YANG-MILLS CONNECTIONS AND MODULI SPACE

NORIHITO KOISO

(Received September 20, 1985)

0. Introduction

There are many researches on deformations of Yang-Mills connections over 4-dimensional manifolds. In this paper, we generalize the results into higher dimensional cases. In 4-dimensional case, the Hodge *-operator acts on $\Lambda^2 M$ and the notion of (anti-)self dual connection is introduced, which brings beautiful results in Atiyah, Singer and Hitchin [1], Therefore, in higher dimensional cases, we have to assume some properties on the base riemannian manifold. In [1], it is already pointed out that if *M* is a (2-dimensional) complex manifold, an anti-self dual connection defines a holomorphic structure of the bundle. Itoh [6] considers in full this situation, which we will generalize by the notion of "Einstein holomorphic connection" over a Kahler manifold. However, the moduli space of Yang-Mills connections over a higher dimensional Kahler manifold may have many singularities, and probably we can not expect that the moduli space becomes a manifold.

The fundamental notions in this paper come from [1], and fundamental idea comes from Koiso [9]. It is remarkable that the results for the moduli space of Einstein metrics and that of Yang-Mills connections are quite analogous. In fact we will get the following results.

Theorem 2.7 (c.f. [9, Theorem 3.1]). *The local pre-moduli space is a finite dimensional real analytic set.*

Corollary 6.5 (c.f. [9, Theorem 10.5]). *If the initial structure (Einstein metric or Yang-Mills connection) is compatible with a complex structure, then also around structures are compatible with some complex structures.*

Theorem 9.3 (c.f. [9, Theorem 12.3]). *Under some assumption, the local pre-moduli space has a canonical Kahler structure.*

However, there is an important difference. For Einstein metrics, we have no effective obstruction spaces for deformation ([9, Proposition 5.4]), but for Yang-Mills connections we have one (Theorem 6.9).

1. Yang-Mills connections

Let *(M,g)* be a compact riemannian manifold, *G* a compact Lie group, *P* a principal G-bundle over *M.* Denote by g the Lie algebra of *G* and by *G^P* (resp. g_p) the associated fiber bundle $P \times_{Ad} G$ (resp. $P \times_{Ad} G$). The space C of all connections of *P* is an affine space whose standard vector space is $C^{\infty}(\Lambda^1 \otimes g_P)$, where Λ* denotes the vector bundle of *p-forms* on *M* (see [1, p430]). We fix an effective representation $G \rightarrow GL(V)$ and identify a connection of P with a covariant derivation on $P \times_{G} V$ or $P \times_{G} End(V)$. In this sence, for a connection ∇ of P and an element A of $C^\infty(\Lambda^1\otimes \mathfrak{g}_P)$ the curvature tensor is transformed as

$$
(1.0.1) \t R^{\mathbf{v}+A} = R^{\mathbf{v}} + d^{\mathbf{v}}A + [A \wedge A],
$$

where d^{∇} and $\lceil \cdot \wedge \cdot \rceil$ are defined by

$$
(1.0.2) \qquad \qquad (d^{\mathbf{\nabla}}A)(X, Y) = (\nabla_X A)(Y) - (\nabla_Y A)(X)
$$

and

and
(1.0.3)
$$
[A \wedge B](X, Y) = \frac{1}{2} ([A(X), B(Y)] - [A(Y), B(X)]) .
$$

We fix a G-invariant inner product on g. Then the vector bundle g_P admits a canonical fiber inner product (\cdot, \cdot) and the vector space $C^{\infty}(\mathfrak{g}_P)$ admits a (global) R inner product $\langle \cdot, \cdot \rangle$. We denote by $\|\cdot\|$ the L_2 -norm defined by $\langle \cdot, \cdot \rangle$. Define an action integral F_{YM} for connections by

(1.0.4)
$$
F_{YM}(\nabla) = \frac{1}{2} ||R^{\nabla}||^2.
$$

DEFINITION 1.1. The function F_{YM} on C is called the Yang-Mills functional, its Euler-Lagrange equation is called *the Yang-Mills equation* and its solution is called a *Yang-Mills connection.*

Let us represent the Yang-Mills equation by a tensor equation. Let ∇_t be a 1-parameter family of connections on P and set $\nabla = \nabla_0$ and $A = (d/dt)_0 \nabla_1$. Then

$$
\frac{d}{dt}\bigg|_0 F_{YM}(\nabla_t) = \left\langle \frac{d}{dt}\bigg|_0 R^{\nabla_t}, R^{\nabla} \right\rangle
$$

= $\left\langle d^{\nabla} A, R^{\nabla} \right\rangle = \left\langle A, (d^{\nabla})^* R^{\nabla} \right\rangle$
= $2 \left\langle A, \delta^{\nabla} R^{\nabla} \right\rangle$,

where $(\cdot)^*$ denotes the formal adjoint and the operator δ^{∇} from $C^{\infty}(\Lambda^p \otimes \mathfrak{g}_P)$ to $C^\infty\hspace{-3pt}\left(\Lambda^{p-1}\otimes\mathfrak{g}_P\right)$ is defined by

(1.1.1)
$$
(\delta^{\nabla} s)_{i_1 \cdots i_{p-1}} = -\nabla^l s_{li_1 \cdots i_{p-1}}.
$$

Thus Yang-Mills equation becomes

$$
(1.1.2) \t\t\t E_{YM}(\nabla) \equiv \delta^{\nabla} R^{\nabla} = 0.
$$

Next, we consider infinitesimal deformations of a Yang-Mills connection. From now on, we enlarge the space of C^* -sections to the space of H^* -sections, and denote by $H^s(E)$ the space of all H^s -sections of a fiber bundle E over M , where *s* is assumed to be sufficiently large. H^* -norm will be denoted by $|| \cdot ||_H$. The completion of the space $\mathcal C$ etc. with respect to H^3 -topology will be denoted by \mathcal{C}^{\bullet} etc.

DEFINITION 1.2. Let ∇ be a Yang-Mills connection. A solution of the equation

$$
(1.2.1) \t\t\t (E_{YM})'_{\rm v}(A) = 0
$$

is called *a Yang-Milk infinitesimal deformation,* where / denotes the Frechet derivative. The space of all Yang-Mills H^* -infinitesimal deformations is de *noted by YMID*^s(∇

$$
Lemma 1.3. \t(EYM)v'(A) = \deltavdvA + tr[Rv, A],
$$

t^{*t*} *tr*[R^{∇} , A]_{*i*} = $g^{kl}[R^{\nabla}_{ki}, A_l]$.

Proof.
$$
\frac{d}{dt}\Big|_{0} (\delta^{\nabla_{i}} R^{\nabla_{i}})_{i} = -\frac{d}{dt}\Big|_{0} \nabla_{i}^{t} R_{i}^{\nabla_{i}^{t}} = -[A^{t}, R_{i}^{\nabla_{i}}] - \nabla^{t} \Big(\frac{d}{dt}\Big|_{0} R_{i}^{\nabla_{i}^{t}}\Big),
$$

ere $A = \frac{d}{dt}\Big| \nabla_{t}.$ Q.E.D.

where $A = \frac{a}{dt}$

The automorphism group $\mathcal{Q}=C^{\infty}(G_{P})$ of the bundle P is called the gauge group of P, and it acts on *C* by pull-back as

$$
\gamma^*\nabla=\nabla+\gamma^{-1}\,\nabla\gamma\quad(\gamma\!\in\!\mathcal{G},\,\nabla\!\in\!\mathcal{C})\,.
$$

If ∇ is a Yang-Mills connection, then $\gamma^*\nabla$ is so. In particular, if γ_i is a 1parameter family of gauge transformations such that $\gamma_0 = id_P$, then ∇ ((d/dt)₀ γ _t) becomes a Yang-Mills infinitesimal deformation of ∇ .

DEFINITION 1.4. Let ∇ be a Yang-Mills connection. A Yang-Mills infinitesimal deformation is said to be *trivial* if it coincides with ∇v for some $v \in$ $H^{s+1}(\mathfrak{g}_P)$. A Yang-Mills infinitesimal deformation is said to be *essential* if it is orthogonal to all trivial Yang-Mills infinitesimal deformations. The space of all essential Yang-Mills infinitesimal deformations is *denoted by* YMEID(V).

By definition, a Yang-Mills infinitesimal deformation $A \in H^s(\Lambda^1 \otimes \mathfrak{g}_P)$ is essential if and only if $\langle \nabla v, A \rangle = 0$ for any $v \in H^{s+1}(Q_p)$, which is equivalent to that $\delta^{\gamma} A = 0$. Thus the defining equation of the space YMEID(∇) becomes

(1.4.1)
$$
\delta^{\mathbf{v}}d^{\mathbf{v}}A+\text{tr}[R^{\mathbf{v}}, A]=0
$$

and

$$
\delta^{\mathbf{v}} A = 0.
$$

This system is elliptic, and so the space $YMEID(\nabla)$ is finite dimensional and each element is C^{∞} .

The following lemma will be used later.

