ORDERS OF KNOTS IN THE ALGEBRAIC KNOT COBORDISM GROUP

Toshiyuki MORITA

(Received July 6, 1987)
(Revised February 3, 1988)

1. Introduction

The algebraic knot cobordism group $G_{ \pm}$was introduced by Levine [4] in order to study the cobordism groups of codimension two knots. In [5], he gave a complete set of invariants for $G_{ \pm}$and showed that $G_{ \pm}$is isomorphic to $\boldsymbol{Z}^{\infty} \oplus(\boldsymbol{Z} / 2 \boldsymbol{Z})^{\infty} \oplus(\boldsymbol{Z} / 4 \boldsymbol{Z})^{\infty}$. In particular the order $a(K)$ of an odd dimensional knot K in the algebraic knot cobordism group is equal to $1,2,4$ or infinite, and it is determined as follows.

Theorem A. ([5] Prop. 22) (1) $a(K)$ is finite if and only if the local signature $\sigma_{\varphi}(K)$ vanishes for every symmetric irreducible real factor $\varphi(t)$ of the Alexander polynomial $\Delta(t)$ of K.
(2) Suppose that $a(K)$ is finite. Then $a(K)=4$ if and only if for some p adic number field \boldsymbol{Q}_{p}, there exists a symmetric irreducible factor $\lambda(t)$ of $\Delta(t)$ over \boldsymbol{Q}_{p}, such that

$$
\left((-1)^{d} \lambda(1) \lambda(-1),-1\right)_{p}=-1 \quad \text { and } \quad \varepsilon_{\lambda}(K)=1
$$

Here $(,)_{p}$ is the Hilbert symbol and $d=(1 / 2) \operatorname{deg} \lambda(t)$, and $\varepsilon_{\lambda}(K)$ is defined as follows. Let $\Phi(t)$ be the symmetric irreducible factor of $\Delta(t)$ over \boldsymbol{Q} which has $\lambda(t)$ as an irreducible factor over \boldsymbol{Q}_{p}. Then $\varepsilon_{\lambda}(K)$ is the exponent of $\Phi(t)$ in $\Delta(t)$ modulo 2.

However, in order to determine whether $a(K)=4$ or not, we must check the Hilbert symbols for every prime number. The purpose of this paper is to prove the following theorem, which improves Theorem A and enables us to determine $a(K)$ through a finite procedure.

Theorem. If $p \nmid 2 \Delta(-1)$, then $\left((-1)^{d} \lambda(1) \lambda(-1),-1\right)_{p}=+1$ for any symmetric irreducible factor $\lambda(t)$ of $\Delta(t)$ over \boldsymbol{Q}_{p}.

Thus, to determine whether $a(K)=4$ or not, it suffices to check the Hilbert
symbols only for prime factors of $2 \Delta(-1)$. By using this theorem, we determine $a(K)$ of evrey prime classical knot K up to 10 -crossings.

Acknowledgement. The author wishes to thank Professor A. Kawauchi for suggesting the problem and his helpful advice, Professor J. Tao and many people in KOOK Seminar for their encouragement.

2. Proof of Theorem

We need the following lemma for the proof of Theorem (see [7] p. 26, 13: 7).

Lemma. Let $f(t)$ be the product $f_{1}(t) f_{2}(t) \cdots f_{n}(t)$ of irreducible polynomials $f_{i}(t)(1 \leqq i \leqq n)$ in $\boldsymbol{Q}_{p}[t]$ such that $f_{i}(0)= \pm 1(1 \leq i \leq n)$. If $f(t) \in \boldsymbol{Z}_{p}[t]$, then $f_{i}(t) \in Z_{p}[t]$ for any $i(1 \leq i \leq n)$.

Proof of Theorem. If p-adic integers q, r are coprime with p and $p \neq 2$, then we have $(q, r)_{p}=+1$ (cf. [9] p. 20 Theorem 1). Hence it suffices to show that $\lambda(1) \lambda(-1) \in \boldsymbol{Z}_{p}$ and $\lambda(1) \lambda(-1) \equiv 0\left(\bmod p \boldsymbol{Z}_{p}\right)$ for any symmetric irreducible factor $\lambda(t)$ of $\Delta(t)$ in $\boldsymbol{Q}_{p}[t]$.

