An affine mapping φ of R^n into R^m is given by $\varphi(y)$ = $Ay+b(y \in \mathbb{R}^n)$ where $A=(a^{\mu}_{\nu})$ is a real (m, n) -matrix and $b=(b^{\mu}) \in \mathbb{R}^m$ $(1 \leq \nu \leq n,$

 $1 \leq \mu \leq m$). The Lie group of all affine transformations of \mathbb{R}^n is denoted by *A(ri),* which is given by

$$
A(n) = \begin{pmatrix} GL(n; R) & R^n \\ 0 & 1 \end{pmatrix}.
$$

A vector field v on \mathbb{R}^n is said to be *affine* if v is written as follows: $v = \sum_{\nu=1}^n \left(\sum_{\mu=1}^n \right)$ $a^{\nu}_{\mu} y^{\mu}+b^{\nu}$) $\frac{\partial}{\partial y^{\nu}}$. A smooth fibre bundle A over a base space B is called an *affine bundle* if the standard fibre is a real affine space *Aⁿ* and the transition functions are $A(n)$ -valued. That is, there exists a family $\{(U_\alpha, f_\alpha, g_{\alpha\beta})\}$ of local trivializations satisfying the following $1\rangle \sim 3$).

1) *{U^Λ }* is an open covering of *B.*

2) $f_{\mathbf{\alpha}}$ is a smooth mapping of $\tilde{U}_{\mathbf{\alpha}} = \pi^{-1}(U_{\mathbf{\alpha}})$ onto \mathbf{A}^n such that the mapping $\pi \times f_{\bullet}$ of \tilde{U}_{\bullet} onto $U^* \times A^*$ is a diffeomorphism and the following diagram is commutative.

$$
\pi^{-1}(U_{\alpha}) = \widetilde{U}_{\alpha} \xrightarrow{\pi \times f_{\alpha}} U_{\alpha} \times A^{n}
$$
\n
$$
\pi \searrow U_{\alpha}
$$
\nthe 1st projection

where π denotes the projection of A onto B .

3) The transition function $g_{\alpha\beta}$ is a smooth mapping of $U_{\alpha} \cap U_{\beta}$ into $A(n)$ such that $f_{\alpha x} = g_{\alpha\beta}(x) \circ f_{\beta x}$ on the fibre $A_x = \pi^{-1}(x)$ for $x \in U_{\alpha} \cap U_{\beta}$ where $f_{\alpha x}$ is the restriction of $f_{\boldsymbol{\alpha}}$ to the fibre $A_{\boldsymbol{x}} = \boldsymbol{\pi}^{-1}(\boldsymbol{x})$.

Then each fibre $A_x = \pi^{-1}(x)$ can be regarded as an affine space. Let $(\psi_{\mathbf{a}}, U_{\mathbf{a}})$ be a local coordinate system of the manifold *B*. Then $\Psi_{\mathbf{a}} = (\psi_{\mathbf{a}}, f_{\mathbf{a}})$ is a local coordinate on $\pi^{-1}(U_{\sigma}) \subset A$, which is called an *affine local coordinate* on $\pi^{-1}(U_{\sigma}) \subset A$. Let *A* and \overline{A} be affine bundles over *B* and \overline{B} , respectively. A smooth bundle mapping $\tilde{\varphi}$ of *A* into \bar{A} is said to be *affine* if the restriction $\tilde{\varphi} \mid_{A_x}$ of $\tilde{\varphi}$ to each fibr $eA_x(x \in B)$ is an affine mapping of A_x into $\overline{A}_{\varphi(x)}$ where φ is the corresponding mapping of *B* into *B.*

1.2. Non-super differential calculus

Let ${E_N}_{N\geq0}$ be a family of finite dimensional real vector spaces and p_N^{N+1} a linear mapping of E_{N+1} onto E_N . Such a family will be called a *projective family* of finite dimensional real vector spaces. Then the *projective limit* E=lim *E^N* is naturally defined as follows: $E = \{(z_N) \in \prod_{N\geq 0} E_N : p_N^{N+1}(z_{N+1}) = z_N(N\geq 0)\}$. The natural projection of E onto E_N will be denoted by p_N . For $z{\in}E$, $p_N(z){\in}E_N$ will be denoted by z_N . Considering the natural topology on a finite dimensional vector space, the projective limit E has a Fréchet space topology so that the

projection p_N of *E* onto E_N is continuous and open for each $N \geq 0$. For $N=0$, *E*⁰ and p ⁰ and z ⁰= p ⁰(z) ($z \in E$) will be denoted by E ^{*B*} and p ^{*B*} and z ^{*B*}, respectively. A subset *U* of *E* will be called a *domain* in *E* if $U_B = p_B(U)$ is an open subset of E_B and $U=p_B^{-1}(U_B)$.

Let \bar{E} =lim \bar{E}_N be the projective limit of another projective family of finite dimensional real vector spaces and \bar{p}_N the natural projection of \bar{E} onto \bar{E}_N . Let *U* be a domain of *E*. A real-valued function f defined on *U* is said to be *admissible* on U if there exist some integer N and a real-valued C^{∞} function g on U_N such that $f = g \circ p_N$ on U. A mapping φ of U into E is said to be *admissible* if \bar{p}_N *°q* is admissible on *U* for each $N \geq 0$. A mapping *φ* of *U* into \bar{E} is said to be *projectable* if for each $N{\ge}0$ there exists a C^* -mapping $\pmb{\varphi}_N$ on U_N into \pmb{E}_N such that $\varphi_N \circ p_N = \bar{p}_N \circ \varphi$ on U. In this case φ_N is called the *N*-th projection of φ Thus a projectable mapping is admissible. A mapping *φ of U* into *E* is said to be *regular* if φ is projectable and for each $N \geq 0$ the following diagram is an affine bundle mapping:

$$
U_{N+1} \xrightarrow{\varphi_{N+1}} E_{N+1}
$$

\n
$$
\downarrow p_N^{N+1} \qquad \qquad \downarrow \bar{p}_N^{N+1}
$$

\n
$$
U_N \xrightarrow{\varphi_N} E_N
$$

where U_{N+1} and \bar{E}_{N+1} are regarded as trivial affine bundles over base spaces U_N and \bar{E}_N , respectively. That is, for each $z_N \in U_N$, φ_{N+1} is an affine mapping of an affine subspace $(p_N^{N+1})^{-1}(z_N)$ $(\subset U_{N+1}\subset E_{N+1})$ into an affine subspace $(\bar p_N^{N+1})^{-1}(\varphi_N)$ $(z_N))$ (\subset \bar{E}_{N+1}). If a one-to-one mapping φ of a domain $U{\subset}E$ onto a domain $\bar{U} \subset \bar{E}$ is projectable (regular) and the inverse mapping of φ is also projectable (regular), the φ is called a *projectable (regular) diffeomorphism* of U onto \overline{U} .

Let φ be a projectable mapping of a domain $U \subset E$ into \bar{E} . For each $z \in U$, (regular), the φ is called a *projectable (regular) diffeomorphism* of *U* onto \overrightarrow{U} .
Let φ be a projectable mapping of a domain $U \subset E$ into \overrightarrow{E} . For each $z \in U$,
the Jacobi matrix $\mathcal{J}\varphi(z)$ of φ a *(h* \in *E).* Then the Jacobi matrix $\mathcal{J}\varphi(z)$ is a projectable linear mapping of *E* into *E*. Moreover the *N*-th projection of $\mathscr{J}\varphi(z)$ is the ordinary Jacobi matrix $J\varphi_N$ of the N-th projection φ_N of φ : That is, as a linear mapping of E_N into \bar{E}_N , $(\mathcal{J}\varphi(z))_N = J\varphi_N(z_N)$ for each $z \in E$ and $N \geq 0$.

1.3. Super differential calculus

We review the super differential calculus developed in [2] and add some new results. Let $\{\zeta^N: N \ge 1\}$ be a set of countably infinite distinct letters. Λ_N denotes the Grassmann algebra of the vector space generated by $\{\xi^1, \xi^2, \cdots, \xi^N\}$ over the real number field \boldsymbol{R} where for $N{=}0, \ \Lambda_0{=}\boldsymbol{R}$. The family $\{\Lambda_N\colon N{\geq}0\}$ and the natural projection of Λ_{N+1} onto Λ_N form a projective family, which defines the projective limit Λ, called the *super number algebra.* Λ can be identified with

the algebra of all formal series of the following form:

$$
z=\sum_{K\in\Gamma}z_K\,\zeta^K
$$

where $\Gamma = \{K = (k_1, \dots, k_k): 1 \leq k_1 < \dots < k_k\}$, $z_K \in \mathbb{R}$ and $\zeta^K = \zeta^k \cdots \zeta^k \setminus (\zeta^k = 1 \in \mathbb{R})$. The natural projection p_N of Λ onto Λ_N maps the above $\varkappa \in \Lambda$ to the following $z_N \in \Lambda_N$:

$$
z_N\hspace{-0.5mm}=\hspace{-0.5mm}\sum_{\mathbf{K}\in \Gamma_N}z_{\mathbf{K}}\,\zeta^{\mathbf{K}}
$$

where $\Gamma_N = \{K = (k_1, \dots, k_k): 1 \le k_1 < \dots < k_k \le N\}$. For each $K = (k_1, \dots, k_k) \in \Gamma$, the *parity* $|K|$ of *K* is defined by $|K| = h \text{ mod } 2 \in \mathbb{Z}_2 = \{[0], [1]\}$. For $p \in \mathbb{Z}_2$, Γ_{p} and Λ_{p} are defined as follows:

$$
\Gamma_p = \{K \in \Gamma : |K| = p\}
$$

\n
$$
\Lambda_p = \{z \in \Lambda : z = \sum_{K \in \Gamma_p} z_K \zeta^K, z_K \in \mathbb{R}\}.
$$

If a super number x is in Λ_p , then the *parity* $|x|$ of x is, by definition, $p \in \mathbb{Z}_2$. If $|x| = [0]$ ([1]), then z is said to be *even* (odd). The super Euclidean space $\mathbb{R}^{m|n}$ of dimension $(m|n)$ is the product space $(\Lambda_{[0]})^m \times (\Lambda_{[1]})^n$ where there are m copies of $\Lambda_{\text{Io}1}$ and *n* copies of $\Lambda_{\text{I}1}$. The projection p_N of Λ onto Λ_N induces the projection of $\mathbf{R}^{m|n}$ onto $\mathbf{R}^{m|n}_{N}$ which is, by definition, the product space $((\Lambda_{[0]})_{N})^{m}\times$ $((\Lambda_{[1]})_N)^n$ where $(\Lambda_p)_N = p_N(\Lambda_p)$ ($p \in \mathbb{Z}_2$). The space R_N^{m+n} is called the *N-th skeleton* of the super Euclidean space $\mathbb{R}^{m|n}$. The super Euclidean space $\mathbb{R}^{m|n}$ is identified with the projective limit of the projective family $\{R_N^{m|n}\colon N\!\geq\!0\}$ of finite dimensional real vector spaces. Thus $R^{m|n}$ is a Fréchet space and the projection p_N of $R^{m|n}$ onto $R_N^{m|n}$ is continuous and open for $N \ge 0$. The 0-th skeleton, R^m , is called the *body* of $\mathbb{R}^{m|n}$. The projection of $\mathbb{R}^{m|n}$ onto the *i*-th component Λ_p (p=[0] ([1]) if $1 \le i \le m (m+1 \le i \le m+n)$, respectively) will be denoted by z^i for $1 \leq i \leq m+n$. For $1 \leq i \leq m (m+1 \leq i \leq m+n)$, sometimes z^i will be denoted by $x^{\mu}(\theta^{\rho})$, respectively where $1 \leq \mu \leq m$ and $1 \leq \rho \leq n$. Thus as usual, each can be written as follows:

$$
z = (z1, ..., zm+n) = (zi)
$$

= (x¹, ..., x^m, θ ¹, ..., θ ⁿ) = (x^μ, θ ^p) = (x, θ).