Lemma 1.5. *For any connection* V, *equality*

$$
(1.5.1) \t\t\t \delta^{\triangledown} E_{YM}(\nabla) = 0
$$

and decomposition

$$
(1.5.2) \tHs(\Lambda1 \otimes \mathfrak{g}_{P}) = \operatorname{Im}(\nabla | H^{s+1}) \oplus \operatorname{Ker} \, \delta^{\nabla}
$$

hold. If ∇ is a Yang-Mills connection, then the sequence

(1.5.3)
$$
C^{\infty}(\mathfrak{g}_{P}) \underset{\nabla}{\rightarrow} C^{\infty}(\Lambda^{1} \otimes \mathfrak{g}_{P}) \underset{(E_{YM})_{\nabla}}{\longrightarrow} C^{\infty}(\Lambda^{1} \otimes \mathfrak{g}_{P}) \underset{\delta^{\nabla}}{\rightarrow} C^{\infty}(\mathfrak{g}_{P})
$$

is an elliptic complex. In particular, the following decompositions as Hilbert space hold.

$$
(1.5.4) \tHs(\Lambda1 \otimes \mathfrak{g}_{P}) = \mathrm{Im}(E_{YM'} \langle H^{s+2}) \oplus YMEID \oplus \mathrm{Im}(\nabla | H^{s+1}),
$$

(1.5.5)
$$
\operatorname{Ker}(E_{YM}'|H^s) = YMEID \oplus \operatorname{Im}(\nabla |H^{s+1}),
$$

(1.5.6)
$$
\operatorname{Ker}(\delta^{\sigma}|H^s) = \text{YMEID} \oplus \operatorname{Im}(E_{YM}^{\prime}|H^{s+2}).
$$

Proof. Equality (1.5.1) is easy to check directly, but here we show it using an idea from variation. Since the function F_{YM} on C is invariant under the action of the group G , we see that

$$
(F_{YM})'_{\mathsf{V}}(\nabla v) = 0 \quad \text{for any} \quad v \in C^{\infty}(\mathfrak{g}_P),
$$

i.e.,
$$
\langle E_{YM}(\nabla), \nabla v \rangle = 0,
$$

which implies (1.5.1). Decomposition (1.5.2) follows from Lemma 13.1. Let ∇ be a Yang-Mills connection. Then the space Im ∇ is the space of trivial infinitesimal deformations, hence $(E_{YM})^\prime_\nabla$ \propto ∇ $=$ 0 . From equality (1.5.1) we derive the equality

$$
(\delta^{\mathbf{v}})' \cdot E_{YM}(\nabla) + \delta^{\mathbf{v}}(E_{YM})'_{\mathbf{v}} = 0.
$$

Thus sequence (1.5.3) is a complex, and its ellipticity is easy to check. Therefore we have decomposition

(1.5.7)
$$
H^{s}(\Lambda^{1} \otimes \mathfrak{g}_{P}) = \text{Im}(\nabla | H^{s+1}) \oplus \text{Im}((E_{YM})\zeta^{*} | H^{s+2})
$$

$$
\oplus \text{Ker } \nabla^{*} \cap \text{Ker}(E_{YM})\zeta.
$$

Here we have $\nabla^* = \delta^{\nabla}$ and so we get (1.5.4) if we show that $(E_{YM})'_{\nabla}$ is selfadjoint. But we see

$$
\langle (E_{YM})'_{\scriptscriptstyle \rm Y}(A), B \rangle = (\text{Hess } F_{YM}) (A, B) ,
$$

regarding F_{YM} as a function on \mathcal{C}^s , hence $(E_{YM})^{\prime}_{\nabla}$ is symmetric with respect to $\langle \cdot, \cdot \rangle$. Since the space $\text{Im}(\nabla | H^{s+1})$ is closed in $H^s(\Lambda^1 \otimes \mathfrak{g}_P)$, decomposition (1.5.5) is reduced to the definition of the space $YMEID(\nabla)$. If we remark that the space $\text{Ker}(\delta^{\nabla}|H^s)$ is the orthogonal complement of the space $\text{Im}(\nabla|H^{s+1}),$ then $(1.5.6)$ follows from $(1.5.4)$. $Q.E.D.$

2. Moduli space of Yang-Mills connections

To define "local pre-moduli space", we need some preparation. We use some basic facts on C^* -maps in Hilbert space category. (See Lemmas 13.2, 13.3.)

Remark that the space \mathcal{G}^s = $H^s(G_P)$ is a C^{\bullet} -(infinite dimensional) Lie group. In fact, if we take a complexification G^c of G and set $G_f^c = P \times_{Ad_g} G^c$, then to multiply and to get inverse element are extended to maps: $H^s(G\mathcal{G})\times H^s(G\mathcal{G})$ \rightarrow $H^s(GF)$, $H^s(GF) \rightarrow H^s(GF)$ so that the restriction on each fiber is holomorphic. Therefore, by Lemma 13.3, they are C^{ω} .

Let ∇ be a connection and \mathcal{G}^s_{σ} the group of isotropy, i.e., $\mathcal{G}^s_{\sigma} = {\gamma \in \mathcal{G}^s; \nabla \gamma = \mathcal{G}^s}$ 0} (see (1.3.1)). Since ∇ is an elliptic operator, we see that $\mathcal{G}^s_{\sigma} = \mathcal{G}^{\infty}_{\sigma}$ and so we simply denote it by $\mathcal{G}_{\mathbf{v}}$. The exponential map exp: $\mathbf{g} \rightarrow G$ defines a $C^{\mathbf{w}}$ -map $\exp^{\mathbf{s}}$: $H^{s}(g_{p}) \rightarrow \mathcal{G}^{s}$ (by Lemma 13.3) and we can easily check that the quotient space \mathcal{G}_{∇} *G*^s admits a C^ω-structure and that there exists a local cross section χ^s : \mathcal{G}_{∇} \ \mathcal{G}^s \rightarrow *G*^s so that the domain *U*^s is uniform on *s*, i.e., equations U^{s+1} = ($\mathcal{G}_{\nabla} \backslash \mathcal{G}^{s+1}$) \cap *U*^s and $\chi^{s+1} = \chi^s \, | \, U^{s+1}$ hold for any *s*. Define a C^{ω} -map

$$
\mathcal{A}^s\colon U^{s+1} \times (\nabla + \text{Ker}(\delta^{\nabla} | H^s)) \to \mathcal{C}^s
$$
 by

$$
\mathcal{A}^s(u, \nabla_1) = \chi^{s+1}(u)^* \nabla_1.
$$

Its derivative at ([id], ∇) is given by

$$
(v, A) \rightarrow \nabla(\chi'_{\text{fid}}(v)) + A ,
$$

and is bijective by decomposition (1.5.2). Therefore there exists a local inverse map $({\mathcal{A}}^s)^{-1} = q^s \times p^s$: $C^s \to U^{s+1} \times (\nabla + \text{Ker}(\delta^{\nabla} | H^s))$. By an analogous way with Ebin's Slice theorem in [4, Theorem 7.1], we get the following

Proposition 2.1. Let $\nabla \in C^{\infty}$. There exist a neighbourhood U^{s+1} of [id] in $\mathcal{G}_{\rm v}\backslash\mathcal{G}^{s+1}$, a neighbourhood V^s of ∇ in $\nabla+{\rm Ker}(\delta^{\rm v}|H^s)$ and a neighbourhood \overline{W}^s of V *in C^s so that*

 \mathcal{A}^s : $U^{s+1} \times V^s \rightarrow W^s$

is a C^{∞} -diffeomorphism. Moreover if $\gamma \in \mathcal{Q}_{\sigma}$ then $\gamma^{*}(V^{s}) = V^{s}$, and $\gamma^{*}(V^{s}) \cap V^{s}$ \neq ϕ *if and only if* $\gamma \in \mathcal{G}_{\sigma}$.

Proof. Only the last statement is not shown. Since $\mathcal{Q}_{\mathbf{v}}$ is a compact group and preserves Ker γ^{∇} , taking $\bigcap_{\gamma \in \mathcal{L}} \gamma^*(V^*)$ if necessary, we may assume that $\gamma^*(V^*) = V^*$ if $\gamma \in \mathcal{Q}_{\gamma}$. We now show that if $\gamma^*(V^*) \cap V^* \neq \phi$ then $\gamma \in \mathcal{Q}_{\gamma}$. If [γ] belongs to U^{s+1} , then bijectivity of \mathcal{A}^s implies that $\gamma \in \mathcal{G}_{\nabla}$. Hence we assume that for any V^s there is $\gamma \in \mathcal{Q}^{s+1}$ such that $\gamma^*(V^s) \cap V^s \neq \phi$ but $[\gamma] \notin U^{s+1}$. This means that there are a sequence $\{\gamma_i\}$ in \mathcal{G}^{s+1} and sequences $\{\nabla_{1i}\}$ and $\{\nabla_{2i}\}$ in $(\nabla + \text{Ker}(\delta^{\nabla} | H^s))$ which converge to ∇ such that $\gamma^* \nabla_{1i} = \nabla_{2i}$ and $[\gamma_i] \notin U^{s+1}$. Then by the following lemma, a subsequence of $\{\gamma_i\}$ converges to an element γ_{∞} in \mathcal{Q}^{s+1} , and so $\gamma_{\infty} \in \mathcal{Q}_{\sigma}$ and $[\gamma_i] \in U^{s+1}$ for some *i*, which contradicts the assumption. $Q.E.D.$

Lemma 2.2. Let $\{\gamma_i\}$, $\{\nabla_{ii}\}$ and $\{\nabla_{2i}\}$ be as above. Then a subsequence of $\{\gamma_i\}$ converges in \mathcal{G}^{s+1} .