Since $\Delta(t)=\Delta\left(t^{-1}\right)$, there is a polynomial $F(x)$ in $\boldsymbol{Z}_{p}[x]$ such that $\Delta(t)=$ $F\left(t-2+t^{-1}\right)$ and $F_{j}(0)=\Delta(1)= \pm 1$. Let $F(x)=F_{1}(x) F_{2}(x) \cdots F_{n}(x)$ be a prime factorization of $F(x)$ in $\boldsymbol{Q}_{p}[x]$. If necessary by multiplying a constant to each factor, we may assume that $F_{j}(0)= \pm 1$ for any $j(1 \leq j \leq n)$. Then, by Lemma, $F_{j}(x) \in \boldsymbol{Z}_{p}[x]$ for any $j(1 \leq j \leq n)$. Put $\lambda_{j}(t)=F_{j}\left(t-2+t^{-1}\right)$. Then $\lambda_{j}(t)$ is symmetric and $\Delta(t)=\lambda_{1}(t) \lambda_{2}(t) \cdots \lambda_{n}(t)$.

Since $F_{j}(x)$ is irreducible in $\boldsymbol{Q}_{p}[x], \lambda_{j}(t)$ can not be decomposed into symmetric irreducible polynomials in $\boldsymbol{Q}_{p}[t]$. Hence $\lambda_{j}(t)$ is irreducible or decomposed into non-symmetric irreducible polynomials in $\boldsymbol{Q}_{p}[t]$. Hence we may suppose that $\lambda_{1}(t), \cdots, \lambda_{k}(t)$ are irreducible and $\lambda_{k+1}(t), \cdots, \lambda_{n}(t)$ are decomposedinto non-symmetric irreducible polynomials in $\boldsymbol{Q}_{p}[t]$. Since $F_{j}(x) \in$ $\boldsymbol{Z}_{p}[x]$, for any $j(1 \leq j \leq k)$,

$$
\lambda_{j}(1) \lambda_{j}(-1)=F_{j}(0) F_{j}(-4) \in Z_{p}
$$

Since $p \nmid \Delta(-1)$,

$$
\Pi_{j=1}^{n} \lambda_{j}(1) \lambda_{j}(-1)=\Delta(1) \Delta(-1) \equiv 0 \quad\left(\bmod p \boldsymbol{Z}_{p}\right) .
$$

Hence, for any $j(1 \leq j \leq k)$,

$$
\lambda_{j}(1) \lambda_{j}(-1) \equiv 0 \quad\left(\bmod p \boldsymbol{Z}_{p}\right) .
$$

This completes the proof of Theorem.

3. Application

By using our theorem, we can determine $a(K)$ of every prime knot K up to 10 -crossings. To illustrate our method, we present the calculation for the knot 8_{13}. The Alexander polynomial $\Delta(t)$ of 8_{13} is $2 t^{4}-7 t^{3}+11 t^{2}-7 t+2$. The irreducible factorization of this polynomial in $\boldsymbol{R}[t]$ is
where

$$
\begin{aligned}
\Delta(t) & =\left(\alpha t^{2}+\beta t+\gamma\right)\left(\gamma t^{2}+\beta t+\alpha\right) \\
\alpha & =(1+\sqrt{29}+\sqrt{2(\sqrt{29}-1)}) / 4 \\
\beta & =(1-\sqrt{29}) / 2 \\
\gamma & =(1+\sqrt{29}-\sqrt{2(\sqrt{29}-1)}) / 4
\end{aligned}
$$

Thus $\Delta(t)$ has no symmetric irreducible real factor and hence $a\left(8_{13}\right)$ is finite by Theorem A (1). Since $\Delta(t)$ is irreducible in $\boldsymbol{Z}[t], a\left(8_{13}\right) \neq 1$ by [3]. So we consider whether $a\left(8_{13}\right)=2$ or 4 . Since $2 \Delta(-1)=2 \cdot 29$, it sufficies to check the Hilbert symbols only for \boldsymbol{Q}_{2} and \boldsymbol{Q}_{29} by Theorem. The irreducible factorization of $\Delta(t)$ in $\boldsymbol{Q}_{2}[t]$ is

