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Introduction

Let X and Y be normed spaces. The inclusion

(I) L(x)<=N(x)

where L: D(L)cX-*Y is a linear mapping and N: D(N)dX-*CK(Y) is a mul-
tivalued mapping, has been studied by many authors such as Mawhin (1972);
Gaines and Mawhin (1977); Tarafdar and Teo (1979) and others.

Mawhin (1972) and Gaines and Mawhin (1977) consider L a linear Fredholm
mapping with index of Fredholm p and N a possibly nonlinear mapping; Tar-
afdar and Teo (1979) consider L a linear Fredholm mapping with index of
Fredholm zero and N a multivalued mapping possibly noncompact. Using an
equivalence theorem which reduces the problem of existence of solution of (I)
to that of fixed points of an auxiliary mapping and topological degree, they
developed a degree called the coincidence degree for the pair (L, N). This
coincidence degree has been applied to nonlinear differential inclusions.

The purpose of this work is to develop a coincidence degree for the pair
(L, N) where L is a linear Fredholm mapping with index of Fredholm not neces-
sarily zero and TV a multivalued mapping that satisfies a weaker condition than
used by Tarafdar and Teo.

Using the equivalence theorem of Tarafdar and Teo ([3]-Theorem 3.1) we
prove a new equivalence theorem and we build our coincidence degree such
that, even when the index of L is strictly positive, this coincidence degree isn't
necessarily zero.

The organization of the paper is as follows: in Section 1 we introduce some
basic definitions, propositions necessary to the comprehension of the paper; in
Section 2 we present algebraic preliminaries and an equivalence theorem; in
Sention 3 we present basic assumptions and main results; in Section 4 we pre-
sent some basic properties of the coincidence degree and in Section 5 we present
an application.
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1. Degree theory for multivalued ultimately compact vector fields

Let X be a separated locally convex topological vector space which has the

additional property that for each compact subset A there is a retraction of X

onto co Ay where by co A we denote the closed convex hull of A. If X is metri-

zable then, by a theorem of Dugundji ([4]), X has the latter property.

If AdX, we let K(A) and CK(A) denote the families of closed convex and

compact convex subsets of A, respectively. A multivalued mapping T: D(T)d

X-*2X is called upper semicontinuous (u.s.c.) provided that, whenever x^D(T)

and V is an open set containing T(x), there is an open set U such that x^U and,

if y<=D(T)f\ U, then T(y)c.V. A u.s.c. multivalued mapping F: D(F)aX-+
K(X) is called a compact vector field if (I—F) (D(F)) is relatively compact.

Following [4], we are now to define the class of ultimately compact vector
field multivalued mapping and after, the topologiacl degree of such multivalued
mappings.

Let DdX be closed and T: D-+K(X) be u.s.c. We define a transfinite

sequence (K^ by induction as follows. Let KQ—cό T(D). Suppose a is an

ordinal such that Kβ has been defined for β<a. If a is an ordinal of the first

kind, let KΛ=co T(DΓ\KΛ_ ^)\ if a is an ordinal of the second kind, we let

KΛ= Π Kβ.β<<*
It is easily verified that the following properties hold for <C?O:

(i) each KΛ is closed and convex with K^Kβ for a>β\

(ii) T(KΛ Γ(D)c:KΛ for each ordinal a.

Since the transfinite sequence (K^ is nonincreasing, there is an ordinal γ
such that Kγ=Ky+l, and hence K^=Kβ for each β^γ. We define K=K(T, D)

=KΊ. Then, it is clear that T(D Π K}^K and, in fact, that cό T(D Π K ) = K .

DEFINITION 1.1. A u.s.c. multivalued mapping T: D^>K(X), where DdX

is closed, is called ultimately compact if either KΓ\D=Φ, or if KftD^pΦ,

then T(D Π K) is relatively compact. If T is ultimately compact then /— T is

called ultimately compact vector field.

DEFINITION 1.2. Let ΩdX be open and let T: Π-*K(X) be an ultimately

compact multivalued mapping with 0$#— T(x) for each #e9Ω, where 3Ω is the

boundary of Ω and Ω is the closure of β. If K Π β=Φ, we define the degree of

/— T on β with respect to zero, denoted by d(I— Γ, β, 0), to be zero. If KΓ\ β

ΦΦ, let p be a retraction of X on K and we define

d(I- T, Ω, 0) = dc(I- Tp, p(Ω), 0),

where the right-hand term is the topological degree for compact vector field
multivalued mapping given by Ma, Tsoy-Wo (1972).