The *parity* |i| of the coordinate index i is defined as follows: $|i| = [0]$ ([1]) if $1 \leq i \leq m (m+1 \leq i \leq m+n)$. On the *N*-th skeleton R_N^{m+n} of R^{m+n} we consider the following natural coordinate system $\{z^k_K: 1 \le i \le m+n, K \in \Gamma_N, |K| = |i|\}$. For each $z = (z^i) \in \mathbb{R}^{m \mid n}$, the component z^i can be written as follows:

$$
z^i = \sum_{K \in \Gamma_p} z_K^i \zeta^K \quad \text{where} \quad p = |i|.
$$

Thus $z_N = (z_N^i) \in R_N^{m+n}$ has the coordinate $\{z_K^i : 1 \le i \le m+n, K \in \Gamma_N, |K| = |i|\}.$

Formally $\{z^i_K: 1 \le i \le m+n, K \in \Gamma, |K| = |i|\}$ can be regarded as a natural coordinate system of $R^{m|n}$. Since the super Euclidean space $R^{m|n}$ is a projective limit of $\{R_N^m|n: N\geq 0\}$, we have the differential calculus as developed in the previous section. This differential calculus on *Rmln* will be called the *non-super differential calculus* on *Rm{n .*

Here we give a revised version of Cauchy-Riemann equations of a super smooth function. We shall follow the definitions in [2]. Let *K* and *L* be elements in Γ such that $K \cap L = \phi$. Then $K \vee L$ denotes the element in Γ such that the set of entries of $K \vee L$ is the union of *K* and *L*. Then for *K*, $L \in \Gamma$, we define $\mathcal{E}(K, L)$ as follows: If $K \cap L = \phi$, then $\mathcal{E}(K, L) = 0$. If $K \cap L = \phi$, then *6(K, L)* = \pm 1 is defined by $\zeta^{K} \zeta^{L} = \varepsilon(K, L) \zeta^{K \vee L}$. For $1 \le i \le m+n$ and $K \in \Gamma$ with $|i| = |K|$, $\frac{\partial}{\partial x_i^i}$ is defined as in [2]. For K, $L \in \Gamma$, we define $\frac{\partial}{\partial x_i^i}$ as fol*l* ∂z_K^* $\qquad \qquad \partial z_{K+1}^*$

$$
\frac{\partial}{\partial z_{K+L}^i} = \begin{cases} 0 & \text{if } K \cap L \neq \phi, \\ \varepsilon(K, L) \frac{\partial}{\partial z_{K \vee L}^i} & \text{if } K \cap L = \phi. \end{cases}
$$

Then we have the following revised Cauchy-Riemann equations.

Theorem 1.1. *Let f be a K-valued projectable function defined on a domain U* in $R^{m|n}$. Then the following conditions 1) \sim 5) are equivalent.

1) $f(z)$: G^1 on U .

2) $f(z)$ satisfies the following equations on U :

$$
\frac{\partial}{\partial x_K^{\mu}} f(z) = \frac{\partial}{\partial x_{\phi}^{\mu}} f(z) \cdot \zeta^{K} \quad (1 \leq \mu \leq m, K \in \Gamma: |K| = [0]),
$$
\n
$$
\frac{\partial}{\partial \theta_L^{\nu}} f(z) \cdot \zeta^{H} + \frac{\partial}{\partial \theta_H^{\nu}} f(z) \cdot \zeta^{L} = 0 \quad (1 \leq p \leq n, L, H \in \Gamma: |L| = |H| = [1]).
$$

3) *f(z) satisfies the following equations on U :*

$$
\frac{\partial}{\partial z_{K+H}^i} f(z) = \frac{\partial}{\partial z_K^i} f(z) \cdot \zeta^H \quad (1 \leq i \leq m+n, K, H \in \Gamma: |i| = |K|, |H| = [0]).
$$

- 4) *f(z): super smooth on U.*
- 5) $f(z)$ can be written as follows :

$$
f(x,\theta)=\sum_{P}\tilde{\phi}_{P}(x)\cdot\theta^{P} \quad (P=(p_{1},\cdots,p_{k}):1\leq p_{1}<\cdots
$$

 $P(x)$ is the Z-expansion of a Λ -valued smooth function $\phi_P(t)$ on $t \in U_B \subset \mathbb{R}^m$

Proof. The conditions 1), 2), 4) and 5) are equivalent as shown in [2]. First we show that 1) implies 3). As shown in [2], if $f(z)$ is $G¹$ on U, then it

satisfies the following on *U:*

$$
\frac{\partial}{\partial z_K^i} f(z) = f \frac{\partial}{\partial z^i} (z) \cdot \zeta^K \quad (1 \le i \le m+n, K \in \Gamma : |i| = |K|)
$$

If $K \cap H = \phi$, then $\zeta^k \zeta^H = 0$. Thus 3) holds if $K \cap H = \phi$. Suppose $K \cap H = \phi$. $\zeta^H = \frac{\partial}{\partial z^i_K} f(z) \cdot \zeta^H$. Now we show that 3) implies 2). Clearly 3) implies the first equations of 2). By a straight calculation, we can show that 3) implies the following equations.

$$
\left(\frac{\partial}{\partial \theta_L^{\rho}} f(z) \cdot \zeta^{\mu} + \frac{\partial}{\partial \theta_H^{\rho}} f(z) \cdot \zeta^{\mu}\right) \cdot \zeta^j = 0
$$

for $1 \leq j$, $1 \leq p \leq n$, L , $H \in \Gamma:$ $|L| = |H| = [1]$. This holds for each $j \geq 1$. Therefore the second equations of 2) hold.

We shall call the equations of 3) in the above theorem the *Cauchy-Riemann equations* of a super smooth function.

Theorem 1.2. If $f(z)$ is a super smooth function on a domain U in $\mathbb{R}^{m|n}$, *then f(%) is a regular mapping of U into* Λ *in the sense of the non-super differential calculus.*

Proof. By a straight calculation, we obtain the following:

$$
f_{N+1}(z_{N+1}) = f_{N+1}(z_N + (z_{N+1} - z_N)) = f_{N+1}(z_N) + \sum_{i=1}^{m+n} \left(f \frac{\partial}{\partial z^i}\right)_N (z_N) \cdot (z_{N+1}^i - z_N^i).
$$

This shows that *f(z)* is regular in the sense of the non-super differential calculus.

1.4. Super vector spaces

The notion of super vector space is given in [1], which also develops the linear algebra over super vector spaces. Here we restrict ourselves to the real case. For details, see [1]. A two-sided Λ-module S is called a Z₂-graded Λmodule if *S* has two subspaces $S_{[0]}$ and $S_{[1]}$ such that $S = S_{[0]} + S_{[1]}$ (direct sum) and $\Lambda_p \cdot S_q \subset S_{p+q}$ and $S_p \cdot \Lambda_q \subset S_{p+q}$ for p, $q \in \mathbb{Z}_2$. If an element x of S is in $S_{[0]}$ or $S_{[1]}$, then *x* is said to be *homogeneous*. And if $x \in S_{[0]}(S_{[1]})$, then *x* is said to be *even (odd)* and the *parity* $|x|$ of x is, by definition, [0] ([1]). A \mathbb{Z}_2 -graded Λ-module *S* is called a *super vector space* if *ax=(— \)ax xa* for any homogeneous elements $a \in \Lambda$ and $x \in S$ where *a* and *x* in $(-1)^{ax}$ denote their parities $|a|$ and $|x|$. A finite set $\{u_1, \dots, u_k\}$ of vectors in *S* is called a *base* of *S* if each element in *S* is written uniquely as a linear combination of $\{u_1, \dots, u_k\}$. Then *k* is called

the *total dimension* of the super vector space *S.* If each vector in a base of *S* is homogeneous then the base is called a *homogeneous base.* If $\{u_1, \dots, u_m, v_1, \dots, v_m\}$ and $\{\overline{u}_1, \dots, \overline{u}_m, \overline{v}_1, \dots, \overline{v}_n\}$ are homogeneous bases of S such that u_i, \overline{u}_i are even and v_j , v_j are odd, then we have that $m=\bar{m}$ and $n=\bar{n}$. The pair $(m\,|\,n)$ is called the *dimension* of the super vector space *S.* If a super vector space *S* has a base, then *S* has a homogeneous base. Let 5 be a finite dimensional super vector space and $\{u_1, \dots, u_k\}$ a base of S. We define an equivalence relation, $\widetilde{\gamma}$, on S as follows: Let $x = \sum u_i^i x$ and $y = \sum u_i^i y$ where ' $x, y \in \Lambda$. Then $x \overline{y}$ y if and only if $({}^{i}x)_{N}=({}^{i}y)_{N}\in\Lambda_{N}$ for each *i*. This definition is independent of a choice of a base of S. Then the *N-th skeleton S^N* of *S* is, by definition, the quotient space $S_N = S/\tilde{N}$ of *S* by the relation \tilde{N} . Then S_N is a \mathbb{Z}_2 -graded Λ_N -module and ${S_N}$ forms in a natural way a projective family of finite dimensional real vector spaces whose projective limit is *S.*

Lemma 1.3. Let S be a finite dimensional super vector space and $\{u_1, \dots, u_p\}$ *a* set of super vectors of S. If $\{(u_1)_B, \cdots, (u_p)_B\}$ is linearly independent over \mathbf{R} , *then there exist vectors* $\{v_1, \dots, v_q\}$ *in S* such that $\{u_1, \dots, u_p, v_1, \dots, v_q\}$ forms a *base of S where* dim $S = p+q$.

Proof. Let *A* be a $(p+q, p)$ -matrix whose components are in Λ. Then if rank $A_B = p$, there exists an invertible $(p+q)$ -matrix *P* such that $A = p$ $\binom{E}{0}$ where *E* denotes the identity p-matrix. In fact three exists a real invertible $(\phi + q)$ -matrix Q such that $A_B = Q \cdot {E \choose 0}$. Let $P = Q + (A - A_B, 0)$ where 0 denotes the $(p+q, q)$ -zero matrix. Then *P* has the desired property. The above lemma follows from this assertion.

A subset \bar{S} of a super vector space *S* is called a *super subspace* of *S* if \bar{S} is a \mathbf{Z}_{2} graded Λ-submodule of *S.* Let *S* be a finite dimentional super vector space. A super subspace \overline{S} is said to be *normal* if there exists a base $\{u_1, \dots, u_k\}$ of *S* such that $\{u_1, \dots, u_k\}$ ($\overline{k} \le k$) is a base of \overline{S} . Then a normal super subspace \overline{S} is a finite dimensional super vector space itself and if dim $S=(m\vert n)$ and dim $\bar{S} = (\bar{m} | \bar{n})$ and $\{u_1, \dots, u_{\bar{m}}, v_1, \dots, v_{\bar{n}}\}$ a homogeneous base of \bar{S} , then there exist vectors $u_{\bar{m}+1}, \dots, u_m, v_{\bar{n}+1}, \dots, v_n \in S$ such that $\{u_1, \dots, u_m, v_1, \dots, v_n\}$ forms a homogeneous base of *S.* This follows from Lemma 1.3.

Lemma 1.4. Let S be a finite dimensional super vector space and \overline{S} a normal *super subspace of S. If a vector x in S satisfies that x* ε *is in* \overline{S} *for each* $\varepsilon \in \Lambda_{L1}$, *then x is in S.*

Proof. Let $\{u_1, \dots, u_k\}$ be a base of *S* such that $\{u_1, \dots, u_k\}$ ($\overline{k} \le k$) is a base of \overline{S} . Let $x = \sum u_i^i c$ where *'c* is in Λ. Then $x \varepsilon = \sum u_i (c \varepsilon) \in \overline{S}$ for each $\varepsilon \in \Lambda_{[1]}$. Thus $i \in \{0\}$ for $\varepsilon \in \Lambda_{[1]}$ and $\bar{k} < i \leq k$. Therefore $i \in \{0\}$ for $\bar{k} < i \leq k$ and hence x is in \overline{S} .