Proof. The equation $\gamma_i^* \nabla_{1i} = \nabla_{2i}$ is equivalent to the equation $\gamma_i^{-1} \nabla_{1i} \gamma_i =$ $\nabla_{2i} - \nabla_{1i}$. Set $A_i = \nabla_{1i} - \nabla$ and $B_i = \nabla_{2i} - \nabla$. Then we see that $\nabla \gamma_i = \gamma_i(B_i - A_i)$ $-A_i\gamma_i$. In general, we have

$$
||\gamma_i||_t < C_1||\nabla \gamma_i||_{t-1} + C_2||\gamma_i||_0
$$

for some real number C_1 and C_2 , and $||\gamma_i||_0 < C_3$ since G is compact. Therefore

$$
||\gamma_i||_i < C_1 ||\gamma_i(B_i - A_i) - A_i \gamma_i||_{i-1} + C_2 \cdot C_3.
$$

Since the multiplication: $H^s \times H^t \rightarrow H^t$ for $t \leq s$ is continuous (see [12, Section 9]), we see that

$$
||\gamma_i||_t < C_1 ||\gamma_i||_{t-1} (||A_i||_s + ||B_i||_s) + C_2 \cdot C_3 \quad (t-1 \leq s).
$$

Thus we see by induction that the sequence $||\gamma_i||_{s+1}$ is bounded, and so a subsequence of $\{\gamma_i\}$ converges in H^s , which we replace by $\{\gamma_i\}$. Then we have

$$
\nabla(\gamma_i-\gamma_j)=(\gamma_i(B_i-A_i)-A_i\,\gamma_i)-(\gamma_j(B_j-A_j)-A_j\,\gamma_j)\,,
$$

and so

$$
||\gamma_i-\gamma_j||_{s+1}\!<\!C_4||\gamma_i-\gamma_j||_s\!+\!C_5||\gamma_i\!-\!\gamma_j||_0
$$

for some C_4 and C_5 , and $\{\gamma_i\}$ is a Cauchy sequence in H^{s+1} -topology. Q.E.D.

DEFINITION 2.3. The manifold *V^s* in Proposition 2.1 is called *the slice at* ∇ and is *denoted by* S_{τ}^s .

A priori, the slice may degenerate for $s \rightarrow \infty$. But we have following lemmas, which say that we can take slices "uniformly" and they are "natural".

Lemma 2.4. Let $t \geq s$ and set $U^{t+1} = U^{s+1} \cap (G_{\nabla} \backslash \mathcal{Q}^{t+1})$, $V^t = V^s \cap \mathcal{C}^t$ and W' = $W^s \cap C^t$. Then Proposition 2.1 holds when s is replaced by t.

Proof. It is sufficient to prove for $t = s+1$. The map

$$
\mathcal{A}^{s+1} \colon U^{s+2} \times V^{s+1} \to W^{s+1}
$$

is a C^{∞} -injective immersion.

(surjectivity) Let $\nabla_1 \in W^{s+1}$. Then there is $\gamma \in \pi^{-1}(U^{s+1})$ so that $\gamma^* \nabla_1 \in$ *V*^s. Set $A_1 = \nabla_1 - \nabla$ and $A_2 = \gamma^* \nabla_1 - \nabla$. Then $A_1 \in H^{s+1}(\mathfrak{g}_P)$, $A_2 \in H^s(\mathfrak{g}_P)$, and $\nabla \gamma = \gamma A_2 - A_1 \gamma$. Since $\delta^{\gamma} A_2 = 0$, we have

$$
\delta^{\tt v}\nabla\gamma={\rm tr}(\nabla\gamma\!\otimes\! A_2)\!-\!\delta^{\tt v}\!(A_1\gamma)\,,
$$

where $\nabla \gamma \otimes A_2 \in H^s$ and $\delta^{\triangledown}(A_1 \gamma) \in H^s$. Thus $\gamma \in \mathcal{Q}^{s+2}$.

(surjectivity of derivative) Let $u_0 \in U^{s+2}$ and $\nabla + A_0 \in V^{s+1}$. Then the derivative of the map \mathcal{A}^{\prime} is given by

$$
(\mathcal{A}^{s})'_{(u_{0},\nabla+A_{0})}(u',A')
$$

= $\chi(u_{0})^{*}\{\nabla(\varphi'(u'))+\nabla(\varphi'(u'))+\nabla(\varphi'(u'))\nabla(\$

where φ is defined by $\varphi(u) = \chi(u) \cdot \chi(u_0)^{-1}$. Let *B* be any element of $H^{s+1}(\mathfrak{g}_P)$. Then there are $u' \in T_{u_0}U^{s+1}$ and $A' \in T_{A_0}V^s$ so that

$$
\chi(u_0)^* \left\{ \nabla (\varphi'(u')) + [A_0, \varphi'(u')) \right\} + A' \right\} = B.
$$

This implies that

$$
\delta^{\triangledown}(\varphi'(u')) = \delta^{\triangledown}(\chi(u_0)^{-1*}B - [A_0, \varphi'(u')]).
$$

where the right hand side belongs to H^{s-1} . Thus $\varphi'(u')$ \in H^{s+1} , and so the right hand side belongs to H^s , and $\varphi''(u') \in H^{s+2}$. Therefore $u' \in H^{s+2}$ and $A' \in H^{s+1}$. Q.E.D.

Lemma 2.5. Let $\nabla_1 \in S^s_{\nabla}$. If there is $\gamma \in \mathcal{G}^{s+1}$ such that $\frac{d}{dx}$. In particualr, if $\gamma^* \nabla_1 \in \mathbb{C}^\infty$, then $\nabla_1 \in \mathbb{C}^\infty$.

Proof. Let $\{\gamma_i\}$ be a sequence in \mathcal{Q}^{t+1} which converges to γ in H^{s+1} topology. Then $\gamma_i^{-1*}\gamma^*\nabla_1 \rightarrow \nabla_1$ in \mathcal{C}^s , and so for some $i\gamma_i^{-1*}\gamma^*\nabla_1$ belongs to W^s in Proposition 2.1. But here $\gamma_i^{-1} * \gamma^* \nabla_1 \in \mathcal{C}^t$. Therefore by Lemma 2.4 $\gamma_i^{-1} * \gamma^* \nabla_1$
 $\in W^t$, and so $\pi(\gamma \gamma_i^{-1}) \in U^{t+1}$ and $\nabla_1 \in \mathcal{S}^t_\nabla$. Q.E.D. in Proposition 2.1. But nere
 $\in W^t$, and so $\pi(\gamma\gamma_i^{-1}) \in U^{t+1}$

Corollary 2.6. Let $\nabla_1 \in S^s_{\sigma}$ be a Yang-Mills connection. Then $\nabla_1 \in S^s_{\sigma}$.

Proof. By Theorem 12.1, *Vι* satisfies the condition in Lemma 2.5. Q.E.D.

Theorem 2.7. Let ∇ be a Yang-Mills connection. There are a neigh*bourhood* U^s *of* ∇ *in* \mathcal{S}^s_∇ *and a closed C*^ω-submanifold Z of U^s whose tangent space at ∇ coincides with YMEID(∇) such that the set YMLPM(∇) of all Yang-*Mills connections in U^s is a real analytic set of Z. Moreover, the spaces Z and YMLPM(V) do not depend on s.*

Proof. Set $\varphi^s = E_{YM} | S_{\nu}^s$. Then by (1.5.2) we see

$$
\operatorname{Im} \varphi_{\operatorname{v}}^{s} = E_{YM^{'}}(\operatorname{Ker}(\delta^{\operatorname{v}}|H^s)) = \operatorname{Im}(E_{YM^{'}}\nolimits_{\operatorname{v}}|H^s) .
$$

On the other hand, from (1.5.4) and (1.5.5) we have

$$
H^{s-2}(\Lambda^1\otimes \mathfrak{g}_P)=\operatorname{Im}(E_{YM^{'}}\vert H^s)\oplus \operatorname{Ker}(E_{YM^{'}}\vert H^{s-2})\,.
$$

Let p^s (resp. q^s) be the projectoin to the first (resp. second) component. Then the C^{ω} -map $p^s \circ \varphi^s$ has surjective derivative at ∇ and by the implicit function theorem there is a neighbourhood U^s of ∇ in S^s_{∇} so that the set $Z = {\nabla_1 \in U^s \mid p^s}$ $\circ \varphi^s(\nabla_1) = 0$ } is a C[®]-submanifold of U^s . The tangent space $T_{\nabla}Z$ coincides with the space $YMEID(\nabla)$ and the set $YMLPM(\nabla)$ is the zero of the map $q^s \circ \varphi^s$ on Z .