To see that this topological degree is well defined and has all the usual
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properties of the topological degree studied by Ma, Tsoy-Wo, see Petryshyn

and Fitzpatrick [4].

DEFINITION 1.3 (measure of noncompactness). Let C be a lattice with a

minimal element which we denote by 0 (zero). A mapping φ: 2X-*C is called
a measure of noncompactness if for any DdX and BdX it satisfies the follow-
ing properties:

(i) φ(SD) = φ(Z>);
(ii) φ(D) = 0 if only if D is compact

(iii) φ(D U B) = max {φ(£>), φ(B)}.
It follows immediately that if DcS, then φ(D)^φ(B).

The following definition is due to [4].

DEFINITION 1.4. Let φ be a measure of noncompactness in X and let

T: DdX-*CK(X) be a u.s.c. multivalued mapping.

(i) Then T is said to be φ-condensing if φ(T(Ω)) $ φ(Ω) for all Ωc D such that
Ω, is not relatively compact. In case C is also linearly ordered, the above

condition reduces to the requirement that φ(Γ(Ω))<φ(Ω) for each ΩcD

which is not relatively compact
(ii) If we additionally assume that C is such that for each ceC and \^R with

λ>0 there is defined an element λceC, then T is said to be /^-contrac-

tion if φ(T(fί))^kφ(Sl) for each ΩdZ> and some k>0.

Proposition 1.1 ([4]). Let DdX be closed and let T: D-+CK(X) be φ-

condensing. Then T is ultimately compact.

Proposition 1.2 ([4]). Let φ: 2x-*R+= {ttΞR\ £^0} U {<*>} be a measure
of noncompactness and suppose that T: DdX-*CK(X) is a k-φ-contr action, 0<&<
1, with φ(T(D))^R. Then T is φ-condensing if either X is quasi-complete or D is

complete.

2. Algebraic preliminaries and an equivalence theorem

Let X and Y be two vector spaces and let L: D(L) C X-* Y be a linear mapp-

ing, where D(L) is the domain of L. We shall denote the kernel of L by ker L

the range of L by R(L) and the quotient space Y/R(L), the cokernel of L, by
coker L.

Given a vector subspace S of a vector space E, there always exists a pro-

jector P of E onto S (P is linear and idempotent) and E is the direct sum of

R(P) = S and ker P. If E is a topological vector space and if P is bounded,

then E is the topological direct sum of R(P) and ker P (E=R(P)®ker P).

DEFINITION 2.1. If X, Y, L are as above, let P and Q be projections on X

and Y respectively such that Λ(P)=ker L and ker Q=R(L). Such a pair (P, Q)
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will be called exact with respect to L.

DEFINITION 2.2. Let LP be the restriction of L to kerPΓ\D(L). The LP

is an isomorphism from ker PΓ\D(L) to R(L). Let KP: #(L)->ker P Γi D(L) be
the inverse of LP. KP is then called the pseudo-inverse of L associated with P.

Let π: F—> coker L be the canonical surjection. It is well known that the
restriction of π to R(Q) is an algebraic isomorphism and if Y is a topological
vector space and if coker L is equipped with the quotient topology, then π is
continuous.

It is immediate that :

p = 0; LKP = LPKP = /; KPL = /-P,

' J Q(y) = ̂ y^R(L)^πy = 0 .

Proposition 2.1 ([!]). Let P and P' be projections of X onto ker L and let
P"=aP-{-bP' for some real numbers ay b. Then P" is a projection of X onto
kerL if and only if a+b=l. Furthermore, if a-\-b=l then the pseudo-inverse
of L associated with P" is given by KP»=aKP-\-bKP'.

Proposition 2.2 ([!]). Let (P, Q) and (Pr , Q') be pairs of projections exact
with respecto to L. Then

PKP,+P'KP = 0 ,

where KP) KPs denote the pseudo-inverses of L associated with P and P' respectively.