Let *S* and \overline{S} be super vector spaces and Φ a mapping of *S* into \overline{S} whose image of $x \in S$ is denoted by $\Phi(x) \in \overline{S}$. Then Φ is called a *super linear mapping* of *S* into \overline{S} if $\Phi(x+y) = \Phi(x) + \Phi(y)$ and $\Phi(xa) = \Phi(x)a$ for x, $y \in S$ and $a \in \Lambda$. Let Φ be a super linear mapping of *S* into S. The *parity \Φ* of a super linear mapping Φ is defined in a natural way, which is characterized by $|\Phi(z)| =$ $|\Phi| \cdot |z|$ ($z \in S$). Let S and \overline{S} be finite dimensional super vector spaces and Φ an even super linear mapping of *S* into \bar{S} . Then if the rank of Φ_B is equal to dim *S*, the image $\Phi(S)$ of *S* by Φ is a normal super subspace of \overline{S} . This follows from Lemma 1.3.

EXAMPLE 1.1. Let $^{m+n}\Lambda$ be a set of all $m+n$ column vectors $x=(x)$ whose components are super numbers. For an odd super number $\varepsilon \in \Lambda_{[1]}$, the scalar multiplications *82* and *zβ* are defined as follows:

$$
\begin{aligned} \n\varepsilon^{(i}z) &= ((-1)^i \varepsilon^{i}z) \\ \n(iz)\varepsilon &= (iz\varepsilon) \n\end{aligned}
$$

where *i* in $(-1)^i$ denotes the parity $\left| i \right|$ of the coordinate index. The addition and the scalar multiplication by an even super number are defined as usual. Let e_i be the column vector whose *i*-th component is 1 and others are 0. Then each $z = (i\gamma) \in \mathbb{R}^n \setminus \mathbb{R}$ can be written as $z = \sum e_i i z$. Thus $\{e_i\}$ is a homogeneous base of $^{m|n}\Lambda$ and the dimension of $^{m|n}\Lambda$ is $(m|n)$.

2. **Manifolds**

2.1. Non-super manifolds

Let $E=\lim E_N$ be a projective limit of a projective family of a finite dimensional real vector spaces. A topological space *M* is called a *projectable (regular) manifold* modeled after the projective limit $E=\lim_{n\to\infty} E_N$ if there is a local coordinate system $\{(U_{\alpha}, \psi_{\alpha})\}$ such that 1) $\{U_{\alpha}\}$ is an open covering of M, 2) ψ_{α} is a homeomorphism of $U_{\alpha} \subset M$ onto a domain $\psi_{\alpha}(U_{\alpha}) \subset E$ and 3) $\psi_{\alpha} \circ \psi_{\beta}^{-1}$ is a projectable (regular) diffeomorphism of a domain $\psi_\beta(U_\mathbf{a} \cap U_\beta)$ onto a domain $\psi_\mathbf{a}$ $(U_{\mathbf{a}} \cap U_{\mathbf{b}})$ in *E*. On a projectable manifold *M*, we define an equivalence relation, \widetilde{K} , as follows: If x and y in M are in a coordinate neighbourhood U with a local coordinate ψ such that $\psi(x)_N = \psi(y)_N$ in E_N , then x_N^{∞} y. Then this relation is an equivalence relation on M . The quotient space $M\vert_N$ is denoted by M_N , called the *N-th skeleton* of *M*. The projection of *M* onto $M_{\tilde{N}}$ will be denoted by p_N . For $N=0$, M_0 and p_0 will be denoted by M_B and p_B , respectively. The local coordinate system $\{(U_{\alpha}, \psi_{\alpha})\}$ of M induces a local coordinate system $\{(U_{\alpha N}, \psi_{\alpha N})\}$ of *MNy* which makes *M^N* an ordinary smooth manifold of dimension dim *E^N* where $U_{\alpha N}=p_N(U_{\alpha})\subset M_N$ and $\psi_{\alpha N}$ is the induced one-to-one mapping of $U_{\alpha N}$

onto $\psi_{\alpha N}(U_{\alpha N}) = (\psi_{\alpha}(U_{\alpha}))_N \subset E_N$. Then *M* can be regarded as the projective $\lim_{M_N} M_N$ of the family $\{M_N\}$ of finite dimensional smooth manifolds. A subset *U* of *M* will be called a *domain* if $U_B = p_B(U)$ is a connected open subset of M_B and $U=p_B^{-1}(U_B)$. A domain of M can be regarded as a projectable manifold modeled after $E=$ $\lim_{N\to\infty} E_N$ itself. If M is a projectable manifold then M is a fibre bundle over a base space $M_{\textit{B}}$ and $M_{\textit{N}}$ is a smooth fibre bundle over $M_{\textit{B}}$. Moreover if M is a regular manifold then in a natural way M_{N+1} is an affine bundle over a base space M_N for $N\!\geq\!0$.

Let M be a projectable (regular) manifold modeled after $E{=}\lim\limits_{N\to\infty}E_N$ and $\vec{E} = \lim_{N \to \infty} E_N$ a subspace of *E* where \vec{E}_N is a vector subspace of E_N for $N \ge 0$. Then a subset \overline{M} of M is called a *projectable (regular) submanifold* of M modeled after $\bar{E}{=}\lim_{N\to\infty}\bar{E}_{N}$ if for each point $o{\in}\bar{M}$ there exists a local projectable (regular) coordinate (U, ψ) of M such that $o \in U$, $\psi(o) = 0$ and $\overline{M} \cap U = \{z \in U : \psi(z) \in \overline{E}\}.$

Let f be a real valued function on M . Then f is said to be *admissible* if $f \circ \psi^{-1}$ is an admissible function on a domain $\psi(U)$ in *E* for each local coordinate (U,ψ) of M. We denote the algebra of all germs of admissible functions at z in *M* by $\mathcal{A}(z)$. Let *M* and \overline{M} be projectable manifolds and φ a mapping of *M* into \overline{M} . Then φ is said to be *projectable* if for each $N \geq 0$ there exists a smooth mapping $\bm{\varphi}_N$ of M_N into $\bm{\bar{M}}_N$ such that $\bm{\varphi}_N\circ\bm{p}_N{=}\bm{p}_N\circ\bm{\varphi}$ on M_N where $\bm{\bar{p}}_N$ denotes the projection of \bar{M} onto \bar{M}_{N} . The mapping φ_{N} is called the *N-th projection* of φ . Let M and \overline{M} be regular manifolds and φ a projectable mapping of M into \bar{M} . Then φ is said to be *regular* if the *N*+1-th projection φ_{N+1} of M_{N+1} into $\bm{\bar{M}}_{N+1}$ is an affine bundle homomorphism over a base mapping $\bm{\varphi}_N$ of M_N into $\bm{\bar{M}}_N$ for each $N\geq 0$.

2.2. **Super manifolds**

A topological space M is called a *super manifold* of dimension $(m | n)$ if there exists a local coordinate system $\{(U_\alpha, \psi_\alpha)\}$ such that 1) $\{U_\alpha\}$ is an open covering of M, 2) ψ_{β} is a homeomorphism of $U_{\alpha} \subset M$ onto a domain $\psi_{\alpha}(U_{\alpha}) \subset \mathbb{R}^{m+n}$ and 3) $\psi_{\alpha} \circ \psi_{\beta}^{-1}$ is a super diffeomorphism of a domain $\psi_{\beta}(U_{\alpha} \cap U_{\beta})$ onto a domain $\psi_{\alpha}(U_{\alpha} \cap U_{\beta})$ in $\mathbb{R}^{m \times m}$. It follows from Theorem 1.2 that a super manifold of dimension *(m\ri)* can be regarded as a regular manifold modeled after *R^m \ n =lim* $\mathbb{R}^{m|n}_{N}$. . This regular manifold is called the *underlying non-super manifold* of the super manifold *M.* Then a domain of a super manifold is a super manifold itself. A Λ-valued function / on a super manfiold *M* is said to be *super smooth* if $f \circ \psi^{-1}$ is a super smooth function on a domain $\psi(U) \subset \mathbb{R}^{m|n}$ for each local coordinate (U, ψ) of M. We denote by $\mathcal{O}(z)$ the set of all germs of super smooth functions at z in M. In a natural way $\mathcal{O}(z)$ is a super vector space. That is, *f*∈ $\mathcal{O}(z)$ is *even (odd)* if the value of *f* is in $\Lambda_{[0]} (\Lambda_{[1]})$, respectively. $\mathcal{A}(z; \Lambda)$ denotes the set of all germs of Λ-valued admissible functions at *z* in M, which is a super vector space containing $\mathcal{O}(z)$ as a super subspace.

Let $M(\overline{M})$ be a super manifold of dimension $(m|n)$ $((\overline{m}|\overline{n}))$, respectively and *φ* a mapping of *M* into *M.* Then *φ* is said to be *super smooth* if ^o^oψ-¹ is a super smooth mapping of a domain $\psi_{\mathbf{z}}(U_{\mathbf{z}})$ ⊂ $\boldsymbol{R}^{m|n}$ into $\boldsymbol{R}^{m|n}$ where $(U_{\mathbf{z}},\psi_{\mathbf{z}})$ is a local coordinate of *M* and $(\bar{U}_{\lambda}, \bar{\psi}_{\lambda})$ is a local coordinate of \bar{M} such that $\varphi(\bar{U}_{\alpha}) \subset$ \bar{U}_{λ} . A super smooth mapping φ is regular on the underlying non-super manifold and particularly $\boldsymbol{\varphi}$ induces a smooth mapping $\boldsymbol{\varphi}_N$ of the N -th skeleton M_N into $\bm{\bar{M}}_N,$ the *N*-th projection of $\bm{\varphi}.$ Let $(U,\bm{\psi})$ be a local coordinate of a super manifold *M*. We denote $z^i \circ \psi$ simply by z^i . Then $\tilde{\psi} = \{z^i_k : 1 \le i \le m+n, K \in \Gamma\}$, $|i| = |K|$ is a local coordinate of the underlying non-super manifold of M where $x^i = \sum_{\mathbf{K} \in \Gamma} z^i_{\mathbf{K}} \zeta^{\mathbf{K}}$. Let *M* be a super manifold of dimension $(m|n)$. A subset \overline{M} of *M* is called a *super submanifold* of M of dimension $(\overline{m}|\overline{n})$ if for each $o \in \overline{M}$ there exists a local coordinate (U, ψ) around o in M such that $\psi = (z^i) = (x^\mu, \theta^\nu)$ and $\psi(\theta) = 0$ and $U \cap \bar{M} = \{z \in U : x^{\bar{m}+1} = \cdots = x^{\bar{m}} = \theta^{\bar{n}+1} = \cdots = \theta^{\bar{n}} = 0\}$. Then \bar{M} itself is a super manifold in a natural way.

For $\varepsilon > 0$, $I_e \subset \mathbb{R}^{1|0}$ is defined by $I_e = \{ \tau \in \mathbb{R}^{1|0} : |\tau_B| < \varepsilon \}$. A super smooth mapping of 7^e into a super manifold *M* is called an *even super curve* on M. By Z-expansion, a non-super curve $c(t)$ on a super manifold $M(|t| < \epsilon)$ defines uniquely an even super curve $\tilde{c}(\tau)$ on $M(\tau \in I_{\epsilon})$ such that $\tilde{c}(t) = c(t)$ for $|t| < \epsilon$. Conversely each even super curve on M can be obtained from a non-super curve in such a way.