Next we have to show that if we set $Z^t {=} Z \cap S^t_{\nabla}$ and $U^t {=} U^s \cap S^t_{\nabla}$ for $t {\geq} s$ then Z^i coincides with Z as manifold and $p^i \circ p^i$ has surjective derivative at any point of Z^t . Let $\nabla + A \in Z$. Then by the definition of *Z* and Lemma 1.5 we have

$$
\delta^{\texttt{v}} A = 0 \,, \quad E_{YM}{}'_{\texttt{v}} (E_{YM}(\nabla + A)) = 0 \,.
$$

Since this is an elliptic system, A is C^{∞} , and so $Z^t = Z$ as set. Let $\nabla_1 \in Z^t$. Since $p^s \circ \varphi^s$ has surjective derivative at ∇_1 , for any $A \in \text{Im}(E_{YM}^\prime \sigma_1 | H^t)$ there are $Ker(\delta^{\mathbf{v}}|H^s)$ and $C \in Ker(E_{TM'v}|H^s)$ so that $(\varphi^s)'_{Y_1}(B) = A+C$. Then

$$
E_{YM^{'}\mathbf{v}^{\mathbf{0}}}(\varphi^{\mathbf{s}})'_{\mathbf{v}_\mathbf{t}}(B)=E_{YM^{'}\mathbf{v}}(A){\in}H^{t-\mathbf{4}}\,,
$$

and $\delta^{\triangledown}B=0$. Therefore $B\in H^t$, which implies that $p^{t}\circ\varphi^t$ has surjective derivative at ∇_1 , and so Z^t is a closed C^{∞} -submanifold of U^t . Moreover, the identity: $Z^t \rightarrow Z$ is bijective and its derivative also, hence is a diffeomorphism. Q.E.D.

DEFINITION 2.8. The set *YMLPM(V)* is called *the local pre-moduli space of Yang-Mills connections around* ∇ and the set Z is called its *support manifold*.

We may summarize results as

Theorem 2.9. Let ∇ be a Yang-Mills connection. The local pre-moduli *space YMLPM(V) of Yang-Mills connections has the following properties, a)* *YMLPM(* ∇ *)* \subset *S* \degree . *b) If* ∇ *₁ is a Yang-Mills connection sufficiently close to* ∇ *, then there is* $\gamma \in \mathcal{G}^{s+1}$ so that $\gamma^*\nabla_1 \in YMLPM(\nabla)$. c) If $\gamma^*YMLPM(\nabla) \cap YMLPM(\nabla)$ $\neq \phi$ for $\gamma \in \mathcal{G}^{s+1}$, then $\gamma^* \nabla = \nabla$, i.e., $\nabla \gamma = 0$.

REMARK 2.10. The global moduli space $\mathcal{G}\setminus\{Yang-Mills$ connections} is locally homeomorphic with the coset space $\mathcal{Q}_{\mathbf{v}} \backslash YMLPM(\nabla)$. Since $\mathcal{Q}_{\mathbf{v}}$ is a compact Lie group, almost all local properties of the global moduli space is reduced to that of *YMLPM(V).*

Corollary 2.11. (1) Let ∇ be a Yang-Mills connection. If YMEID(∇) $=0$, then $[\nabla]$ is isolated in the global moduli space of Yang-Mills connections. (2) *The Yang-Mills functional FYM is constant on the space YMLPM, and locally* constant on the global moduli space. (3) If a connection ∇ minimizes the func*tional* F_{YM} on C, then any Yang-Mills connection sufficiently close to ∇ also min*imizes FYM.* (4) *Any Yang-Mills connection sufficiently close to a flat connection is flat.* (5) *Let M be ^-dimensional. Any Yang-Mills connection sufficiently close to a self -dual (resp. anti self -dual) connection ts self -dual (resp. anti self -dual).*

Proof. (1) The assumption implies that the support manifold *Z* is a point. (2), (3) The set *YMLPM* forms a real analytic set and its points are critical points of F_{YM} . (4) A connection ∇ is flat if and only if $F_{YM}(\nabla)=0$. (5) A connection ∇ is (anti) self-dual if and only if $F_{YM}(\nabla)$ coincides with a topological invariant of the principal bundle (see [1, p. 432]). Q.E.D.

3. The obstruction for deformations

We have shown that the local pre-moduli space $YMLPM(\nabla)$ is a real analytic set of the support manifold. Therefore we want to know when *YMLPM* coincides with the support manifold. In this section we introduce a notion which will be used later.

Let \mathcal{P} be an open set of a Hilbert space, \mathcal{Q} and \mathcal{R} Hilbert spaces. Let E: $L^2(\mathcal{L})\to\mathcal{L}$ and $I\colon \mathcal{L}\times\mathcal{Q}\to\mathcal{R}$ be C^* -maps and define $I_p\colon\mathcal{Q}\to\mathcal{R}$ for each

DEFINITION 3.1. If I_p is linear for each $p \in \mathcal{P}$ and $I_p(E(p))=0$ for all $p \in \mathcal{P}$, then *I* is called *an identity for E.*

If I is an identity for E and $E(p)=0$, then we see that $I_p \circ E'_p = 0$, i.e., Im $E'_p \subset \text{Ker } I_p$.

DEFINITION 3.2. Let *I* be an identity for *E* and assume that $E(p)=0$. The space Ker $I_p/\text{Im } E'_p$ is called *the obstruction space for E-deformations of p with respect to I.*

Lemma 3.3. Let I be an identity for E and $p \in E^{-1}(0)$. If the obstruction $space$ $\rm Ker$ $I_p/\rm Im$ E'_p vanishes, then the set $E^{-1}(0)$ around p forms a manifold whose

tangent space at p coincides with Ker *E^p , provided that one of the following conditions is satisfied.* (1) The map E is C^{\bullet} . (2) The space Im I_p is closed in \mathcal{R} .

Proof. By a similar way as in Proof of Theorem 2.7, we see that there exists the "support manifold" Z whose tangent space at p coincides with Ker E'_p such that $E^{-1}(0) = (p_c \circ E | Z)^{-1}(0)$ around p, where p_c is the projection to a $\hbox{complement C of Im E'_ρ in Q. Set $\hat{E}\!=\!E\!\mid\!Z\!\!:\,Z\!\!\rightarrow\!C$ and $\hat{I}\!=\!I\!\mid\!(Z\!\times\!C)\!\!:\,Z\!\times\!C\!\!\rightarrow$ *A*. It is enough to prove that $\hat{E}=0$. Remark that Ker $\hat{\textbf{I}}_{p}$ = Ker I_{p} \cap C = Im E_{p}^{\prime} ^Π *C=Q* and so 1^ is injective. Assume condition (2). Then Im *ΪP=I^P (C)=* $I_p(\text{Im } E'_p \oplus C) = \text{Im } I_p$, and so Im \hat{I}_p is closed in \mathcal{R} , hence \hat{I}_p is an isomorphism from *C* into \mathcal{R} . Therefore $\mathbf{1}_{p_1}$ is injective if $p_1 \in Z$ is sufficiently close to p . But here we know that $\hat{I}_{p}(\hat{E}(p_1))=0$. Thus $\hat{E}(p_1)=0$.

and setting $v = \frac{a}{dt}\Big|_0 p_t$, we get Next we assume condition (1) and show the *r*-th derivative $\hat{E}^{(r)}$ vanishes for all $r \ge 0$ by induction. By taking r-th derivative of the identity $\hat{I}_{p_t}(\hat{E}(p_t))=0$

$$
\hat{\mathrm{I}}_p(\hat{E}_p^{\langle r\rangle}(v, \, \cdots, \, v)) = -\sum_{i=1}^r \binom{r}{i} \Big(\frac{d}{dt}\Big)^i |\, \mathrm{I}_p \cdot \Big(\frac{d}{dt}\Big)^{r-i} |\, \mathrm{I}_p \hat{E}(p_t) \, .
$$

By induction we may assume that the right hand side vanishes, and so the left hand side vanishes. But we know that \hat{I}_{ρ} is injective, hence $\hat{E}_{\rho}^{(r)}=0$. Q.E.D.

REMARK 3.4. This Lemma essentially is "Kuranishi's method" ([8]).

4. The deformation of Yang-Mills connection caused by a deformation of base metric

We want apply Lemma 3.3 to a deformations of Yang-Mills connection. Unfortunately, it is not possible if we use Yang-Mills equation itself. In 6, we will introduce the notion of "Einstein holomorphic connection" and apply Lemma 3.3.

Now, by equation (1.5.1), δ^{∇} is an identity for E_{YM} , and the obstruction space

Ker δ^v/Im $E_{YM^{'}}$ _v \approx *YMEID*(∇)

by equation $(1.5.6)$.

Proposition 4.1. Let ∇ be a Yang-Mills connection. The obstruction space for E_{YM} -deformation of ∇ with respect to δ^∇ is isomorphic with the space $YMEID(\nabla)$ *of essential infinitesimal deformations.*

Hence we apply Lemma 3.3 to the situation that we deform the metric *g* on M and Yang-Mills connection follows it. Denote by \mathcal{M}^s the space of all H^{*}-riemannian metrics on M and define maps E, I by

$$
E: \mathcal{M}^{s+1} \times C^{s+2} \to H^s(\Lambda^1 \otimes \mathfrak{g}_p); \quad (g, \nabla) \to \delta_g^{\nabla} R^{\nabla},
$$

$$
I: \mathcal{M}^{s+1} \times C^{s+2} \times H^s(\Lambda^1 \otimes \mathfrak{g}_P) \to H^s(\mathfrak{g}_P); \quad (g, \nabla, \varphi) \to \delta^{\nabla} \varphi.
$$

Then *I* is an identity for *E*.