Theorem 2.1 (equivalence theorem) ([3]). Let X and Y be two vector
spaces. Let L: D(L)c:X-+Y be a linear mapping and N: D(N) C X-+2Y be a
multivalued mapping such that D(L)ΓiD(N)^φ. Further assume that there is a
linear one-to-one mapping Ψ: coker L->ker L. Then x^D(L)Γ\D(N) is a solu-
tion of the inclusion

(2.2) L(x)<ΞN(x)

if and only if x is a fixed point of MΨ, wheer Λfψ: D(N)-+2X is defined by

(2.3) M*(x) = P(x)+[Ψπ+KP(I-Q)] N(x)

for every pair (P} Q} of exact projections with respect to L.

3. Basic assumptions and main results

In this section we assume the following assumptions:
(a) X is a Banach space and Y is a real normed space.
(b) L: D(L)C.X-+Y is a linear Fredholm mapping (i.e., R(L) is closed;
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dim kerL<oo and dim coker L<oo) with nonnegative index of Fredholm

(ind L=dim ker L— dim coker L^O).

(c) Ω is a bounded, open set in X and the multivalued mapping N: Π— »

CK(Y) is u.s.c. and ΛΓ(Π) is bounded in Y. Furthermore suppose that D(L)Γ\

ΩΦΦ.
(d) Let (P, Q) be an exact pair of projection with respect to L and let φ

be a measure of noncompactness defined from 2X into C (linearly ordered lattice)

such that φ satisfies the subadditivity condition (AdX, BdX=$>φ(A-\-B)^
φ(A)+φ(B)). We assume that with such a measure of noncompactness φ, KP

(I—Q)Nis φ -condensing and that φ[KP(I—Q) ΛΓ(Ω)]<oo. Furtheremore, we

assume that KP is bounded.

(e) Oφ(L— N) (D(L) Π 9Ω) where 9Ω denotes the boundary of Ω.

REMARK 3.1. Assumption (b) authorizes that we assume the continuity of
the exact pair of projections (P, Q). Moreover, with the quotient norm topol-

ogy, coker L is a normed space and the canonical surjection π is continuous
with respect to this topology. Also (b) implies that there exists a continuous

linear one-to-one mapping Ψ : coker L-»ker L.

Proposition 3.1. Under the assumptions (a) to (d), the condition (d) is in-

dependent of choice of the exact pair (P, Q) of continuous projections with respect

to L.

Proof. We follow the proof of Proposition 3.1 of [3]. Suppose that (P, Q)

satisfies (d) and let (P', Q') be another exact pair of continuous projections
with respect to L. Then by Proposition 2.2, we have

KP,(I-Q') N = (/-P') KP(I-Q') N

c(/-P') KP(I-Q) N+(I-P') KP(Q-Q') N

= (/-P') KP(I-Q) N+(I-P') KP(π-Q

l-π-Q}} πN ,

where KP denotes the restriction of KP to the finite dimensional subspace (Q—Q')
(Y) (KP is continuous); πQ=π/R(Q} and πQ'=π/r(Q'). Since πN(Π) is bounded

in a finite dimensional subspace of X, it follows that

φ[(/-P') gpfaϊ-πQΪ) πN(Π)] = 0 .

Hence, from the subadditivity condition on φ, it follows that KP'(I—Q') N is φ-

condensing and that φ[KP'(I— ^/)]<°° QED.

The following proposition is basic for our aim.

Proposition 3.2. If assumptoins (abed) are satisfied, then for every con-
tinuous linear one-to-one mapping Ψ : coker L-»ker L and any exact pair (P, Q)
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of continuous projections with respect to L, Mτ is a φ-condensnig multivalued mapp-
ing.

Proof. Since P, Q, KP, πy Ψ are all linear and continuous and N(x) is

convex and compact for each #eΠ, it follows that Mγ(x) is convex and compact

for each #eΠ.

Now, let ^4cΠ such that A is not relatively compact. Then,

= [P+[Ψπ+KP(I-Q)] ΛΓ] (A)^P(A)+ΨπN(A)+KP(I-Q) N(A)

and, by the subadditivity of φ,

φ[Mv(A)]^φ(P(A)]+φ[ΨπN(A)]+φ(KP(I-Q)N(A)].

Now, P(A) and ΨπN(A) are bounded subsets of finite-dimensional subspace of
X and, therefore,

Then,

-Q) N(A)] .