3. **Tangent spaces**

3.1. Non-super tangent spaces

Let M be a projectable manifold modeled after $E=\lim E_N$. For each $z \in M$, $T_{Z_N}(M_N)$ denotes the tangent space of the manifold M_N at z_N . Then the projection p_N^{N+1} of M_{N+1} onto M_N induces the differential $(p_N^{N+1})_*$ of $T_{z_{N+1}}(M_{N+1})$ onto $T_{Z_N}(M_N)$ and $\{T_{Z_N}(M_N)\}$ is a projective family of finite dimensional real vector spaces. The projective limit of this projective family will be denoted by $\mathcal{L}(M)$, called the *tangent space* at $z \in M$ of the projectable manifold M. Then $\mathcal{I}_z(M)$ is the vector space of all derivations of the algebra $\mathcal{A}(z)$.

Let *M* and \bar{M} be projectable manifolds and φ a projectable mapping of *M* into \bar{M} . Then a projectable linear mapping φ_* of $\mathcal{Q}_*(M)$ into $\mathcal{Q}_{\varphi_{(2)}}(\bar{M})$, called the *differential* of φ at $z \in M$, is defined in a natural way so that $(\varphi_N)_* \circ (\varphi_N)_* =$ $(\bar{p}_N)_* \circ \varphi_*$ on $\mathcal{I}_z(M)$ for $N \geq 0$.

Let $c(t)$ be a curve on a projectable manifold M. Then as usual we can define a tangent vector $\mathcal{C}(t) \in \mathcal{Q}_{c(t)}(M)$, called the *tangent vector of a curve c(t)* at t, so that $(\dot{c}(t))_N = \dot{c}_N(t)$ in $T_{c_N(t)}(M_N)$ where $c_N(t) = (c(t))_N$ is the N-th projection of the curve *c(t).*

We shall prove the following theorem of the inverse mapping.

Theorem 3.1. *Let M and M be regular manifolds and φ a regular mapping*

of M into M such that the differential φ_* *of* φ *at each* $z \in M$ *is an isomorphism of* $\mathfrak{T}_z(M)$ onto $\mathfrak{T}_{\varphi(z)}(\bar{M})$. Then for each $z \in M$ there exists a domain $U \subset M$ con*taining z such that* φ *is a regular diffeomorphism of U onto* $\varphi(U)$ *.*

Proof. In order to prove the theorem, we condider the case only locally. Let *U* be a domain in *E* containing 0 and φ a regular mapping of *U* into *E* whose Jacobi matrix $\mathcal{J}\varphi(z)$ is a projectable linear isomorphism of E onto E for each $z \in U$. Then we have to prove that there exists a domain V of E containing 0 such that φ is a regular diffeomorphism of V onto a domain $\varphi(V)$ in \vec{E} . Now the Jacobi matrix of each ΛΓ-th projection *φ^N* is invertible at each point in *U* since the Jacobi matrix of φ is invertible. Therefore by the ordinary inverse mapping theorem there exists an open set V_B containing 0 in E_B such that φ_B is a difeomorphism of V_B onto an poen set $\varphi_B(V_B)$ in \bar{E}_B . We define a domain V in E by $V = p^{-1}(V_B)$ and an open set V_N in E_N by $V_N = p_N(V)$ ($N \ge 0$). By induction we shall prove that φ_N is a diffiomorphism of V_N onto $\varphi_N(V_N)$. Now suppose that this holds at N. Since the mapping φ_{N+1} is an affine bundle homomorphism over the base space mapping φ_N of V_N into \bar{E}_N , φ_{N+1} is an affine mapping on each fibre $(p_N^{N+1})^{-1}(z_N)$ which is, by assumption, invertible for each $z_N \in V_N$. Therefore φ_{N+1} is a diffeomorphism of V_{N+1} onto $\varphi_{N+1}(V_{N+1})$. And hence φ is a regular diffeomorphism of *V* onto *φ(V).*

Let *M* and \bar{M} be regular manifolds and φ a regular mapping of *M* into \bar{M} such that the differential φ_* of φ at each $z{\in}M$ is an isomorphism of $\mathcal{Q}_z(M)$ into $\mathscr{D}_{\varphi(\mathbf{z})}(\bar{M})$. Then for each $z \in M$ there exists a domain $U \subset M$ containing *z* such that φ is a regular diffeomorphism of U onto a regular submanifold $\varphi(U)$ of \tilde{M} .

3.2. Super tangent spaces

Let M be a super manifold of dimension $(m \mid n)$ and z a point in M. A mapping *v* of *O(z)* into Λ is called a *super tangent vector* at *z* if *v* satisfies the following conditions where $f \cdot v$ denotes the image of $f \in \mathcal{O}(z)$ by *v*. For each f, $g \in \mathcal{O}(z)$ and $a \in \Lambda$,

1)
$$
(f+g)\cdot v = f\cdot v + g\cdot v
$$

2)
$$
(af)\cdot v = a(f\cdot v)
$$

3)
$$
(fg)\cdot v = f(z)(g\cdot v) + (-1)^{fg}(z)(f\cdot v)
$$

where f , g in $(-1)^{fg}$ of 3) denote the parities of f , g . We denote by $T_z(M)$ the set of super tangent vectors at $x \subset M$, called the *super tangent space* of M at $z \in M$. The *parity* $|v|$ of a super tangent vector v is defined by $|f \cdot v| = |f| \cdot |v|$ *for* $f \in \mathcal{O}(z)$ and $v \in T$ _{*z*}(*M*). Then the super tangent space T _{*z*}(*M*) of M at $z \in M$ is a super vector space in a natural way. Let $(U, \psi = (z^i))$ be a local coordinate around $z \in M$. Then as in an ordinary way a tangent vector $\left(\frac{\overline{\partial}}{\partial z^i}\right)_i \in T_i(M)$ is

defined: $f \cdot \left(\frac{\partial}{\partial x_i}\right) = (f \circ \psi^{-1}) \left(\frac{\partial}{\partial x_i}\right)_{\psi(x)}$ for $f \in \mathcal{O}(x)$ where the right hand side is $\left(\frac{\partial}{\partial z^i}\right)_i = (f \circ \psi^{-1}) \left(\frac{\partial}{\partial z^i}\right)_{\psi(z)}$ for $f \in \mathcal{O}(z)$ where the right han defined in a super differential calculus [2]. Then the parity of $\left(\frac{\partial}{\partial r^i}\right)$ is the parity $|i|$ of the coordinate index *i*.

Theorem 3.2. *The super tangent space T^t (M) is a super vector space of dimension* $(m|n)$. Moreover $\{(\frac{\partial}{\partial z^i})_i\}$ forms a homogeneous base of $T_z(M)$ and for $\mathit{each}\ v \in T_{\mathit{z}}(M),\ v=\sum{\left(\frac{\bar{\partial}}{\partial z^{i}}\right)_{\mathit{z}}}}\text{ for where }i v\!=\!z^{i}\!\cdot\! v\,(1\!\leq\!i\!\leq\!m\!+\!n).$

Proof. Applying the following lemma the theorem will be obtained as usual.

Lemma 3.3. Let f be a super smooth function on a domain U of \mathbb{R}^{m+n} con*taining* 0. Then there exist super smooth functions F_{ij} on U such that for each $z \in U$

$$
f(\mathbf{z}) = f(0) + \sum_{i=1}^{m+n} f(\frac{\partial}{\partial \mathbf{z}^i}(0) \cdot \mathbf{z}^i + \sum_{i \leq j} F_{ij}(\mathbf{z}) \cdot \mathbf{z}^i \cdot \mathbf{z}^j.
$$

Proof. By Theorem 1.1, $f(z)$ can be written as follows:

$$
f(z) = \sum_P \tilde{\varphi}_P(x) \cdot \theta^P \quad \text{where} \quad z = (x, \theta).
$$

By the ordinary differential calculus, each $\varphi_P(t)$ $(t\!\in\! U_{\textit{B}})$ can be written as follows:

$$
\varphi_P(t)=\varphi_P(0)+\sum_{\mu=1}^m\frac{\partial}{\partial t^\mu}\varphi_P(0)\cdot t^\mu+\sum_{\mu\leq\nu}\varphi_{P^{\mu\nu}}(t)\cdot t^\mu\cdot t^\nu
$$

for some smooth functions $\varphi_{P^{\bm{\mu}} \bm{\nu}}(t)$ Therefore we have

$$
f(z)=\sum_{P}(\tilde{\varphi}_{P}(0)+\sum_{\mu=1}^{m}\tilde{\varphi}_{P}\frac{\partial}{\partial x^{\mu}}(0)\cdot x^{\mu}+\sum_{\mu\leq\nu}\tilde{\varphi}_{P^{\mu}\nu}(x)\cdot x^{\mu}\cdot x^{\nu})\cdot \theta^{P}.
$$

For $P = \phi$, $\tilde{\phi}_{\phi}(0) = f(0)$ and $\tilde{\phi}_{\phi} \frac{\partial}{\partial \psi_{\phi}(0)} = f \frac{\partial}{\partial \psi_{\phi}(0)}$. *-

And for $P=(p),\,\tilde{\varphi}_{(p)}(0)=f\frac{\partial}{\partial(x)}(0)$. Thus

$$
f(z) = f(0) + \sum_{\mu=1}^{m} f \frac{\partial}{\partial x^{\mu}} (0) \cdot x^{\mu} + \sum_{\mu \leq \nu} \tilde{\varphi}_{\phi\mu\nu}(x) \cdot x^{\mu} \cdot x^{\nu}
$$

+
$$
\sum_{\rho=1}^{n} (f \frac{\partial}{\partial \theta^{\rho}} (0) + \sum_{\mu=1}^{m} \tilde{\varphi}_{(\rho)} \frac{\partial}{\partial x^{\mu}} (0) \cdot x^{\mu} + \sum_{\mu \leq \nu} \tilde{\varphi}_{(\rho)\mu\nu}(x) \cdot x^{\mu} \cdot x^{\nu}) \cdot \theta^{\mu}
$$

+
$$
\sum_{\mu=1}^{n} (\tilde{\varphi}_{\mu}(0) + \sum_{\mu=1}^{m} \tilde{\varphi}_{\mu} \frac{\partial}{\partial x^{\mu}} (0) \cdot x^{\mu} + \sum_{\mu \leq \nu} \tilde{\varphi}_{\mu\mu\nu}(x) \cdot x^{\mu} \cdot x^{\nu}) \cdot \theta^{\rho}
$$

where in the last term the sum, \sum' , is taken over $\{P=(p_1,\dots,p_k): h\geq 2\}$. This completes the proof of the lemma.

For $p \in \mathbb{Z}_2$, the subspace $T_x(M)_p$ of $T_x(M)$ is defined by $T_x(M)_p = \{v \in T_x(M):$ $|v| = p$. Since the super tangent space $T_x(M)$ is a super vector space with a finite dimension, the *N*-th skeleton $T_{\rm z}(M)_N$ is well-defined.