Theorem 4.2. Let ∇ be a Yang-Mills connection over (M, g) , i.e., $E(g, \nabla)$ $=0.$ If YMEID(∇) $=0$, then for any deformation g_t of g there exists a 1 -parameter family of connections ∇_i so that each ∇_i is a Yang-Mills connection with *respect to* g_t *, provided that* $|t|$ *is small.*

Proof. The obstruction space for E-deformation of (g, ∇) with respect to / coincides with the space

Ker $\delta_{\mathcal{I}}^{\triangledown}/\mathrm{Im} E^{\prime}_{(\mathcal{I},\nabla)}$,

which is a quotient space of the space $YMEID(\nabla)$ by equation (1.5.6), and vanishes by assumption. Therefore by Lemma 3.3 the set $E^{-1}(0)$ arround (g, ∇) forms a manifold whose tangent space at (g, ∇) coincides with Ker $E'_{(g, \nabla)}$. But here the projection map from Ker $E'_{(g,\nabla)}$ to $T_g\mathcal{M}^{s+1}$ is surjective, which completes the proof by the implicit function theorem. In fact, for any $h \in T_g \mathcal{M}^{s+1}$, we get $E'_{(g,\nu)}(h,0) \in \text{Ker } \delta_g^{\nu}$, therefore by equation (1.5.6) and assumption, there is $A \in$ $T_{\nabla} C^{s+2}$ such that Ker $E'_{(g,\nabla)}(h, 0) = E_{YM'}(A)$, i.e., $E'_{(g,\nabla)}(h, -A) = 0$. Q.E.D.

5. Holomorphic structures

Let M be a compact complex manifold and $P^{\bm{c}}$ a principal $G^{\bm{c}}$ -bundle, where G^c is a complexification of G . A G^c -invariant almost complex structure on P^c is called an almost holomorphic structure of P^c . If it is integrable, then it is called a holomorphic structure. An almost holomorphic structure can be regarded as a first order differential operator

$$
(5.0.1) \t\t \overline{\partial}: C^{\infty}(\mathfrak{g}_{P}^{C}) \to C^{\infty}(\Lambda^{0,1} \otimes \mathfrak{g}_{P}^{C}),
$$

and it is a holomorphic structure if and only if the torsion $T(\bar{\partial})$ of $\bar{\partial}$ vanishes, where $T(\bar{\partial}) \in C^{\infty}(\Lambda^{0,2} \otimes g_F^C)$ is defined by

$$
(5.0.2) \tT(\bar{\partial}) (X, Y)v \equiv \bar{\partial}_X \bar{\partial}_Y v - \bar{\partial}_Y \bar{\partial}_X v - \bar{\partial}_{[X,Y]} v.
$$

An almost holomorphic structure $\overline{\partial}$ extends to the operators

$$
(5.0.3) \t\overline{\partial}{}^{\rho} \colon C^{\infty}(\Lambda^{0,\rho} \otimes \mathfrak{g}_{P}^{C}) \to C^{\infty}(\Lambda^{0,\rho+1} \otimes \mathfrak{g}_{P}^{C}),
$$

and if $\overline{\partial}$ is a holomorphic structure, then they defines an elliptic complex and the cohomology groups

(5.0.4)
$$
H^{0,p}(\mathfrak{g}_P^C) \equiv \text{Ker }\overline{\partial}^p/\text{Im }\overline{\partial}^{p+1}
$$

are defined.

We can study deformations of holomorphic structures by a similar way as deformations of complex structures on manifold (c.f. [13, pp 172-176]), but we use here notations similar with [6].

The space \mathcal{AH} of all almost holomorphic structures forms an affine space with standard vector space $C^{\infty}(\Lambda^{0,1}\otimes g\mathcal{G})$, and the complex gauge group $\tilde{\mathcal{G}}^{\mathcal{C}}=$ $C^{\infty}(G_F^C)$ acts on it. Let $\mathcal{Q}_{\overline{a}}^C$ be the group of isotropy, i.e., $\mathcal{Q}_{\overline{a}}^C = \{ \gamma \in \mathcal{Q}^C | \gamma^* \overline{\partial} = \overline{\partial} \}$. Then the H^{s+1} -gauge group $\mathcal{L}^{c_{s+1}}$ acts on \mathcal{AH}^s holomorphically and the coset space $\mathcal{L}_{\overline{A}}^C \setminus \mathcal{L}^{C, s+1}$ forms a complex analytic manifold. The following proposition is proved by a similar manner as Proposition 2.1.

Proposition 5.1. Let $\overline{\partial} \in \mathcal{AH}$. There exist a neighbourhood $S_{\overline{\partial}}^{c,s}$ of $\overline{\partial}$ in $\overline{\partial}$ $+$ Ker($\bar{\partial}$ *|*H*^s), a neighbourhood $U^{c_{s+1}}$ of [id] in $\mathcal{Q}_{\bar{\delta}}$ \ $\mathcal{Q}^{\bar{c}_{s+1}}$ and a neighbourhood *W c s of 3 in JISi* so that the action*

$$
\mathcal{A}^{\mathcal{C},s}\colon U^{\mathcal{C},s+1}\times\mathcal{S}^{\mathcal{C},s}_{\bar{\delta}}\to W^{\mathcal{C},s}
$$

becomes a complex analytic diffeomorphism. Here, the formal adjoint $\bar{\partial}$ ^{*} of $\bar{\partial}$ *is defined by some (and fixed) hermitian inner product of Qp.*

Let $\bar{\partial}$ be a holomorphic structure of P^c . For $A{\in}C^\infty(\Lambda^{0,1}\otimes \mathfrak{g}^c_F)$ we see that $T(\bar{\partial}+A)=T(\bar{\partial})+\bar{\partial}^1A+[A\wedge A]$. Therefore the equation of infinitesimal deformation of holomorphic structure of $\overline{\partial}$ is given by

$$
\bar{\partial}^1 A = 0 \ .
$$

The space of all essential infinitesimal deformations of δ is given by

(5.1.2)
$$
EHID(\bar{\eth}) = \text{Ker }\bar{\eth}^1 \cap \text{Ker }\bar{\eth}^*.
$$

By a similar way as Theorem 2.7, we have

Theorem 5.2. Let $\bar{\partial}$ be a holomorphic structure. There are a neighbour*hood* $U^{c,s}$ *of* $\overline{\partial}$ *in* $S_{\overline{\delta}}^{c,s}$ *and a complex analytic submanifold* Z^c *of* $U^{c,s}$ *so that the set of all H^s -holomorphic structures in Uc>s forms a complex analytic set of Z^c .*

DEFINITION 5.3. The set of all H^s -holomorphic structures in $U^{c,s}$ is called *the local pre-moduli space of holomorphic structures around* $\overline{\partial}$ and *denoted by HLPM(ΰ).* The manifold *Z^c* is called its *support manifold.*

Equalities (5.1.2) and (5.0.4) mean that the space $HEID(\overline{\partial})$ is canonically isomorphic to $H^{0,1}(\mathfrak{g}_P^C)$. Moreover, for any $\overline{\partial} \in \mathcal{AH}$ we have

$$
\overline{\partial}^2 T(\overline{\partial}) = 0 \,,
$$

which means that $\bar{\partial}^2$ is an identity for T. Therefore, by Lemma 3.3, we get

Theorem 5.4. Let $\bar{\partial}$ be a holomorphic structure. If $H^{0,2}(\mathfrak{g}_{\mathcal{P}}^c)=0$, then the *space HLPM(ϋ) forms a (complex) manifold whose tangent space at* 3 *coincides with the space HEID(* $\overline{\partial}$ *).*

REMARK 5.5. Since the action of $\mathcal{Q}^{\mathcal{C},s+1}$ on \mathcal{AH}^s is complex analytic, the complex structure of the above space $HLPM(\bar{d})$ is canonical. I.e., if $\bar{\partial}_1 \in$ *HLPM(d)*, then the "projection map": *HLPM(d)*)→*HLPM(d)* defined by Proposition 5.1 is complex analytic.

REMARK 5.6. The space $HLPM(\overline{\delta})$ has similar properties as $YMLPM(\nabla)$ in Theorem 2.9. But property (c) does not hold for $HLPM(\bar{\partial})$, because G^c is not compact. Therefore the quatient space $\mathcal{Q}_{\bar{s}}^{\mathcal{C}}\setminus HLPM(\bar{\partial})$ is not necessarily identified with an open set of global moduli space of holomorphic structures.

6. Einstein holomorphic connections

Let (M, g) be a compact Kahler manifold, ω its Kahler form. Then the (0, 1) component of a connection ∇ on P is a almost holomorphic structure $\overline{\partial}$ of P^c . Since $T(\bar{\partial})$ coincides with the (0, 2) component of R^{σ} , $\bar{\partial}$ is a holomorphic structure if and only if R^{∇} is of type $(1, 1)$.

DEFINITION 6.1. A connection ∇ of P is said to be *holomorphic* if the (0, 1) component of ∇ is a holomorphic structure, or equiavlently, if R^{∇} is of type (1, 1). (Remark that this definition is not exactly the same with [6].)

Denote by R_H^{∇} (resp. R_S^{∇}) the hermitian (resp. skew-hermitian) part of R^{∇} . Elements of Lie algebra χ of the center $Z(G)$ of G define parallel sections of $C^{\infty}(\mathfrak{g}_P)$, and are denoted also by $\mathfrak{z}.$

DEFINITION 6.2. A holomorphic connection V is called *an Einstein holomorphic connection* if $(\omega, R^{\nu}) \in \mathfrak{z}$ as section.

For example, if $G=U(r)$, a connection ∇ is an Einstein holomorphic connection if and only if ∇ is an Einstein hermitian connection for some holomorphic structure.