By assumption (d), KP(I—Q)N is φ-condensing and, therefore, the above
inequality assures that M is φ-condensing. QED.

From Proposition 1.2, we see that if assumptions (abed) are satisfied, then

Mψ is an ultimately compact multivalued mapping. It follows from the assump-

tion (e) and Theorem 2.1 Oφ(7— MΨ) (Z>(L)Γ)3Ω). Thus, the topological
degree of the multivalued mapping I—M^ on ίl with respect to zero (d[I— Mψ,
Ω, 0]) is well defined.

REMARK 3.2. If ind L— 0, we can consider Ψ: coker L— »ker L as an iso-

morphism and if we take the lattice C as R+= {ί&R; t>0} U {°°} and we con-

sider the multivalued mapping KP(I—Q)N as a Λ-set-contraction with ft<l,
then we have the work of Tarafdar and Teo ([3]).

If ind L>0, unfortunately we have the following result:

Proposition 3.3. // ind L>0 and Q&(L—N)(D(L)Γ\QΩ,) then, for each

linear one-to-one mapping Ψ: coker L-*ker L, one has d[I~My, Ω, 0]=0.

Proof. We follow the proof of Proposition 6.1. of [1] or Proposition XII. 1

of [2] where N is assumed to be single valued. First note that the condition

ind L>0 implies that there exists a linear one-to-one mapping Ψ: coker L->ker

L. Also, ind L>0 implies that R(Ψ) is a proper subspace of ker L. This

and
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R(I-My)^R[I-P-ΨπN-KP(I-Q) N]

implies that R(I—MΨ) is necessarily contained in the proper subspace of X

given by

X' = ker P®R(Ψ) .

Then, by the properties of topological degree, there exists a neighbourhood V

of the origin such that

for
If we take y in the nonvoid set FΠ CXX'(CXX' is the complement of X' in X)y

then y does not belong to the R(I— Mψ) and, consequently, d[I— Λfτ, Ω, 0]=0.

This complete the proof. QED.

However, this negative result can be overcome by modifying the multivalued

mapping Mψ related to L—N in such a way that the topological degree is no

more necessarily equal to zero, as follows (cf. Proposition XII. 3 of [2] in case

of a single valued N) :

Theorem 3.1. Under the same notation of Theorem 2.1, if ind L>0, then:

(i) every fixed point of the multivalued mapping KPN is a solution of the inclu-

sion (I) provided L is surjectίve

(ii) if L is not surjectίve, the inclusion (I) has a solution if and only if there exists
a linear one-to-one mapping Ψ: coker L->ker L such that the multivalued

mapping

P(I-Q)] N

has a fixed point, where Λψ: ker L-»ker L is a projector such that R(RV)=R(Ψ).

Proof. First suppose that L is surjective and that x is a fixed point of

KPN, i.e., x^KPN(x). Thus, L(x)^LKPN(x)=N(x). i.e., x is a solution of

(I).
Now, suppose that L is not surjective and that x is a solution of (/). Then,

it follows from Theorem 2.1 that

with

Mψ = p+[ψπ+KP(I-Q)] N

for any linear Ψ: coker L-»ker L which is one-to-one. Now let V be any sub-

spcae of ker L of dimension equal to dim coker L and containing P(x) (such a
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subspacce necessarily exists) and let Rγ be any projector in ker L such that R

(Rγ)=V. Then necessarily

P(χ) = RvP(χ)

and if we take Ψ: coker L-»ker L linear one-to-one such that R(Ψ)=V (such

a linear mapping necessarily exists) then

x) = P(x)+[Ψπ+KP(I-Q)] N(x)

= RvP(x)+(Ψπ+KP(I-Q)] X(x)

Conversely, if xGD(L) ΠΩ is a fixed point of the multivalued Mτ==-

*X/-0)] N, i.e.,

then
(I-P)(X) = KP(I-Q}(z)

P(x) = RvP

for some z&N(x). Hence,

L(x) = (I

(I-R,) P(x) = Ψ»(*) = Λ,. Ψjr(*)

which implies

(/-Λτ) P(x) = 0, ΛΨ Ψτr(^) = 0 .

Now, Ψτr(*H l?ψ Ψτr(^)— 0 implies z(=R(L). Hence (/— 0) (*)=* and there-

fore, L(x)eN(x). QED.