Let M and M be super manifolds and φ a super smooth mapping of M into M. Then the *super differential* φ_* of φ is defined as usual: For each $z \in M$, φ_* is a mapping of $T_s(M)$ into $T_{\varphi(s)}(\bar{M})$ defined by $f \cdot (\varphi_* v) = (f \circ \varphi) \cdot v$ for $f \in \mathcal{O}$ $(\varphi(z))$ and $v \in T_z(M)$. Then φ_* is an even super linear mapping of $T_z(M)$ into $T_{\varphi(z)}(\bar{M})$: That is, $\varphi_*(u+v) = \varphi_*u + \varphi_*v$ and $\varphi_*(va) = (\varphi_*v)a$ and $|\varphi_*v| = |v|$ for u, $v \in T_s(M)$ and $a \in \Lambda$. In terms of local coordinates, the super differential can be expressed as follows:

$$
\varphi_*\Big(\frac{\stackrel{\leftarrow}{\partial}}{\partial z^i}\Big)_i=\sum_i\Big(\frac{\stackrel{\leftarrow}{\partial}}{\partial \bar{z}^j}\Big)_{\varphi_{(z)}}\Big(\varphi^j\frac{\stackrel{\leftarrow}{\partial}}{\partial z^i}\Big)_i
$$

where $(zⁱ)$ is a local coordinate around z and (\bar{z}^i) is a local coordinate around $\varphi(z)$ and $\varphi' = \bar{z}^j \circ \varphi$. Since φ_* is a super linear mapping, we have the *N*-th projection, $(\varphi_*)_N$, of φ_* which is a mapping of $T_x(M)_N$ into $T_{\varphi(\chi)}(M)_N$. In particular, the 0-th projection is called the *body* of φ_{*} , denoted by $(\varphi_{*})_B$, which is a **R**-linear mapping of $T_{\rm z}(M)_{\rm B}$ into $T_{\rm \varphi(\rm z)}(M)_{\rm B}$ where

$$
T_{\mathbf{z}}(M)_{\mathbf{B}}=\{\ \Sigma\left(\frac{\overleftarrow{\partial}}{\partial z^{i}}\right)_{i}i_{v};\ i_{v}\in\mathbf{R}\} \ .
$$

Let $\gamma(\tau)$ be an even super curve on $M(\tau \in I_{\epsilon})$. Then the super tangent vector $\dot{\gamma}(\tau) \in T_{\gamma(\tau)}(M)$ of $\gamma(\tau)$ is defined as usual: For $f \in \mathcal{O}(\gamma(\tau)), f \cdot \dot{\gamma}(\tau) = (f \circ \gamma) \frac{d}{d\tau}(\tau)$. $\frac{1}{\sigma}$ $\dot{\gamma}(\tau) \in T_{\gamma(\tau)}(M)$ of $\gamma(\tau)$ is defined as usual: $\text{For } f \in \mathcal{O}(\gamma(\tau)), f \cdot \dot{\gamma}(\tau) = (f \circ \gamma) \frac{d}{d\tau}(\tau)$.
In other words, $\dot{\gamma}(\tau) = \gamma_* \left(\frac{\overline{d}}{d\tau}\right)_{\tau}$. Thus $\dot{\gamma}(\tau)$ is an even super tangent vector. In terms of local coordinates, $T_\text{\tiny z}(M)$ can be indentified with the super vector space $^{\#|\ast}\Lambda$. Then the super differential φ_* is a super linear mapping defined by the super Jacobi matrix *Jφ(z)* and the body *(φ*)^B* of *φ** is a linear mapping defined by the body $(J\pmb{\varphi}(\pmb{z}))_{\pmb{B}}$ of the matrix $J\pmb{\varphi}(\pmb{z}).$

Now we obtain the following theorem by the inverse mapping theorem in a super differential calculus [2],

Theorem 3.4. *Let φ be a super smooth mapping of a super manifold M into a super manifold* \overline{M} such that the super differential φ_* of φ at a point $z \in M$ is a linear isomorphism of $T_{\rm z}(M)$ onto $T_{\rm \varphi G}(\bar M).$ Then there exists a domain U of M *containing the point z such that φ is a super diffeomorphism of U onto a domain* $\varphi(U)$ of M .

3.3. Almost super structures

Let M be a super manifold of dimension $(m|n)$ and $(U, \psi = (z^{i}))$ a local coordinate of M. Then $\{\left(\frac{\partial}{\partial x^i}\right)_\epsilon\}$ is a base of the super vector space $T_z(M)$ and the even subspace $T_{\rm z}(M)_{\rm [0]}$ of $T_{\rm z}(M)$ is given by

$$
T_{\boldsymbol{\imath}}(M)_{\text{IoJ}} = \{ \sum_i \left(\frac{\overleftarrow{\partial}}{\partial z^i} \right)_i i_{\boldsymbol{v}} : i_{\boldsymbol{v}} \in \Lambda_{\boldsymbol{\mathit{p}}}, \, \boldsymbol{\mathit{p}} = |i| \}.
$$

The local coordinate $\psi = (z^i)$ of M gives a local coordinate $\widetilde{\psi} = (z^i_K)$ of the underlying non-super manifold of M. That is, $\psi_N = (z_N^i) = (z_K^i)$ is a local coordinate of M_N where $K \in \Gamma_N$ and $|K| = |i|$. Therefore the tangent space $\mathcal{Q}_z(M)$ of the underlying non-super manifold of *M* is given by

$$
\mathcal{G}_{\mathbf{z}}(M) = \{ \sum_{i,K} a_K^i \left(\frac{\partial}{\partial z_K^i} \right) : a_K^i \in \mathbf{R}, K \in \Gamma, \ |K| = |i| \}.
$$

Then the following correspondence of $T₁(M)_{[0]}$ to $\mathcal{D}(M)$ gives an \mathbb{R} -isomorphism.

$$
T_{\mathbf{z}}(M)_{\text{Io1}} \Rightarrow v = \sum_{i} \left(\frac{\stackrel{\leftarrow}{\partial}}{\partial z^{i}}\right)_{\mathbf{z}} i v \rightarrow \tilde{v} = \sum_{i,\kappa} i v_{K} \left(\frac{\partial}{\partial z_{K}^{i}}\right)_{\mathbf{z}} \in \mathcal{I}_{\mathbf{z}}(M)
$$

where ' $v = \sum v_k \zeta^k$ ($|K| = |i|$). By a straight computation we see that the above correspondence is independent of the choice of local coordinate. Moreover we have that $f \cdot v = \tilde{v} \cdot f$ for $v \in T_{\epsilon}(M)_{[0]}$ and $f \in \mathcal{O}(z) \subset \mathcal{A}(z; \Lambda)$. In fact this follows from the Cauchy-Riemann equations of a super smooth function. Let *M* and \overline{M} be super manifolds and φ a super smooth mapping of M into \overline{M} . Then the following diagram is commutative.

$$
T_{\epsilon}(M)_{\text{Io}1} \xrightarrow{\varphi_{\ast}} T_{\varphi_{\epsilon_2}}(\bar{M})_{\text{Io}1}
$$
\n
$$
\downarrow \sim \qquad \qquad \downarrow \sim
$$
\n
$$
\mathcal{I}_{\epsilon}(M) \xrightarrow{\varphi_{\ast}} \mathcal{I}_{\varphi_{\epsilon_2}}(M)
$$

For each $H{\in}\Gamma_{\text{IoJ}},$ we define a linear endomorphism $J^{\textit{H}}$ of $\mathcal{Q}_{\textit{s}}(M)$ by $J^{\textit{H}}$ $\tilde{\textit{v}}{=}(\zeta^{\textit{H}}\;\bar{\textit{v}})$ for each $v \in T_{\epsilon}(M)_{[0]}$. We call the family $\{J^{\mu}: H \in \Gamma_{[0]} \}$ of endomorphisms of *3g (M)* the *almost super structure* on the underlying non-super manifold of a super manifold *M*. In particular, we have $J^H\left(\frac{\partial}{\partial z_K^i}\right)_z = \left(\frac{\partial}{\partial z_{K+H}^i}\right)_z$ for $H \in \Gamma_{[0]}$ and $K \in \Gamma$ with $|K| = |i|$.

We can prove the following theorem from the Cauchy-Riemann equations of a super smooth function.

Theorem 3.5. *Let M and M be super manifolds and φ a projectahle mapp-*

ing of M into \overline{M} *w.r.t. the underlying non-super manifold structures. Then* φ *is* $super \ smooth \ if \ and \ only \ if \ \varphi_*{\circ}J^H{=}J^H{\circ}\varphi_* \ on \ the \ tangent \ space \ \mathfrak{I}_z(M) \ for \ each \$ $z \in M$ and $H \in \Gamma_{\text{fol}}$.

4. **Vector fields**

4.1. Vector fields on an affine bundle

Let *A* be an affine bundle over a base space *B* with projection π and the standard fibre A^* . A vector field \tilde{X} on A is said to be *projectable* if there exists a vector field X on B such that $\pi_*(\tilde{X}_y) = X_{\pi(y)}$ for each $y \in A$. A projectable vector field \tilde{X} is said to be *affine* if $(f_{\alpha})_*(\tilde{X}|_{A_x})$ is an affine vector field on A^* for each $x \in U_{\infty}$ where $\tilde{X}|_{A_x}$ denotes the vector field defined on the fibre A_x and $(U_{\mathbf{\alpha}}, f_{\mathbf{\alpha}}, g_{\mathbf{\alpha}, \mathbf{\beta}})$ is a local trivialization of the affine bundle *A* over *B*. Let $\Psi_{\mathbf{\alpha}} =$ $(\psi_{\mathbf{a}} = (x^i), f_{\mathbf{a}} = (y^{\mathbf{v}}))$ be a local affine coordinate on $\pi^{-1}(U_{\mathbf{a}}) \subset A$ where $\psi_{\mathbf{a}} = (x^i)$ a local coordinate on $U_{\alpha} \subset B$ and (y^{ν}) is a natural coordinate of A^* . Then a vector field \tilde{X} is affine if and only if \tilde{X} is written as follows:

$$
\tilde{X} = \sum_{i=1}^m c^i(x) \frac{\partial}{\partial x^i} + \sum_{\nu=1}^n \left(\sum_{\mu=1}^n A^{\nu}_{\mu}(x) y^{\mu} + b^{\nu}(x) \right) \frac{\partial}{\partial y^{\nu}}
$$

where $A^{\nu}_{\mu}(x)$, $b^{\nu}(x)$ and $c^{i}(x)$ are smooth functions on U and dim B=m. An affine vector field \tilde{X} in the above from is said to be *parallel* if c^i and A^{ν}_{μ} vanish identically for $1 \le i \le m$ and $1 \le \nu, \mu \le n$.

Theorem 4.1. Let \tilde{X} be an affine vector field on A and $X = \pi_*(\tilde{X})$ the *vector field on* JB. *Let φ^t be a local one-parameter group of local transformations generating X which is defined on* $|t| < \varepsilon$ and an open set $V \subset B$. Then there exists a local one-parameter group $\tilde{\varphi}_t$ of local transformations generating \tilde{X} which is *defined on* $|t| < \varepsilon$ *and* $\widetilde{V}\! =\! \pi^{-1}(V)$ *and each* $\widetilde{\varphi}_t$ *is an affine bundle mapping with the base mapping* ϕ_t for each $|t| < \varepsilon$.

Proof. Suppose that \tilde{X} is written in the above from in terms of a local affine coordinate $((x^{i}), (y^{i}))$ on $\pi^{-1}(U_{\sigma})$. Then the differential equation for $\tilde{\phi}_t(x, y)$ is given as follows:

$$
\frac{d}{dt} x^{i} = c^{i}(x) \qquad (1 \leq i \leq m)
$$

$$
\frac{d}{dt} y^{\nu} = \sum_{\mu=1}^{n} A_{\mu}^{\nu}(x) y^{\mu} + b^{\nu}(x) \quad (1 \leq \nu \leq n).
$$

Thus $\phi_t(x)$ is the solution of the first p equations with $\phi_0(x) = x$. Then we consider the last *q* equations. That is,

$$
\frac{d}{dt} y = A(\phi_t(x)) y + b(\phi_t(x))
$$

where $y=(y^{\nu})$, $A=(A^{\nu}_{\mu})$ and $b=(b^{\nu})$ $(1 \leq \nu, \mu \leq n)$. Let $Y(t, x)$ be a smooth where $y=(y^{\nu})$, $A=(A^{\nu}_{\mu})$ and $b=(b^{\nu})$ $(1 \leq \nu, \mu \leq n)$. Let $Y(t, x)$ be a smooth mapping into $GL(n; R)$ defined on $|t| < \varepsilon$ and $x \in U_{\alpha}$ such that $\frac{d}{dt} Y(t, x) = A$ $(\phi_t(x)) \cdot Y(t, x)$ and $Y(0, x) = E$. Since $A(\phi_t(x))$ is smooth on $|t| < \varepsilon$ and $x \in U_a$, the above $Y(t, x)$ exists uniquely. Now let

$$
\psi_{\boldsymbol{t}}(x,y)=Y(t,x)\boldsymbol{\cdot} (y+\int_0^t Y(s,x)^{-1}\boldsymbol{\cdot} b(\phi_s(x))\,ds)\,.
$$

Then $\tilde{\phi}_t(x, y)$ is given by $\tilde{\phi}_t(x, y) = (\phi_t(x), \psi_t(x, y))$. This completes the proof.