Lemma 6.3 (Itoh, Personal communication). *An Einstein holomorphic connection takes the minimum value of the Yang-Mills functional* F_{YM} *on C. Conversely a connection which takes the value is an Einstein holomorphic connection.*

Proof. Let ∇ be a connection of P and consider the characteristic classes of P. For each $c \in \mathfrak{z}$, the classes represented by (c, R^{\triangledown}) and $Tr(R^{\triangledown} \wedge R^{\triangledown})$ do not depend on ∇ , and so the values $\int_M (c, R^{\nabla}) \wedge \omega^{n-1}$ and $\int_M \mathrm{Tr}(R^{\nabla} \wedge R^{\nabla}) \wedge \omega^{n-2}$ are constant for ∇ . Therefore there are $c_0 \in \mathfrak{z}$ and a real number C such that equalities

$$
\langle \omega \otimes c, R^{\mathsf{v}} \rangle = \langle c_0, c \rangle
$$

and

(6.3.2)
$$
||R_H^{\mathbf{v}}||^2 - ||R_S^{\mathbf{v}}||^2 - ||(\omega, R^{\mathbf{v}})||^2 = C
$$

hold for all ∇ . Let $(\omega, R^{\nabla}) = c_1 + v$ where $c_1 \in \mathfrak{z}$ and v is orthogonal to \mathfrak{z} with respect to the global inner product. Then

$$
\langle c_0, c \rangle = \langle c, (\omega, R^{\triangledown}) \rangle = \langle c, c_1 \rangle
$$

for any $c \in \mathfrak{z}$. Therefore $c_1 = c_0$ and

$$
||R^{\nabla}||^{2} = ||R_{H}^{\nabla}||^{2} + ||R_{S}^{\nabla}||^{2}
$$

= C+2||R_{S}^{\nabla}||^{2} + ||(\omega, R^{\nabla})||^{2}
\ge C+||(\omega, R^{\nabla})||^{2}
= C+||c_{0}||^{2} + ||\upsilon||^{2}
\ge C+||c_{0}||^{2}.

The equality $||R^{\nu}||^2 = C + ||c_0||^2$ holds if and only if $R^{\nu} - 0$ and $v = 0$, i.e., (ω, I ϵ_3 . Q.E.D.

REMARK 6.4. We saw that if ∇ is an Einstein holomorphic connection then $(\omega, R^{\mathbf{v}})=c_0$.

Corollary 6.5. *All Einstein holomorphic connections are Yang-Mills connections. Conversely all Yang-Mills connections which are sufficiently close to an Einstein holomorphic connection are Einstein holomorphic connections.*

Proof. Easy to see by Corollary 2.11 (3). Q.E.D.

Next we consider infinitesimal deformations of Einstein holomorphic connections. Define a map $E_{EH}: C^s \rightarrow H^{s-1}(\Lambda^{0,2} \otimes \mathfrak{g}_P^C) \bigoplus H^{s-1}(\mathfrak{g}_P)$ by

(6.5.1)
$$
\nabla \to (p^{0,2} R^{\nabla}, (\omega, R^{\nabla}) - c_0),
$$

where $p^{0,r}$ is the projection map from Λ^r to $\Lambda^{0,r}$ and $c_0 \in \mathfrak{F}$ is defined in Proof of Lemma 6.3. By Remark 6.4, a connection ∇ is an Einstein holomorphic connection if and only if $E_{EH}(\nabla)=0$.

DEFINITION 6.6. Let ∇ be an Einstein holomorphic connection. An element A of $H^s(\Lambda^1 \otimes \mathfrak{g}_P)$ is called an Einstein holomorphic infinitesimal deforma*tion of* ∇ if E_{EH}' $\sqrt{(A)}$ = 0. An Einstein holomorphic infinitesimal deformation is said to be *essential* if it is orthogonal to all trivial infinitesimal deformations of ∇ , and the space of all Einstein holomorphic essential infinitesimal deformations is *denoted by EHEID(V).*

By a similar way as Theorem 2.7, we get

Theorem 6.7. Let ∇ be an Einstein holomorphic connection. There are a neighbourhood U^s of ∇ in \mathcal{S}^s_{∇} and a closed C^\bullet -submanifold Z of U^s whose tangent space at ∇ coincides with $EHEID(\nabla)$ such that the set $EHLPM(\nabla)$ of all Einstein *holomorphic connections in U^s is a real analytic set of Z.*

Moreover, the combination of an obvious inclusion: $EHLPM(\nabla) \subset$ *YMLPM(* ∇ *)* and the converse inclusion *YMLPM(* ∇ *)* \subset *EHLPM(* ∇ *)* by Corollary 6.5 means that $\mathit{EHLPM}(\nabla) = \mathit{YMLPM}(\nabla)$. Let ∇ be a connection. Define a map I_{∇} : $H^{s-1}(\Lambda)$

$$
I_{\mathcal{D}}(P,\eta) = (p^{0,3}(d^{\mathcal{D}}P), \mathcal{E}^{\text{part of }\eta).
$$

Lemma 6.8. The map I is an identity for E_{EH} .

Proof. For any ∇ , we see

$$
p^{ \scriptscriptstyle 0,3}(d^{\scriptscriptstyle \nabla}(p^{ \scriptscriptstyle 0,2}R^{\scriptscriptstyle \nabla}))=p^{ \scriptscriptstyle 0,3}(d^{\scriptscriptstyle \nabla}R^{\scriptscriptstyle \nabla})=0\ ,
$$

and (6.3.1) means that δ -part of (ω , R^{\triangledown}) $-c_0$ vanishes. Q.E.D.

Therefore if ∇ is an Einstein holomorphic connection and Ker $I_{\mathrm{v}}/ \mathrm{Im}~E_{EH}$ ['] vanishes, then the local pre-moduli space $EHLPM(\nabla)$ of Einstein holomorphic connections forms a manifold with tangent space $EHEID(\nabla)$ at ∇ .

Theorem 6.9. Let ∇ be an Einstein holomorphic connection. In general, the *space EHLPM(V) forms a real analytic set of the support manifold Z whose tangent* s pace at ∇ is isomorphic with the cohomology group $H^{0,1}(M,\mathfrak{g}_P^C).$ If $H^{0,2}(M,\mathfrak{g}_P^C)\!=\!0$ and $H^0(M,\mathfrak{g}_P^c)$ \cong $\mathfrak{g}^{\overline{c}}$, then the psace $EHLPM(\nabla)$ coincides with the support manifold.

Proof. We must show that $EHEID(\nabla) \!\! \simeq \! H^{0,1}(M, \mathfrak{g}^C_P)$ and Ker $I_{\mathrm{v}}/\mathrm{Im} \; E_{\mathit{EH}}'$, \cong $H^{0,2}(M,\mathfrak{g}_{\mathbb{F}}^G)\oplus H^0(M,\mathfrak{g}_{\mathbb{F}})/\mathfrak{z}$, where $H^0(M,\mathfrak{g}_{\mathbb{F}})$ denotes the vector space of all

parallel sections of
$$
\mathfrak{g}_P
$$
. First we see that the sequence
(6.9.1) $C^{\infty}(\mathfrak{g}_P) \xrightarrow{\sim} C^{\infty}(\Lambda^1 \otimes \mathfrak{g}_P) \xrightarrow{C^{\infty}} (\Lambda^{0,2} \otimes \mathfrak{g}_P^C) \oplus C^{\infty}(\mathfrak{g}_P) \xrightarrow{\longrightarrow} C^{\infty}(\Lambda^{0,3} \otimes \mathfrak{g}_P^C)$

is an elliptic complex. Therefore

(6.9.2)
$$
\text{(Ker } I_{\text{v}}/\text{Im } E_{EH} \prime_{\text{v}}) \oplus \text{3} \cong \text{Ker } (\text{pro } I_{\text{v}})/\text{Im } E_{EH} \prime_{\text{v}}
$$

$$
\cong \text{Ker } (\text{pro } I_{\text{v}}) \cap \text{Ker } (E_{EH} \prime_{\text{v}})^* .
$$

Let (P, η) \in Ker $(\text{pro} I_{\nu})$ \cap Ker $(E_{\mathit{EH}}'_{\nu})^*$. We easily see that

(6.9.3)
$$
(\omega, d^{\mathbf{\nabla}} A) = 4 \operatorname{Re}(\sqrt{-1} \nabla^{\mathbf{\vec{a}}} A_{\mathbf{\vec{a}}}).
$$

Thus $(P, \eta) \in \text{Ker}(E_{EH} \eta)^*$ means that

(6.9.4)
$$
\langle (P,\eta), (p^{0.2}(d^{\mathbf{\nabla}}A), 4\operatorname{Re}(\sqrt{-1}\nabla^{\vec{\mathbf{a}}}A_{\vec{\mathbf{a}}})) \rangle = 0
$$

for all $A\!\in\!C^\infty\!(\Lambda^1\!\otimes\! \mathfrak{g}_P)$, from which we have

(6.9.5)
$$
-\nabla^{\bar{\beta}}P_{\bar{\beta}\bar{\alpha}}+2\sqrt{-1}\,\nabla_{\bar{\alpha}}\eta=0.
$$

Here we know that $\nabla^{\vec{\alpha}}\nabla^{\vec{\beta}}P_{\vec{\beta}\vec{\alpha}}{=}0$ since ∇ is Einstein. Therefore we see that