Let F" be a vector subspace of ker L such that dim V— dim coker L. Then,

analogously to Proposition 3.2. we have the following result whose proof is

analogous to the proof of that result.

Proposition 3.4. If assumptions (abed) are satisfied, then for every continu-
ous linear one-to-one mapping Ψ : coker L— *ker L and any exact pair (P, Q) of

continuous projections with respect to L, the multivalued mapping Mγ stated in
Theorem 3.1 is φ-condensing and, for each x

Then, under the assumption (abcde), the topological degree the multivalued
mapping /— MΨ on Ω with respect to zero is well defined. We shall denote it by
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For each vector subspace V of kerL such that dim F= dim coker L, dv[I—
Λίψ, Ω, 0] is independent of the choice of P, Q and within the same homotopy
class (here, the mappings Ψ are such that R(Ψ)= V}.

DEFINITION 3.1. For each vector subspace V of ker L such that dim V=
dim coker L, let | \ be the set of all continuous isomorphism from coker L into

V. Ψ, Ψ' are to be homotopic in | V

L if there exists a continuous mapping Ψ:

coker Lx [0,l]-»V such that Ψ( , 0)=Ψ, Ψ( , 1)=Ψ' and, for each λe[0, 1],

Ψ( ,λ)e=LL

REMARK 3.3. To be homotopic is an equivalence relation which partitions

I V

L into equivalence classes called homotopy classes.

The following two propositions and corollary are quoted from Gaines and
Mawhin(1977):

Proposition 3.5. Ψ and Ψ' are homotopic in [__£ if and only if det (Ψ' Ψ'1)

Corollary 3.1. | £ is partitioned into two homotopy classes.

DEFINITION 3.2. Ψ: coker L->Fis said to be orientation preserving if {Ψ^,
Ψ<z2, •••, Ψan} belongs to the orientation chosen in V where {alt a2> •••, an} is a
basis for coker L belonging to a certain chosen orientation. Otherwise, Ψ is said
to be orientation reversing.

Proposition 3.6. If coker L and V are oriented then Ψ and Ψ' are homo-
topic in I L if and only if they are simultaneously orientation preserving or orienta-
tion reversing.

DEFINITION 3.3. Let V be as given above and suppose that assumptions
(abcde) are satisfied and Ψ is an orientation preserving continuous isomorphism
from coker L into V. Then, the coincidence degree of L and N in Ω, denoted
by Z>[(L, ΛΓ), Ω], is defined by

U dv(I—Mψ, Ω, 0) if L is not surjective
V), Ω] = Fe*ker£

\_d(I— KPN, Ω, 0) if L is surjective

where Kker L is the family of all vector subspaces V of ker L such that dim V=
dim coker L.

REMARK 3.4. Note that if ind L=0, the projector Λψ is the identity mapping
and then, Tarafdar and Teo's work ([3]) is a particular case of our work.

4. Basic properties of coincidence degree

In this section, unless otherwise specified, we shall assumed that assump-
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tions (abcde) are satisfied such that the coincidence degree is well defined.

Theorem 4.1. (a) (Existence theorem) If

then (I) has at least one solution in Ω.
(b) (Excision property) J/Ώ0CΩ is an open set such that

then,

(c) (Addivity property) 7/Ώ=Ω lUΩ2 where Ω19 Ω2 are two open sets such
that Ω tnΩ2^φ, then

D[(L, N), Ω]cZ)[(L, AT), ΩJ+Z>[(L, JV), ΩJ

Proof. This theorem follows immediately from Definition 3.3 and cor-
responding properties of topological degree of ultimately compact multivalued
mappings (see, Petryshyn and Fitzpatrick ([4])). QED.

One of the most useful properties of every concept of topological degree is
its invariance with respect to some type of homotopy. In the case of coinci-
dence degree we have the following:

Theorem 4.2. If the assumptions (ab) are satisfied and if the multivalued
mapping

tf:Πx[0, ΐ\-+CK(Y)

is such that
(?) Nisu.s.c. 0nΠx[0, 1],
(d) πN(Π X [0, 1]) is bounded,
(8) Φ[KP(I- Q) N(Π X [0, 1])] < oo and KP(I- Q) N is φ-condensing
(/) for each \&[Q, 1],

Then, D[(L, N( , λ)), Ω] is independent of λ in [0, 1].