4.2. Non-super vector fields

Let M be a projectable (regular) manifold modeled after $E = \lim_{n \to \infty} E_n$. Then the tangent bundle $\mathcal{Q}(M) = \bigcup_{z \in \mathcal{X}} \mathcal{Q}_z(M)$ of M can be regarded as a projectable (regular) manifold modeled after $E \times E = \lim_{n \to \infty} E_n \times E_n$ in a natural way. That is, when (U, ψ) is a local coordinate of M, the differential ψ_* induces a one-to-one mapping of $\mathcal{L}(U)$ onto $U\times E$ which gives a local coordinate of $\mathcal{L}(M)$. In other words, the tangent bundle $\mathcal{D}(M)$ is the projective limit of the family $\{T(M_N)\}$ of the tangent bundles of $\{M_N\}$. A section v of the tangent bundle $\mathcal{D}(M)$ over M is called a *projectable (regular) vector field* on M if the section is a projectable (regular) mapping of M into $\mathcal{Q}(M)$. That is, in terms of local coordinate (U, ψ) , the mapping $z{\to}\psi_*(v_z){\in}{\mathfrak {I}}_{\psi(\alpha)}(E){=}E$ is a projectable (regular) mapping of U into *E.* Then the JV-th projection *V^N* of a projectable vector field *v* gives a vector field on M_N . As usual we denote by v_B the 0-th projection of v , a vector field on M_B . Let u and v be projectable (regular) vector fields on M . Then the vector field $[u, v]$ is defined in a natural way, so that $[u, v]_N = [u_N, v_N]$ on M_N .

Let v be a projectable vector field on a projectable manifold M . Then ϕ ^{*t*} is called a foαz/ *one-parameter group of local transformation* of M generating the projectable vector field v if ϕ_t is defined on $|t| < \varepsilon$ and a domain U of M and satisfies the following conditions:

- 1) the mapping $(-\varepsilon, \varepsilon) \times U \supseteq (t, z) \rightarrow \phi_t(z) \in M$ is projectable,
- 2) if $|t|$, $|s|$, $|t+s| < \varepsilon$ and ε , $\phi_s(z) \in U$, then

$$
\phi_{t+s}(z)=\phi_t(\phi_s(z)),
$$

3) for each $z \in U$, v_x is the tangent vector of the curve $\phi_t(z)$ at $t=0$.

For a regular vector field we have the following theorem.

Theorem 4.2. Let M be a regular manifold modeled after $E = \lim E_N$ and *v a regular vector field on M. Let* φf *be a local one-parameter group of local* transformations generating the vector field $v_{\textit{\textbf{B}}}$ on $M_{\textit{\textbf{B}}}$ such that $\varphi^{\textit{\textbf{B}}}_t$ is defined on

 $|t| < \varepsilon$ and an open set U_B of M. Then there exists a local one-parameter group *φt of local transformations generating the vector field v on M such that φ^t is defined on* $|t| < \varepsilon$ *and the domain* $U = p_B^{-1}(U_B)$ *of* M *and the mapping* $(t, z) \rightarrow \phi_t(z)$ *is a regular mapping.*

Proof. This theorem follows immediately from Theorem 4.1.

As usual the bracket of vecor fields is given as follows.

Theorem 4.3. *Let u be a regular vector field on a regular manifold M and φ^t a local one-parameter group of local transformations generating the vector field u. Then for each projective vector field v on M, we have*

$$
[u, v] = \lim_{t\to 0}\frac{1}{t}\left(v-\phi_{t\ast}(v)\right).
$$

4.3. Super vector fields

Let M be a super manifold of dimension $(m|n)$. Then the super tangent bundle $T(M) = \mathop{\cup}\limits_{\boldsymbol{z}\in\boldsymbol{K}} T_{\boldsymbol{z}}(M)$ of M can be regarded as a super manifold of dimension $(2m/2n)$ in a natural way. That is, when (U, ψ) is a local coordinate of M, the differential ψ_* induces a one-to-one mapping of $T(U)$ onto $U \times \mathbb{R}^{m+n} \subset \mathbb{R}^{2m|2n}$ which gives a local coordinate of $T(M)$. A section of the super tangent bundle *T(M)* over *M* is called a *super vector field* on *M* if the section is a super smooth mapping of *M* into *T(M).* Let *X* be a super vector field on *M.* Then for $x \in M$, we have $X_{\mathbf{z}} \in T_{\mathbf{z}}(M)$ and for a super smooth function f on M, $f \cdot X$ is a super smooth function on M where $(f \cdot X)(z) {=} f \cdot X_z$ for $z {\in} M$. A super vector field X on M is said to be even (odd) if X_\star is an even (odd) tangent vector at each In terms of local coordinate $(\tilde{U}, \tilde{\boldsymbol{\psi}} = (\tilde{\boldsymbol{x}}^i))$, a super vector field X can be written as follows: $X = \sum_{i} \frac{\partial}{\partial x^{i}} X$ where $iX = x^{i} \cdot X$. A super Lie bracket of vector fields *X* and *Y* on *M* is defined as follows: For a super smooth function f on M, $f \cdot [X, Y] = (f \cdot X) \cdot Y - (-1)^{XY}(f \cdot Y) \cdot X$ where X and Y in $(-1)^{XY}$ denote the parities of *X* and *Y.* Then *[X, Y]* is a super vector field on *M.*

Let X be an even super vector field on M . Then by the correspondence of $T_{\rm z}(M)_{\rm [6]}$ onto $\mathcal{Q}_{\rm z}(M)$ at each $z\!\in\!M,\,X$ defines a non-super regular vector field \tilde{X} on the underlying non-super manifold of M. In terms of local coordinate, \tilde{X} is giver by $\tilde{X} = \sum_{i,K} {}^{i}X_{K} \frac{\partial}{\partial z_{K}^{i}}$ where ${}^{i}X = \sum_{K} {}^{i}X_{K} \zeta^{K} (|i| = |K|)$. Then for even super vector fields X and Y on M we have $[\tilde{X}, \tilde{Y}] = -[\tilde{X}, \tilde{Y}].$

Theorem 4.4. *Let u be a non-super regular vector field on a super manifold M and φ^t a local one-parameter group of local transformation generating the regular vector field u which is defined on* $|t| < \varepsilon$ and a domain $U \subset M$. Then the *following conditions are equivalent.*

- 1) There exists an even super vector field X on M such that $u = \tilde{X}$ on M .
- 2) [$[u, J^H v] = J^H [u, v]$ for each $H \in \Gamma_{[0]}$ and each non-super projectable vector *field v on M.*
- 3) ϕ_t *is a super smooth mapping of U into M for* $|t| < \varepsilon$.

Proof. Suppose that *u* is written locally as follows: $u = \sum_{i,K} u_K^i \frac{\partial}{\partial z_K^i}$. Then let $u^i = \sum u^i_K \zeta^K$. Then $u = \tilde{X}$ for some even super vector field X if and only if each u^i is super smooth. By a straight calculation, for $|j| = |K|$ and $|H| = [0]$, we have

$$
[u, J^H \left(\frac{\partial}{\partial z_L^i}\right)] = -\sum_{i,K} \left(\frac{\partial}{\partial z_{H+L}^i} u_K^i\right) \frac{\partial}{\partial z_K^i} = -\sum_i \frac{\partial}{\partial z^i} \left(\frac{\partial}{\partial z_{H+L}^i} u^i\right)
$$

$$
J^H [u, \frac{\partial}{\partial z_L^i}] = J^H \left(-\sum_{i,K} \left(\frac{\partial}{\partial z_L^i} u_K^i\right) \frac{\partial}{\partial z_L^i}\right) = -\sum_i \frac{\partial}{\partial z_i^i} \left(\frac{\partial}{\partial z_L^i} u^i\right) \cdot \zeta^H
$$

under the identification of $\mathcal{I}_z(M)$ with $T_z(M)_{[0]}$. Thus the equivalence of 1) and 2) follows from the Cauchy-Riemann equations of a super smooth function. It follows from Theorem 4.3 and Theorem 3.5 that 3) implies 2). Conversely, applying the usual procedure we can show that 2) implies 3).

Let X be an even super vector field on M and X the non-super regular vector field corresponding to *X* and *φ^t* a local one-parameter group of local transformations generating the non-super regular vector field \tilde{X} on M such that ϕ_t is defined on $|t| < \varepsilon$ and a domain $U \subset M$. Then for each $|t| < \varepsilon$, the mapping $x \rightarrow \phi_t(x)$ is super smooth by Theorem 4.4. On the other hand, for each $x \in U$, the mapping $t{\rightarrow}\phi_t(z)$ is a curve on *M* and, by *Z*-expansion, the curve defines an even super curve, denoted by $\Phi_r(z)$, defined on $\tau \in I_z$ so that $\phi_t(z) = \Phi_t(z)$ for $|t| < \varepsilon$ and $z \in U$. Then Φ_{τ} satisfies the following conditions:

- 1) the mapping $I_{\epsilon} \times U \Rightarrow (\tau, z) \rightarrow \Phi_{\tau}(z) \in M$ is super smooth,
- 2) if τ , σ and $\tau + \sigma \in I_e$ and z , $\Phi_{\sigma}(z) \in U$, then

$$
\Phi_{\tau+\sigma}(z)=\Phi_{\tau}(\Phi_{\sigma}(z))\,,
$$

3) for each $z \in U$, X _z is the super tangent vector of the even super curve $\Phi_r(z)$ at $\tau = 0$.

 Φ_{τ} is called the *local even super one-parameter group of local super transformations* generating the even super vector field *X.* Therefore we have the following theorem.

Theorem 4.5. Let X be an even super vector field on M. Let ϕ_t^B be a *local one-parameter group of local transformations generating the vector field* \tilde{X}_B *on* M_B *such that* ϕ_i^B *is defined on* $|t| < \varepsilon$ *and an open set* U_B *of* M_B *. Then there*

exists a local even super one-parameter group of local super transformations gen- \bm{e} *even vector field* X *on* M *such that* $\Phi_{\bm{\tau}}$ *is defined on* $\bm{\tau} \!\in\! I_{\bm{\mathsf{s}}}$ *and the domain* $U=p_B^{-1}(U_B)$ of M.

5. Frobenius' Theorem

5.1. Frobenius' Theorem on an affine bundle

A *differential system D* of dimension r on a smooth manifold M is a subbundle of the tangent bundle *T(M)* of *M* with a *local base* around each point of M. That is, for each $x \in M$ there exist vector fields X_1, \dots, X_r on a neighborhood M . *U* of *x* which form a base of D_y for each $y \in U$. *D* is said to be *involutive* if, for any vector fields *X* and *Y* belonging to D, *[X, Y]* also belongs to Zλ

Let *A* be an affine bundle over *B* with standard fibre *A** and projection *π.* An involutive differential system *D* on *A* is said to be *affine* if *D* has a local base $\{X_i, Y_k\}$ where each X_i is an affine vector field and each Y_k is a parallel vector field such that $\{\pi_*(X_i)\}$ is linearly independent. Then an affine differential system *D* on *A* induces an involutive differential system *D* on the base space *B* so that $\pi_*(\tilde{D})=D$ and $\{\pi_*(X_i)\}\$ forms a local base for *D*.