$$
\Delta(t)=(a t+b)(c t+d)\left(e t^{2}+f t+e\right),
$$

where $\quad \mathrm{a}=0+1 \cdot 2+0 \cdot 2^{2}+0 \cdot 2^{3}+\cdots, \quad \mathrm{b}=1+1 \cdot 2+0 \cdot 2^{2}+0 \cdot 2^{3}+\cdots$,
$\mathrm{c}=1+0 \cdot 2+0 \cdot 2^{2}+1 \cdot 2^{3}+\cdots, \quad \mathrm{d}=0+1 \cdot 2+1 \cdot 2^{2}+0 \cdot 2^{3}+\cdots$,
$\mathrm{e}=1+0 \cdot 2+0 \cdot 2^{2}+0 \cdot 2^{3}+\cdots, \quad \mathrm{f}=1+0 \cdot 2+0 \cdot 2^{2}+0 \cdot 2^{3}+\cdots$.
Hence, the symmetric irreducible factor of $\Delta(t)$ in $\boldsymbol{Q}_{2}[t]$ is only $e t^{2}+f t+e$. Put $\lambda(t)=e t^{2}+f t+e$. Then

$$
\begin{aligned}
\left((-1)^{d} \lambda(1) \lambda(-1),-1\right)_{2} & =(-(2 e+f)(2 e-f),-1)_{2} \\
& =\left(1+0 \cdot 2+1 \cdot 2^{2}+1 \cdot 2^{3}+\cdots,-1\right)_{2} \\
& =+1 \quad(\text { cf. [9] p. } 20 \text { Theorem } 1) .
\end{aligned}
$$

Next, we check the Hilbert symbols for \boldsymbol{Q}_{29}. In general, if $p \equiv 1(\bmod 4)$, then $(q,-1)_{p}=+1$ for any element q of \boldsymbol{Q}_{p} (cf. [9] p. 20 Theorem 1). Since $29 \equiv 1$ $(\bmod 4)$,

$$
\left((-1)^{d} \lambda(1) \lambda(-1),-1\right)_{29}=+1
$$

for any symmetric irreducibe factor $\lambda(t)$ of $\Delta(t)$ in $\boldsymbol{Q}_{29}[t]$. Hence we obtain $a\left(8_{13}\right)=2$.

The following is a table of knots up to 10 -crossings in the table of [8] with finite order in the algebraic knot cobordism group. The second column $(|\Delta(-1)|)$ is a list of the prime factorization of $|\Delta(-1)|$ of the Alexander polynomial $\Delta(t)$ of a knot K (cf. [1]). The third column $(\langle p, \lambda(t)\rangle)$ is a list of a minimal prime number and a symmetric irreducible factor $\lambda(t)$ of $\Delta(t)$
over \boldsymbol{Q}_{p} with $\left((-1)^{d} \lambda(1) \lambda(-1)_{p},-1\right)=-1$ and $\varepsilon_{\lambda}(K)=1$. In the third column, the symbol "-" denotes that there is no factor and prime number with this condition. In the last column, $o(K)$ denotes the order of a knot K in the classical knot cobordism group C_{1} introduced by [3]. The symbol "A" (resp. " S ") denotes that the corresponding knot is amphicheiral (resp. slice). Amphicheirality is copied from [1]. Sliceness is copied from [2] (cf. [6]).

K	$\|\Delta(-1)\|$	$\langle p, \lambda(t)\rangle$	$a(K)$	$o(K)$
41	5	-	2	2 (A)
61	3^{2}	-	1	1 (S)
63	13	-	2	2 (A)
77	$3 \cdot 7$	$\langle 3, \Delta(t)\rangle$	4	?
81	13	-	2	?
83	17	-	2	2 (A)
88	5^{2}	-	1	1 (S)
89	52	-	1	1 (S, A)
812	29	-	2	2 (A)
813	29	-	2	?
817	37	-	2	2 (A)
818	32.5	-	2	2 (A)
$8{ }_{20}$	3^{2}	-	1	1 (S)
914	37	-	2	?
919	41	-	2	?
9_{24}	32.5	-	2	?
927	$7{ }^{2}$	-	1	1 (S)
9_{30}	53	-	2	?
9_{33}	61	-	2	?
934	$3 \cdot 23$	$\left\langle 3, t^{2}-(1+1 \cdot 3+\cdots) t+1\right\rangle$	4	?
9_{37}	32.5	-	2	?
941	$7{ }^{2}$	-	1	1 (S)
94	17	-	2	?
946	3^{2}	-	1	1 (S)
10_{1}	17	-	2	?
10_{3}	5^{2}	-	1	1 (S)
10_{10}	$3^{2} \cdot 5$	-	2	?
10_{13}	53	-	2	?
10_{17}	41	-	2	2 (A)
10_{22}	$7{ }^{2}$	-	1	1 (S)
10_{26}	61	-	2	?
10_{28}	53	-	2	?
10_{31}	$3 \cdot 19$	$\langle 3, \Delta(t)\rangle$	4	?
10_{33}	$5 \cdot 13$	-	2	2 (A)