(6.9.6)
$$
-\nabla^{\bar{\beta}}P_{\bar{\beta}\bar{\alpha}}=0 \text{ and } \nabla\eta=0.
$$

Combining with the assumption that $(P, \eta) \in \text{Ker}(\text{pr} \circ I_{\nu})$, we see that P is harmonic and η is parallel. The converse is obvious, and we get

$$
(6.9.7) \quad \text{Ker}(\text{pro}I_{\mathbf{v}}) \cap \text{Ker}(E_{EH}^{\prime}\mathbf{v})^* \simeq H^{0.2}(M, \mathfrak{g}_F^{\mathbf{c}}) \oplus H^0(M, \mathfrak{g}_P).
$$

Let $A \in EHEID(\nabla)$. Then by definition and equality (6.9.3) we get

(6.9.8)
$$
\nabla_{\bar{\mathbf{a}}} A_{\bar{\mathbf{p}}} - \nabla_{\bar{\mathbf{p}}} A_{\bar{\mathbf{a}}} = 0,
$$

$$
(6.9.9) \t\t \nabla^{\vec{a}} A_{\vec{a}} \in C^{\infty}(\mathfrak{g}_P)
$$

and

(6.9.10)
$$
\nabla^{\bar{a}} A_{\bar{a}} + \nabla^{\bar{a}} A_{\bar{a}} = 0.
$$

Thus we see that $p^{0,1}A$ is harmonic and so the first isomorphism holds. Q.E.D.

The above results are resumed as follows.

Theorem 6.10. Let ∇ be an Einstein holomorphic connection. The space $EHLPM(\nabla)$ coincides with the space YMLPM(∇) around ∇ *, which is a real analytic set of the support manifold Z whose tangent space at* ∇ *coincides with the space* $\widetilde{EHEID}(\nabla)$. If $H^{0.2}(M, g_F^C)=0$ and $H^0(M, g_F^C)=3^C$, then the space $\widetilde{EHLPM}(\nabla)$ *coincides with the support manifold Z.*

REMARK 6.11. The above statement suggests the equality $YMEID(\nabla)$ = *EHEID(* ∇ *)*, which in fact holds.

7. The deformation of Einstein holomorphic connections caused by a deformation of complex structure of the base manifold

In this section we discuss on deformations of Einstein holomorphic connections in a similar situation as in section 4. Let *(M, J, g)* be the base Kahler manifold and (J_t, g_t) be a one-parameter family of Kähler structure such that $(J_0, g_0) = (J, g)$. Define maps *E*, *I*

$$
E: (-\varepsilon, \varepsilon) \times C^s \to H^{s-1}(\Lambda^{0,2} \otimes \mathfrak{g}_{\varepsilon}^c) \oplus H^{s-1}(\mathfrak{g}_{\varepsilon}),
$$

$$
I_{(t,\nabla)}: H^{s-1}(\Lambda^{0,2} \otimes \mathfrak{g}_{\varepsilon}^c) \oplus H^{s-1}(\mathfrak{g}_{\varepsilon}) \to H^{s-2}(\Lambda^{0,3} \otimes \mathfrak{g}_{\varepsilon}^c) \oplus \mathfrak{z}
$$

by

$$
E(t, \nabla) = (p^{0.2} R^{\nabla_t}, (\omega_t, R^{\nabla_t})_t - c_t)
$$

and

$$
I_{(t,\nabla)}(P,\eta)=(p^{0,3}(d^{\nabla_t}P),\,\,\text{\textit{z-part of}}\,\,\eta)\,,
$$

where all operators and $c_t \in \mathfrak{z}$ depending on base Kahler structure are defined by (J_t, g_t) . Then we know that *I* is an identity for *E*.

Theorem 7.1. Let ∇ be an Einstein holomorphic connection on (M, J, g) . *If* $H^{0,2}(M, g_P^C) = 0$ and $H^0(M, g_P) = 3$, then for any deformation (J_t, g_t) of Kähler *structures of* (J, g) there exists a one-parameter family of connections ∇_i of P so that each ∇_t is an Einstein holomorphic connection over (M, J_t, g_t) , provided that *\t\ is sufficiently small. Moreover, each local pre-moduli space EHLPM(V^t) over* (M, J_t, g_t) forms a manifold of the same dimension.

Proof. The obstruction space for E-deformation of $(0, \nabla)$ with respect to I coincides with the space

$$
\mathrm{Ker}\;I_{\mathrm{v}}/\mathrm{Im}\;E'_{(0,\mathrm{v})}\;,
$$

where I_{∇} is introduced before Lemma 6.8. It is a quotient space of the space Ker $I_{\mathrm{v}}/ \mathrm{Im}~ E_{\mathrm{EH}}'$ _v and vanishes by assumption. Therefore by Lemma 3.3 the set $E^{-1}(0)$ around $(0, \nabla)$ forms a manifold whose tangent space at $(0, \nabla)$ is given by Ker $E'_{(0,\nabla)}$. But here the projection map from Ker $E'_{(0,\nabla)}$ to $T_0(-\varepsilon,\varepsilon)$ is surjective, which completes the proof by the implicit function theorem. In fact, for $u \in T_0(-\varepsilon, \varepsilon)$, we get $E'_{(0, \nu)}(u, 0) \in \mathbb{K}$ er I_{ν} , therefore by assumption there is $A \in T_{\nu}C^*$ such that $E'_{(0,\nu)}(u, 0) = E_{EH'}(A)$, i.e., $E'_{(0,\nu)}(u, -A) = 0$. Q.E.D.

8. Einstein holomorphic connections and holomorphic structures

For a connection ∇ of P we denote by $\Psi(\nabla)$ the (0, 1)-part of ∇ , which is an almost holomorphic structure of *P^c .* Remark that the map Ψ commutes with the action of the gauge group \mathcal{G} . Therefore Ψ induces a map from the moduli space of Einstein holomorphic connections to the moduli space of holomorphic structures. This map locally corresponds to a map φ : **EHLPM(V)** \rightarrow *HLPM*($\bar{\delta}$), where ∇ is an Einstein holomorphic connection and $\bar{\delta} = \Psi(\nabla)$.

Theorem 8.1. Let ∇ be an Einstein holomorphic connection. If $H^0(M, \mathfrak{g}_P)$ \approx ₃, then the map p°Ψ gives a bijection between EHLPM(∇) and HLPM(Ψ (δ)) *around* ∇ *, where the map p:* $W^{C,s}\rightarrow S^{C,s}_{\Psi(\nabla)}$ *is defined by Propotition* 5.1.

Proof. Set $\mathcal{E} = \{ \nabla_1 \in \mathcal{S}_{\nabla}^s; (\omega, R^{\nabla_1}) - c_0 = 0 \}$. The derivative of the map f: $\nabla_1 \rightarrow (\omega, R^{\nabla_1}) - c_0$ at ∇ is given by

$$
A \to 2\sqrt{-1} \left(\nabla^{\vec{a}} A_{\vec{a}} - \nabla^{\vec{a}} A_{\vec{a}} \right).
$$

Set $A_{\vec{a}} = \sqrt{-1} \nabla_{\vec{a}} \psi$ for $\psi \in H^{s+1}(\mathfrak{g}_P)$.). Then

$$
A\!\in\!T_{\mathrm{v}}\mathcal{S}_{\mathrm{v}}^{\mathrm{s}}
$$

and

$$
2\sqrt{-1}\left(\nabla^{\vec{a}}A_{\vec{a}}-\nabla^{\vec{a}}A_{\vec{a}}\right)=2\nabla^*\nabla\psi.
$$

Therefore the image of the derivative of the map f from \mathcal{S}_{∇}^{s} is closed in $H^{s-1}(\mathfrak{g}_{P}),$ and coincides with the orthogonal complement of $H^0(M, \mathfrak{g}_P)$. Therefore by assumption and Lemma 6.8, the map f from \mathcal{S}^s_∇ to the orthogonal complement of δ has surjective derivative, from which we see that $\mathcal E$ is a manifold whoes tangent space at ∇ coincides with the space

$$
\{A{\in}H^s(\Lambda^1{\otimes}\mathfrak g_P);\ -\nabla^{\bar a}A_{\bar a}=0\}\,\,.
$$

Since the derivative of the map $p \circ \Psi$ from $\mathcal E$ is nothing but the correspondence: $A\rightarrow(0, 1)$ -part of A, p∘ ψ gives a local diffeomorphism from \mathscr{E} to $\mathscr{S}_{\bar{\mathbf{a}}}$. If $\nabla_1\in$ *EHLPM*(∇) then $p \circ \Psi(\nabla_1) \in HLPM(\Psi(\nabla))$, conversely, if $\overline{\partial}_1 \in HLPM(\Psi(\nabla))$ then $(p \circ \Psi | \mathcal{E})^{-1}(\bar{\partial}_1)$ is Einstein holomorphic by definition of \mathcal{E} . Q.E.D.

REMARK 8.2. Theorem 8.1 and Theorem 5.4 give another proof of Theorem 6.10.

Combining with Theorem 6.10, we get the following

Theorem 8.3. Let ∇ be an Einstein holomorphic connection and set $\overline{\partial}$ = Ψ(V). *Then there exists a natural correspondence*

$$
YMLPM(\nabla)=EHLPM(\nabla)\rightarrow HLPM(\bar{\partial}),
$$

where \rightarrow *is an injection, and becomes a bijection if* Ker $\nabla = \mathfrak{z}$.