Theorem 5.1. *Let D be an affine differential system on an affine bundle A over a base space B and D the induced involutive differential system on B. Let V be an integral submanifold of D and* \tilde{o} *a point in* $\pi^{-1}(V) \subset A$. Then there exists *an integral submanifold* \tilde{V} of \tilde{D} such that $\tilde{o} \in \tilde{V}$ and \tilde{V} is an affine subbundle of $A|_{V}$ over V where $A|_{V}$ is the restriction of the affine bundle A to $V{\subset}B$.

Proof. This follows from the following.

Lemma 5.2. Let $(x^1, ..., x^m)$ and $(x^1, ..., x^m, y^1, ..., y^n)$ be the natural $\it coordinates$ on $\bm{R^m}$ and $\bm{R^{m+n}}$, respectively, and π the natural projection of $\bm{R^{m+n}}$ onto \mathbb{R}^m and $U = \{x \in \mathbb{R}^m : |x^i| < \varepsilon\}$ and $\widetilde{U} = \pi^{-1}(U)$. Let $D(\widetilde{D})$ be an involutive $differential$ system on $\boldsymbol{R}^m(\boldsymbol{R}^{m+n})$, respectively, such that $\pi_*(\tilde{D}_{(x,y)})\!=\!D_x$ for each $(x, y) \in \mathbb{R}^{m+n}$ and dim $D=a$ and dim $\tilde{D}=a+b$. Suppose that $\{x \in U : x^{a+1}=c^{a+1},\}$ \cdots , $x^m = c^m$ *is an integral submanifold of D for each* $c = (c^j) \in \mathbb{R}^{m-a}$ *with* $|c^j| < \varepsilon$ $(a+1\leq j\leq m)$ and that there exists a local base $\{X_1,\, \cdots,\, X_a,\ Y_1,\, \cdots,\ Y_b\}$ of \tilde{D} on \tilde{U} *such that*

$$
X_{i} = \frac{\partial}{\partial x^{i}} + \sum_{\nu=1}^{n} \alpha_{i}^{\nu}(x, y) \frac{\partial}{\partial y^{\nu}} \quad (1 \leq i \leq a)
$$

$$
Y_{k} = \sum_{\nu=1}^{n} \beta_{k}^{\nu}(x) \frac{\partial}{\partial y^{\nu}} \quad (1 \leq k \leq b)
$$

where $\alpha_i^y(x, y) = \sum_{\mu=1}^n A_i^y(\mu(x)) y^{\mu} + b_i^y(x) (1 \leq i \leq a, 1 \leq \nu \leq n)$ and $A_i^y(\mu(x), b_i^y(x))$ and $\beta_k^y(x)$ *are smooth functions on U.*

Then there exist smooth mappings $\varphi(x)$ *of U into GL(n; R) and* $\xi(x)$ *of U into* $\boldsymbol{R}^{\boldsymbol{*}}$ such that Φ : $\boldsymbol{x}{=}\boldsymbol{x},$ $\boldsymbol{y}{=}\boldsymbol{\varphi}(\boldsymbol{x})$ $\boldsymbol{y}{+}\boldsymbol{\xi}(\boldsymbol{x})$ is a diffeomorphism of \boldsymbol{U} and

$$
\Phi^{-1}(\{(x, \bar{y}) \in \tilde{U}: x^{a+1} = c^{a+1}, \cdots, x^m = c^m, \bar{y}^{b+1} = d^{b+1}, \cdots, \bar{y}^n = d^n\})
$$

 i s an integral submanifold of \tilde{D} for each (c,d) \in $\bm{R^{m-a}} \times \bm{R^{n-b}}$ with $\lvert c^i \rvert$ $<$ \mathcal{E} $(a+1$ \leq $i \leq m$).

Proof. When a function is written as the above $\alpha_i^*(x, y)$, the function is called an affine function along each fibre. The above expression of X_i and Y_k will be written as follows.

(X, Y) =
$$
\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right)\begin{pmatrix} E_a & 0 \\ 0 & 0 \\ \alpha(x, y) & \beta(x) \end{pmatrix}
$$
.

Since the rank of the (n, b) -matrix $\beta(x)$ is b, there exists a smooth mapping $C(x)$ of *U* into $GL(n; R)$ such that $C(x)$ $\beta(x) = \begin{pmatrix} E_b \end{pmatrix}$. Define a diffeomorphism Φ of *U* by Φ : $\mathbf{x} = x$, $\bar{y} = C(x) y$. Then we have

$$
\Phi_*(X, Y) = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right) \begin{pmatrix} E_a & 0 \\ 0 & 0 \\ f(x, y) & E_b \\ g(x, y) & 0 \end{pmatrix}
$$

where each component of $f(x, y)$ and $g(x, y)$ is an affine function along each fibre. Let $(X, \bar{Y}) = (X, Y) \begin{pmatrix} E_a & 0 \ -f(x, y) & F \end{pmatrix}$. Then $\{X_i, \bar{Y}_k\}$ forms a local base of \tilde{D} or \bar{U} . Let $\bar{x}=(\bar{x}^1, \dots, \bar{x}^a), \bar{u}=(\bar{x}^{a+1}, \dots, \bar{x}^m), \bar{y}=(\bar{y}^1, \dots, \bar{y}^b)$ and $\bar{v}=(\bar{y}^1, \dots, \bar{y}^b)$ Then we have

$$
\Phi_*(\bar{X},\bar{Y})=\Big(\frac{\partial}{\partial x},\frac{\partial}{\partial u},\frac{\partial}{\partial \bar{y}},\frac{\partial}{\partial v}\Big)\begin{pmatrix}E_a&0\\0&0\\0&E_b\\g&0\end{pmatrix}
$$

where each component of $g = g \circ \Phi^{-1}(x, u, \bar{y}, v)$ is an affine function along each fibre. That is,

$$
\Phi_*(\bar{X}_i) = \frac{\partial}{\partial x^i} + \sum_{i=1}^{n-1} g_i^i(x, u, \bar{y}, v) \frac{\partial}{\partial v^i} \quad (1 \le i \le a)
$$

$$
\Phi_*(\bar{Y}_k) = \frac{\partial}{\partial \bar{y}^k} \qquad (1 \le k \le b).
$$

 $\Phi_*(\bar{Y}_k) = \frac{\sigma}{\partial \bar{y}^k}$ (1 $\leq k \leq b$).

Since $[\Phi_*(\bar{X}_i), \Phi_*(\bar{Y}_k)] = -\sum_{i=1}^{n-b} \left(\frac{\partial}{\partial \bar{y}^k} g_i^t\right) \frac{\partial}{\partial \bar{v}^t}$ is a linear combination of {

 $\Phi_*(\bar{Y}_k)$, it must vanish and hence *g* is a function of (x, u, v) . Therefore *g* is written as follows:

$$
g_i^t(x, u, v) = \sum_{s=1}^{n-b} G_i^t(x, u) v^s + h_i^t(x, u) \quad (1 \le i \le a, 1 \le t \le n-b)
$$

where G_i^t , and h_i^t are smooth functions of $(\mathbf{\bar{x}}, \mathbf{\bar{u}})$. Since $[\Phi_*(X_i), \Phi_*(X_j)]$ is a linear combination of $\left\{\frac{\partial}{\partial n^i}\right\}$ and also is a linear combination of $\{\Phi_*(X_j), \Phi_*(Y_k)\}$, it must vanish. Let G_i be the square $(n-b)$ -matrix whose (t, s) -component is G_i^t , and $\omega = \sum_{i=1}^d -G_i(x, u) dx^i$ a $\mathfrak{gl}(n-b; R)$ -valued 1-form on $U_{\bar{x}}=$ where $u \in \mathbb{R}^{m-a}$ is regarded as a parameter. Then [0 implies that $d\omega + \omega \wedge \omega = 0$ on $U_{\bar{x}}$ and hence there exists a smooth mapping G of $\bar{x} \in U_{\bar{x}}$ into $GL(n-b; R)$ with parameter $\bar{u} \in R^{m-a}$ such that $G^{-1}dG=\omega$ on $U_{\bar{x}}$. That is, $\frac{\partial}{\partial x^i} G = -GG_i$, $(1 \le i \le m - a)$ on $U = \{(x, u) \in \mathbb{R}^m : |x^i|, |u^j| < \varepsilon\}$. We define a diffeomorphism Ψ of \tilde{U} by Ψ : $\bar{x} = \bar{x}$, $\bar{u} = \bar{u}$, $\bar{v} = \bar{y}$, $\bar{v} = G(x, u)v$. Then

$$
\Psi_{*}\Phi_{*}(\bar{X},\bar{Y}) = \Psi_{*}\left(\frac{\partial}{\partial x},\frac{\partial}{\partial u},\frac{\partial}{\partial y},\frac{\partial}{\partial v}\right)\begin{pmatrix}E_{a} & 0\\0 & 0\\0 & E_{b}\\g & 0\end{pmatrix}
$$

$$
= \left(\frac{\partial}{\partial \bar{x}},\frac{\partial}{\partial \bar{u}},\frac{\partial}{\partial \bar{y}},\frac{\partial}{\partial \bar{v}}\right)\begin{pmatrix}E_{a} & 0 & 0 & 0\\0 & E_{b-a} & 0 & 0\\0 & E_{b-a} & 0 & 0\\0 & 0 & E_{b} & 0\\k & * & 0 & G\end{pmatrix}\begin{pmatrix}E_{a} & 0 & 0\\0 & 0 & 0\\0 & E_{b}\\g & 0 & 0\end{pmatrix}
$$

where $k_i^! = -(GG_i v)^t$. Then $(k + Gg)^t_i = \sum_{i=1}^{n-b} G_s^t h_i^t$ and hence

$$
\Psi_*\Phi_*(\bar X,\bar Y)=\Big(\frac{\partial}{\partial\bar{\bar x}},\frac{\partial}{\partial\bar{\bar u}},\frac{\partial}{\partial\bar{\bar y}},\frac{\partial}{\partial\bar{\bar v}}\Big)\Bigg(\begin{matrix}E_a&0\\0&0\\0&E_b\\E&0\end{matrix}\Bigg)
$$

where each component of $\vec{k} = \vec{k}(\bar{x}, \bar{u})$ is a smooth function of $(\bar{x}, \bar{u}) \in U$. Therefore there exists a smooth mapping $\varphi(x, u)$ of *U* into $GL(n, R)$ such that

$$
\Phi_*(X,\,\bar{Y})=\left(\frac{\partial}{\partial x},\,\frac{\partial}{\partial \bar{u}},\,\frac{\partial}{\partial \bar{y}},\,\frac{\partial}{\partial \bar{v}} \right)\left(\begin{matrix}E_a&0\\0&0\\0&E_b\\E&0\end{matrix}\right)
$$

where Φ : $\mathbf{x} = x$, $\mathbf{u} = u$, $\bar{y} = y$, $\mathbf{v} = \phi(x, u)v$ and $\bar{k} = \bar{k}(x, u)$. Then the components

of \vec{k} satisfy the following: $\frac{\partial}{\partial \vec{x}^i} \vec{k}^i_j = \frac{\partial}{\partial \vec{x}^j} \vec{k}^i_i$ on U for $1 \le i, j \le a, 1 \le t \le n-a$. Therefore there exists a smooth function $K^t(\mathbf{x}, \mathbf{u})$ on U for $1 \le t \le q-a$ such that $\bar{k}^i_i = \frac{\partial}{\partial x^i} K^t$ on U for $1 \leq i \leq a$. Define a diffeomorphism Ψ of \tilde{U} by Ψ : $\bar{x} = x$, \bar{u} = \bar{u} , \bar{y} = \bar{y} , \bar{v} = v - $K(x, u)$. Then

$$
\Psi_*\Phi_*(\bar{X},\bar{Y}) = \left(\frac{\partial}{\partial \bar{x}},\frac{\partial}{\partial \bar{u}},\frac{\partial}{\partial \bar{y}},\frac{\partial}{\partial \bar{v}}\right)\begin{pmatrix} E_a & 0 \\ 0 & 0 \\ 0 & E_b \\ 0 & 0 \end{pmatrix}
$$

This completes the proof.