NOTE. Here, φ, P, Q, KP are the same as given in assumption (d).

Proof. It is an easy consequence of Definition 3.3 and the corresponding
property of topological degree of an ultimately compact vector field (Petryshyn
and Fitzpatrick ([4])). QED.
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Theorem 4.3. If O is a symmetric bounded neighbourhood of the origin and
Nis odd(N(-x)=-N(x)for all x<=O) such that L(x)&N(x) for all xtΞdOΓί

D(L),thenD[(L,N),0]*{0}.

Proof. Note that, how P, O, Kpy Ψ, Rγ and are all linear, the condition on
N implies that Λίψ is also odd. Thus, by the corresponding property of
topological degree of an ultimately compact vector f eld (see [4]) and Definition
3.3, it follows that D[(L, N), O] Φ {0} . QED.

5. Application to multivalued boundary value problem for elliptic
partial differential equation

Let Gc.Rn be a bounded domain whose boundary QG is a C°°-manifold.
We will consider real -valued functions of the following type: u: G— >J?. For a
multi-index a=(aly •••, an) and a function u: G-+R the symbol

will denote the partial derivative of u (if it exists) of the order \cί\ =cc1-\ ----- \-ctn.
Let Cm(G] be a space of all functions u from G into R which are continuous

together with derivatives D*u, \cί\ <m, and let

Cf(G) = {fieC""(G): (
lat

for l<p<oo. In the space Cp

m(G) we define the norm as follows:

By HMtp(G) we will denote the Sobolev space which is the completion of
C*(G) with respect to the norm || |L.f By CcΓ(G) we will denote the space of

CO

all functions weC°°(G)— Π CW(G), which have a compact support in G.
m = 0

Let uy v: G~>Λ be two integrable functions. We say that the function v is
the α-th weak derivative of u if, for every /eCjΓ

u(x)D*f(x)dx=(-l)w{ v(x)f(x)dx.
JG

Then we write D*(u)=v.
Let LP(G), p>l. be the Banach space of all measurable functions y\

for which \ \y(u)\pdu<^ooy with the norm
JG

\\y\\, = (\ ly
J G
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The following two facts are well known (see [5]).

(5.1) Hmtt(G) = {κeL»(G); &u<=L'(G), \a\ <Lm}

Let a be such that \a\ <,m. The mapping β*\ Hmtp(G)-+Lp(G) is a con-
tinuous extension of the mapping D*: Cm(G)-*C\G}.

Let Cm(G) be the space of all functions u from G into Λ which are uni-
formly continuous together with derivatives DΛ(u) for \a\ <m.

In the space Cm(G) we define a norm putting

\X\<* Xt

Let Cw+fX(G), 0<μ<l, be the Holder space with the norm

I u L+. = \u I .+ Σ sup - : ,. g G,
ι«ι=w 1^— jΊ

We have Cw4-μ(G)cCw(G). Note the following (see [5]).
(5.2) The embedding ί : CΛ|-H/X(G)->C>M(G), given by 1(11)=^ is a completely

continuous mapping.
From the Sobolev embedding theorem (see [5]) we obtain the following:

Proposition 5.1. Let p>n. Then, for μ=l—n/pf the mapping j: HMtp(G)
-»C"M~-1+μ(G) given as follows: j(u)=uy u^Cm~1+lί(G) and u(x)=u(x) a.e. on G, is
well defined and it is a continuous mapping.

Let Ap\ Hmtp(G)-^Lp(G) be an elliptic operator given by

where

fl^( )€= Π
f» = 0

and let Bji Cm~1(G)-^>C0(G);j=lί2y ~ ,k be a differential boundary operator
given by

where wy<m, όί( )eC°°(G) for;=l, 2, •-•, k and \a\ <mjt

For a multivalued mapping/: GxRχR-*2R we formulate the following
boundary value problem:

(5.3) ) a.e. on G, \β\<m,pyn

_Bi(v) (x) = 0 for x^dGJ = 1, 2, ••-, «/2 .
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DEFINITION 5.1. We say that a multivalued mapping f:GxRxR-*2R

satisfies the Caratheodory conditions if:
(Q) for each pair (uy v) e R2, the multivalued mapping /( , u, v) is measur-

able, i.e., for every open set t/C/2, the set f~l(U> u, v)= {x^G:f(x> u. v) Π
t/ΦΦ} is Lebesque measurable;

(C2) for each x^G, the multivalued mapping /(#, , •) is u.s.c.