K	$\|\Delta(-1)\|$	$\langle p, \lambda(t)\rangle$	$a(K)$	$o(K)$
10_{34}	37	-	2	?
10_{35}	$7{ }^{2}$	-	1	1 (S)
10_{37}	53	-	2	2 (A)
10_{42}	3^{4}	-	1	1 (S)
10_{43}	73	-	2	2 (A)
10_{45}	89	-	2	2 (A)
10_{48}	7^{2}	-	1	1 (S)
10_{58}	$5 \cdot 13$	-	2	?
10_{60}	$5 \cdot 17$	-	2	?
10_{68}	$3 \cdot 19$	$\langle 3, \Delta(t)\rangle$	4	?
10_{71}	$7 \cdot 11$	$\left\langle 7, r^{2}-(5+2 \cdot 7+\cdots) t+1\right\rangle$	4	?
10_{75}	3^{4}	-	1	1 (S)
10_{79}	61	-	2	2 (A)
10_{81}	$5 \cdot 17$	-	2	2 (A)
10_{86}	83	$\langle 83, \Delta(t)\rangle$	4	?
10_{87}	3^{4}	-	1	1 (S)
10_{88}	101	-	2	2 (A)
10_{90}	$7 \cdot 11$	$\left\langle 7, t^{2}-(5+0 \cdot 7+\cdots) t+1\right\rangle$	4	?
$10{ }_{91}$	73	-	2	?
10_{96}	$3 \cdot 31$	$\left\langle 3, t^{2}-(1+1 \cdot 3+\cdots) t+1\right\rangle$	4	?
10_{99}	34	-	1	1 (S, A)
10_{102}	73	-	2	?
10_{104}	$7 \cdot 11$	$\left\langle 7, t^{2}-(5+4 \cdot 7+\cdots) t+1\right\rangle$	4	?
10_{107}	3.31	$\left\langle 3, t^{4}+(1+2 \cdot 3+\cdots) t^{3}+(0+0 \cdot 3+\cdots) t^{2}+(1+\cdots) t+1\right\rangle$	4	?
10_{109}	$5 \cdot 17$	- -	2	2 (A)
10_{115}	109	-	2	2 (A)
10_{118}	97	-	2	2 (A)
10_{119}	101	-	2	?
10_{123}	11^{2}	-	1	1 (S, A)
10_{129}	$5{ }^{2}$	-	1	1 (S)
10_{135}	37	-	2	?
10_{137}	5^{2}	-	1	1 (S)
10_{140}	3^{2}	-	1	1 (S)
10_{146}	$3 \cdot 11$	$\left\langle 3, t^{2}-(1+1 \cdot 3+\cdots) t+1\right\rangle$	4	?
10_{153}	1	-	1	1 (S)
10_{155}	5^{2}	-	1	1 (S)
10_{158}	$3^{2} \cdot 5$	-	2	?
10_{165}	32.5	-	2	?

References

[1] G. Burde and H. Zieschang: Knots, De Gruyter Studies in Math. 5, Walter de Gruyter, Berlin, 1985.
[2] J. Conway: An enumeration of knots and links, and some of their algebraic properties, Computational Problems in Abstract Algebra, Pergamon Press, New York and Oxford, 1970, 329-358.
[3] R.H. Fox and J.W. Milnor: Singularities of 2-spheres in 4-space and cobordism of knots, Osaka J. Math. 3 (1966), 257-267.
[4] J. Levine: Knot cobordism groups in codimension two, Comm. Math. Helv. 44 (1969), 229-244.
[5] J. Levine: Invariants of knot cobordism, Invent. Math. 8 (1969), 98-110.
[6] Y. Nakanishi: Table of ribbon knots, (mimeographed note).
[7] O.T. O'Meara: Introduction to quadratic forms, Springer-Verlag, Berlin, 1963.
[8] D. Rolfsen: Knots and links, Math. Lect. Series 7, Berkeley, Publish or perish Inc., 1976.
[9] J.-P. Serre: A Course in Arithmetic, Graduate Texts in Math. 7, Springer-Verlag, New York-Heidelberg-Berlin, 1970.

Department of Mathematics Osaka City University Sugimoto, Sumiyoshi-ku Osaka, 558, Japan
and
Sima Seiki Co., LTD.
Sakata, Wakayama, 641, Japan