5.2. Non-super Frobenius' Theorem

Let *M* be a projectable manifold modeled after $E=\lim_{N} E_N$. A differential system $\mathcal D$ on M can be defined as usual: That is, for each $z{\in}M$, $\mathcal D_z$ is a vector subspace of $\mathcal{Q}_z(M)$. A differential system $\mathcal D$ on M is said to be *projectable* if for each $N \ge 0$ there exists a smooth differential system D_N on M_N such that $(D_N)_{Z_N}$ $=(p_N)_*(\mathcal{D}_z) \subset T_{\epsilon_N}(M_N)$ for each $z \in M$. Let $\mathcal D$ be a projectable differential system on M. A projectable vector field v on M is said to belong to $\mathcal D$ if $v_z{\in}\mathcal D_z$ for each *z€ΞM. 3)* is said to be *involutive* if, for any projectable vector fields *u* and *v* belonging to \mathcal{D} , $[u, v]$ also belongs to \mathcal{D} . A set $\{X_i : i \geq 1\}$ of projectable vector fields on a domain $U\subset M$ is called a *local base* of $\mathcal D$ over *U* if for each $N\geq 0$ {(X_i)_N: $1\leq i\leq d_N$ } forms a local base of the differential system D_N over an open set $U_N \subset M_N$ and $(X_i)_N = 0$ $(d_N + 1 \leq i)$ where d_N denotes the dimension of the differential system D_N . Let M be a regular manifold modeled after $E{=}\lim_k E_N$ and $\mathscr D$ a projectable differential system on M and $\{X_i\colon i\!\geq\!1\}$ a local base of $\mathscr D$ over a domain $U\subset M$. The local base $\{X_i: i\geq 1\}$ is said to be *regular* if each X_i is a regular vector field on U and $\{(X_i)_{N+1}: d_N + 1 \leq i \leq d_{N+1}\}$ are parallel vector fields on each fibre $(p_N^{N+1})^{-1}(z_N)$ where each fibre $(p_N^{N+1})^{-1}(z_N)$ is regarded as an affine space. If for each point $z \in M$ there exists a regular local base of \mathcal{D} over a domain U containing x , then $\mathcal D$ is said to be *regular*. Let M be a projectable submanifold of *M.* Then *M* is said to be an *integral mbmanίfold* of *3)* jectable submanifold of M. Then \overline{M} is said to be an *integral submanifold* of \mathcal{D}
if $\mathcal{I}_z(\overline{M}) = \mathcal{D}_z$ for each $z \in \overline{M}$. The following theorem follows from Theorem 5.1.

Theorem 5.3. Let M be a regular manifold modeled after $E = \lim E_N$ and *<i>3)* an involutive regular differential system on M. Then for any point o∈M, *there exists an integral regular submanifold of 3) through o.*

5.3. Super Frobenius' Theorem

Let M be a super manifold of dimension *(m\n).* A *super differential system*

D of $(\overline{m}|\overline{n})$ -dimension on *M* is a subbundle of $T(M)$ satisfying the following condition: for each $z \in M$, there exist a domain U containing z and super vector fields $\{X_1, \dots, X_m, \Theta_1, \dots, \Theta_n\}$ on U such that $X_\mu(1 \leq \mu \leq m)$ is even and $\Theta_p(1 \leq p \leq n)$ is odd and $\{X_1, \dots, X_m, \Theta_1, \dots, \Theta_n\}$ forms a base of $T_e(M)$ at each $z \in U$ and $\{X_1, \dots, X_{\overline{n}}, \Theta_1, \dots, \Theta_{\overline{n}}\}$ forms a base of D_i at each $z \in U$. Then $\{X_1, \dots, X_{\overline{n}}, \Theta_1, \dots, \Theta_{\overline{n}}\}$ is called a *local base* of *D* on *U*. Thus each D_{ϵ} is a normal super vector subspace of the super vector space $T_{\textit{\textbf{z}}}(M)$. A super differential system *D* on *M* is said to be *involutive* if, for any super vector field *X* and *Y* belonging to D, *[X, Y]* also belongs to *D.* A super differential system *D* on *M* defines a differential system *3)* on the non-super underlying manifold of *M* as *M* defines a differential system \mathcal{D} on the non-super underlying manifold of *M* as follows: For $z \in M$, \mathcal{D}_z is a subspace of $\mathcal{D}_z(M)$ corresponding to D_z _{[0}], the even space of D_{ε} , under the identification between $T_{\varepsilon}(M)_{[0]}$ and $\mathcal{G}_{\varepsilon}(M)$. The differential system *3)* on *M* is called the *associated differential system* with Z). Then we can prove by Lemma 1.4 that *D* is involutive if and only if *3)* is involutive.

Theorem 5.4. *Let D be a super differential system on a super manifold M and 3) the associated differential system. Then the differential system 3) is regular in the sense of non-super differential calculus.*

Proof. Let $\{X_1, \dots, X_{\overline{n}}, \Theta_1, \dots, \Theta_{\overline{n}}\}$ be a local base of D on a domain *U.* In terms of local coordinate $(U, \psi = (z^i))$, X_ν and Θ_q are written as follows:

$$
X_{\mathsf{v}}=\sum_i \frac{\partial}{\partial z^i}iX_{\mathsf{v}},\quad \Theta_{\mathsf{q}}=\sum_i \frac{\partial}{\partial z^i}i\Theta_{\mathsf{q}}\quad (1\leq \mathsf{v}\leq \overline{m}, 1\leq q\leq \overline{n}).
$$

For $1 \leq \nu \leq \overline{m}$, $1 \leq q \leq \overline{n}$, $H \in \Gamma_{\text{fol}}$ and $L \in \Gamma_{\text{fol}}$, let $\tilde{X}_{\nu}^H = (\widetilde{X_{\nu} \zeta^H})$ and $\tilde{\Theta}_{q}^L = (\widetilde{\Theta_{q} \zeta^L})$. Then $\{\tilde{X}_{\nu}^H, \tilde{\Theta}_{q}^L\}$ forms a local base for the associated differential system \mathcal{D} on U : That is,

$$
\{(\tilde{X}_{\nu}^H)_{N+1}, (\tilde{\Theta}_{q}^L)_{N+1}: 1 \leq \nu \leq \overline{m}, 1 \leq q \leq \overline{n}, H, L \in \Gamma_{N+1}, |H| = [0], |L| = [1]\}
$$

is a local base of $D_{N+1} = p_{N+1} * (\mathcal{D})$ on $U_{N+1} = p_{N+1} (U)$. Among these vector fields, each of

$$
\{(\tilde{X}_{\nu}^H)_{N+1}, (\tilde{\Theta}_{q}^L)_{N+1}: 1 \leq \nu \leq \overline{m}, 1 \leq q \leq \overline{n}, H, L \in (\Gamma_{N+1}-\Gamma_N), |H| = [0], |L| = [1]\}
$$

vanishes by the projection p_N^{N+1} of U_{N+1} onto U_N . In terms of local coordinate $(U, \psi = (zⁱ)),$ for $1 \leq \nu \leq \overline{m}$, $1 \leq q \leq \overline{n}$, $H \in \Gamma_{[0]}$ and

$$
(\tilde{X}_{\nu}^{H})_{N+1} = \sum_{i,K} i X_{\nu K} \frac{\partial}{\partial z_{K+H}^{i}} \text{ and } (\tilde{\Theta}_{q}^{L})_{N+1} = \sum_{i,K} i \Theta_{qK} \frac{\partial}{\partial z_{K+L}^{i}}
$$

where ${}^{i}X_{\nu} = \sum_{K} {}^{i}X_{\nu K} \zeta^{K}$ ($|K| = |i|$) and ${}^{i}\Theta_{q} = \sum_{K} {}^{i}\Theta_{qK} \zeta^{K}$ ($|K| = |i|+1$) and $K+H, K+L \in \Gamma_{N+1}$. If *H* and *L* are in $\Gamma_{N+1}-\Gamma_N$, then both *H* and *L* contain $N+1$ and hence all K in the above sums are in Γ_N . Therefore the coefficients of $(\tilde{X}_{\nu}^H)_{N+1}$ and $(\tilde{\Theta}_{q}^L)_{N+1}$ are functions of $z_N \in U_N$. Thus $\mathcal D$ is a regular differ-

ential system on *M.*

Theorem 5.5. *Let D be a super differential system on a super manifold M and M a regular submanifold of the underlying non-super regular manifold of M. Then if M is an integral submanifold of the associated regular differential system 3), M is a super submanifold of M.*

Proof. Let $o \in \overline{M} \subset M$ and $\{X_1, \dots, X_{\overline{n}}, \Theta_1, \dots, \Theta_{\overline{n}}\}$ a local base of D on a domain U containing o and $(U, \psi = (x^{\mu}, \theta^{\rho}))$ a local coordinate such that $\left(\frac{\overleftarrow{\partial}}{\partial x^{\nu}}\right)_{o}$ $\left(\frac{\overleftarrow{\partial}}{\partial x^{\nu}}\right)$ and $\left(\Theta_q\right)_{\theta} = \left(\frac{\overleftarrow{\partial}}{\partial \theta^q}\right)_{\theta}$ for $1 \leq \nu \leq \overline{m}$, $1 \leq q \leq \overline{n}$. We denote by π the projection of $\mathbb{R}^{m|n}$ onto $\mathbb{R}^{\bar{m}|\bar{n}}$ defined by $\pi: x^{\nu} = x^{\nu}$, $\bar{\theta}^q = \theta^q (1 \leq \nu \leq \bar{m}, 1 \leq q \leq \bar{n})$. We take U so small that $\pi_*\psi_*(X_{\nu_2})$ ($1 \le \nu \le \overline{m}$) and $\pi_*\psi_*(\Theta_{q_2})$ ($1 \le q \le \overline{n}$) are linearly independent for each $z \in U$. Let $\bar{\psi} = \pi \circ \psi \circ \iota$ a regular mapping of $U \cap \bar{M}$ into $\mathbb{R}^{\bar{m}|\bar{n}}$ where *i* denotes the inclusion of $U \cap \overline{M}$ into *U*. Then for each $z \in U \cap \overline{M}$, $\overline{\psi}_*$ is a \bm{R} -linear isomorphism of $\mathcal{I}_z(\bar{M})$ onto $\mathcal{I}_{\bar{\psi}(z)}(\bm{R}^{\bar{m}|\bar{n}})$. Thus it follows from Theorem 3.4 that if we take U sufficiently small, then $\bar{\psi}$ is a regular diffeomorphism of $U\cap\bar M$ onto a domain $\bar\psi(U\cap\bar M)$ of $\boldsymbol R^{\bar m_!\bar n}.$ Moreover we can show that $\bar{\psi}_* \circ J^{\mu} = J^{\mu} \circ \bar{\psi}_*$ for $H{\in \! \Gamma}_{\!101}$ and hence $\bar{\psi}^{-1}$ is a super imbedding of $\bar{\psi}(U\cap \bar{M})$ into *M* whose image is $U \cap \overline{M}$ and hence \overline{M} is a super submanifold of *M*.

A super submanifold \overline{M} of M is called an *integral super submanifold* of a super differential system D on M if, for each $z\!\in\!\bar{M}$, $T_{z}(\bar{M})$ equals D_{z} . Then the following theorem is a straight consequence of Theorem 5.4, Theorem 5.3 and Theorem 5.5.

Theorem 5.6. *Let D be an involutive super differential system on a super manifold M and* $o \in M$ *. Then there exists an integral super submanifold of D through o.*

References

[1] B. DeWitt: Supermanifolds, Cambridge University Press, 1984.

[2] K. Yagi: *Super Differential Calculus,* Osaka J. Math. 25 (1988), 243-257.

Kyoto Pref. University of Medicine Taishogun-Nishitakatsukasa Kita-ku, Kyoto 603