Theorem 5.1. Suppose that the multivalued mapping f stated in the boundary
value problem (5.3) satisfies:

(i) the Caratheodory conditions Cly C2\
(ii) for each (x,u,v)G.GχRx R, f ( x , u, v) is a convex set
(iii) |/(#, u, v) I £g(x) (1 + I u I + | v \ )p, for each (x,u,v)<=GxRxR and some

g^Lp(G) and some p, p<l.
Moreover, suppose that R(AP)=LP(G) andj(ker ^)cC°°(G), where Ap is the

elliptic operator stated above and that the system

Bj(u) (x) = 0 for xtΞdG, j = 1, 2, — , m/2

admit only a finite number of linearly independent solutions. Then, the problem
(5.3) admits a solution.

Proof. Let us put Xl=Cm'1(G) X2=Lp(G)y ρ>n and

X = {αeC -Xδ): u^Hmtp(G\ Bj(u)»G = 0, j = 1, -, m/2}

Now, let us specify the following:

N:Xl-+2x*

N(u)= {v(ΞLp(G);v(x)(Ξf(x,u(x),Dβu(x))a.e. on G}

and

So, the problem (5.3) is equivalent to the equation

L(u)€ΞN(u) .

The mapping L defined above is a linear Fredholm mapping with ind L>0.

Let P be a projection in <JSi, | |w_!> such that Λ(P)=ker L. By the Banach
theorem, the mapping (L/x^~~l: X2-*ζX, || |Lfί> is continuous, where JSΓ^ker
L&XQ with X0 a closed vector subspace of ζX^ \ !„,_!>. In virtue of (5.2) and
Proposition 5.1, we see that the mapping Kp is a completely continuous mapping
from X2 into <\Xλ, | | „_!>, where Kp is the mapping stated in the following com-
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mutative diagram:

f = i/x.JIX.(L/Xo

Let T: Xl-^C(Gy R2) be a linear continous mapping given by T(u)=(u, Dβu) for
every u^X, and let 5: C(G; R2)-*2X2 be the multivalued mapping defined by

S(u)= {ZGlS(G);Z(x)Gf(x,u(x)9υ(x))a.e. on G}

Since by condition C3,N=SoT maps a bounded set into a bounded set, the
multivalued mapping KPN is compact since Kp is a compact linear mapping.
Furthermore, by conditions (i) and (ϋ) we have that KPN is u.s.c. and for each
u^X, KpN(u) is a convex set. The closdness of KpN(u) for each u^X fol-
lows by the upper semicontinuity and the compactness of KPN.
Now, by the surjectivity of L, the projector Q stated in the Definition 3.3 is
the null operator. Then,

Kt(I~Q)N=KpN.

Still by the surjectivity of L, coker L= {OJ and then,

where ΛΪT is the multivalued mapping stated in the Theorem 3.1. Thus, if u is
a solution of L(u)&N(u), then ueKpN(u), and so, by condition (Hi) we have

where C is a positive constant. This implies that there exists a positive constant
C such that if u is a solution of L(u)^N(u) then,

So, if we take δ>C, then, for each u^9B(O, δ), we have

Let M be the multivalued mapping defined by

M(λ, u) = \KpN(u), λe [0, 1],

It is easily seen that if i/e9B(0, δ) then we have w$M(λ0, u) for each X0e [0, 1].
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So, by the homotopy property of topological degree, we have

d(I-KpN, 5(0, δ), 0) - d(I, B(0y δ), 0).

Now, it is well known that d(Iy B(0, δ), 0)=1 and so, by the existence property

of coincidence degree, we have that the equation L(u)^N(u) admit a solution,

ie, the boundary value problem (5.3) admit a solution. QED.

REMARK. Compare our application with the application 5 of [6] and note

that while in [6] the mapping S is considered injective, in our case this is ex-

changed by the more general condition dim ker S<oo. Another point to be

remarked is that our hypothesis (ϋi) of Theorem 5.1 is more general that the

condition (Cs) stated in Theorem 5.6 of [6].
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