9. A structure on the moduli space

Let ∇ be an Einstein holomorphic connection and set $\overline{\partial}=\Psi(\nabla)$. Assume that $H^0_{\bar\eth}(\mathfrak{g}\mathfrak{g}) {=} 3^{\bm{\mathcal{C}}}$ and $H^2_{\bar\eth}(\mathfrak{g}\mathfrak{g}) {=} 0.$ Then the manifolds $EHLPM(\nabla)$ and $HLPM(\bar\eth)$ are isomorphic by Theorem 8.1, and become complex manifolds by Theorem 5.4. The complex structures are realized by the almost complex structures given by multiplying $\sqrt{-1}$ on $T_{\overline{A}}HLPM(\overline{\partial})$ and \widetilde{J} on $T_{\overline{V}}EHLPM(\nabla)$, where \widetilde{J} is defined by $(\tilde{J}A)_{i}=-A_{i}J^{i}$. In fact, we see that

$$
\Psi(\tilde{J}A)=(\tilde{J}A)^{(0,1)}=-A_{\bar{\beta}}J^{\bar{\beta}}{}_{\bar{a}}=\sqrt{-1}\,A_{\bar{a}}=\sqrt{-1}\,\Psi(A)\,.
$$

On the other hand, the space C^s has the riemannian metric $\langle \cdot, \cdot \rangle$, which is

invariant under the action of \mathcal{G}^{s+1} . Therefore the manifold $\mathit{EHLPM}(\nabla)$ has a canonical riemannian metric, which is given as follows. Let $\nabla_1 \in EHLPM(\nabla)$ and $A, B \in T_{\mathbf{v}_1}$ *EHLPM*(∇). The elements A and B are Einstein holomorphic infinitesimal deformations of ∇ ₁, and are decomposed into the essential parts A ^E_{$>$} B_E and trivial parts A_T , B_T (see (1.5.2)). We define the inner product of A and *B* by $\langle A_{E}, B_{E} \rangle$. From Lemma 13.1, we see that this inner product becomes a C^{∞} -riemannian metric.

DEFINITION 9.1. The above riemannian metric on $EHLPM(\nabla)$ is called *the natural riemannian metric.*

REMARK 9.2. Let ∇_1 and ∇_2 be Einstein holomorphic connections and assume that there are $\nabla_0 \in \overline{EHLPM}(\nabla_1)$ and $\gamma \in \mathcal{G}^{s+1}$ such that $\gamma^*\nabla_0 \in \overline{EHLPM}(\nabla_2)$. Then for each $\nabla \in EHLPM(\nabla_1)$ sufficiently close to ∇_0 there is $\gamma \in \mathcal{Q}^{s+1}$ so that *f* \forall ^{*}V∈*EHLPM*(∇ ₂), and this correspondence: ∇ →γ*V becomes an isometry. Therefore we may say that the canonical riemannian metric is independent of ∇ .

Theorem 9.3. Let ∇ be an Einstein holomorphic connection and set $\overline{\partial}$ $\Psi(\nabla)$. If $H^0_{\mathfrak{F}}(g_P^C)=3^C$ and $H^2_{\mathfrak{F}}(g_P^C)=0$, then the canonical riemannian metric on $EHLPM(\nabla)$ is a Kähler metric with respect to the complex structure on $HLPM(\overline{0})$.

Proof. We easily see that the canonical riemannian metric is a hermitian metric. We have to show that the Kahler form is closed. We replace ∇ by ∇_0 and denote by ∇ elements of $HLPM(\nabla_0)$ regarded as variable. Conisder the fiber bundle $p: P \times EHLPM \rightarrow EHLPM$. In general, a diffeomorphism from a fiber to another fiber which commutes with the action of G and fixes *M* pull backs a G-invariant structure, and so if a vector field v on $P \times EHLPM$ is p projectable, G-invarant and $\pi^*v=0$, where π is the projection to M, then the Lie derivation $\mathcal{L}_{\bm{\nu}}$ on a family of G-invariant structures is defined. For example,

$$
\mathcal{L}_{\mathbf{v}}\nabla \equiv \frac{d}{ds}\bigg|_0 (\exp s v)^* \nabla.
$$

If we decompose v into the P -part v_P and the \emph{EHLPM} -part v_M , we see that

$$
\mathcal{L}_v \nabla = v_M[\nabla] + L_{v_P} \nabla.
$$

Now, we denote the almost complex structure on *EHLPM* by J^E , the canonical riemannian metric by g^E and the Kähler form by ω^E . Decompose $v \in T(EHLPM)$ into v_E and v_T so that $\mathcal{L}_{v_E} \nabla$ is essential and $\mathcal{L}_{v_F} \nabla$ is trivial. This decomposition is not unique, but we may assume that it depends C^{∞} -ly on *v* by Lemma 13.1. Then we see that

$$
\begin{aligned} &\mathcal{L}_{(J^B v)_B} \nabla = \tilde{J} \mathcal{L}_{v_B} \nabla \;, \\ &g^E(v,w) = \langle \mathcal{L}_{v_B} \nabla, \mathcal{L}_{w_B} \nabla \rangle \,, \\ &\omega^E(v,w) = g^E(J^Ev,w) = \langle \tilde{J} \mathcal{L}_{v_B} \nabla, \mathcal{L}_{w_B} \nabla \rangle \,, \end{aligned}
$$

where \tilde{J} is defined in the first paragraph of this section. We may assume that $[v, w] = [w, z] = [z, v] = 0$ without loss of generality, and see that

$$
(d\omega^{E})(v, w, z) = v \cdot \omega^{E}(w, z) + \text{alternating terms}
$$
\n
$$
= v \cdot \langle \tilde{J} \mathcal{L}_{w_{B}} \nabla, \mathcal{L}_{z_{B}} \nabla \rangle + \text{alt}.
$$
\n
$$
= \langle \tilde{J} \mathcal{L}_{v_{B}} \mathcal{L}_{w_{B}} \nabla, \mathcal{L}_{z_{B}} \nabla \rangle + \langle \tilde{J} \mathcal{L}_{w_{B}} \nabla, \mathcal{L}_{v_{B}} \mathcal{L}_{z_{B}} \nabla \rangle + \text{alt}.
$$
\n
$$
= -\langle \tilde{J} \mathcal{L}_{v_{B}} \mathcal{L}_{w_{B}} \nabla, \tilde{J} \mathcal{L}_{z_{B}} \nabla \rangle + \langle \mathcal{L}_{v_{B}} \mathcal{L}_{z_{B}}, \tilde{J} \mathcal{L}_{w_{B}} \nabla \rangle + \text{alt}.
$$
\n
$$
= -\langle [\mathcal{L}_{v_{B}}, \mathcal{L}_{w_{B}}] \nabla, \tilde{J} \mathcal{L}_{z_{B}} \nabla \rangle + \text{alt}.
$$
\n
$$
= -\langle \mathcal{L}_{v_{B}}, \mathcal{L}_{w_{B}} \nabla, \tilde{J} \mathcal{L}_{z_{B}} \nabla \rangle + \text{alt}.
$$

But here $p_*[v_E, w_E] = [v, w] = 0$ and so $[v_E, w_E]$ is vertical, which implies that $\mathcal{L}_{[v_B, w_B]} \nabla$ is trivial. Q.E.D.

10. Example I

Let M be a flat torus T^2 , P the trivial principal $U(2)$ -bundle and ∇_0 the canonical connection of P . ∇_0 is a flat connection, and so an Einstein holomorphic connection. Therefore, by Lemma 6.3, all Einstein holomorphic connections of *P* are flat. Fix a point *x* in *M* and an element *p* in *P^x .* Any closed curve c (c(0)=c(1)=x) in M is horizontally lifted to a curve \tilde{c} in P so that $\tilde{c}(0)$ = p, and we get an element $\tilde{c}(1)$ in P_x . Let a be an element of $U(2)$ such that $\tilde{c}(1) = p \cdot a$. Since ∇ is flat, this mapping: $c \rightarrow a$ induces a homomorphism: $\pi_1(M) \to U(2)$, defined by $[c] \to a$. Taking generators $\{[c_1], [c_2]\}$ of $\pi_1(M)$, we get corresponding elements $\{a_1, a_2\}$ in $U(2)$ such that $a_1^{-1} \cdot a_2^{-1} \cdot a_1 \cdot a_2 = id$. Denote by $f(\nabla)$ this pair (a_1, a_2) . We see that by a gauge transformation η of P, $) = (a_1, a_2)$ is transformed as

(10.1)
$$
f(\eta^*\nabla) = (b^{-1} \cdot a_1 \cdot b, b^{-1} \cdot a_2 \cdot b),
$$

where $b \in U(2)$ is defined by $\eta(x) \cdot p = p \cdot b$.

Thus the global moduli space of Einstein holomorphic connections is identified with the quotient space {commuting pair in $U(2) \times U(2)$ }/ \sim , where \sim is defined by $(b^{-1} \cdot a_1 \cdot b, b^{-1} \cdot a_2 \cdot b) \sim (a_1, a_2)$ for $b \in U(2)$. By diagonalization, this space becomes the space $T^2 \times T^2 / \sim$, where

$$
\left(\begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix}, \begin{pmatrix} \gamma & 0 \\ 0 & \delta \end{pmatrix}\right) \sim \left(\begin{pmatrix} \alpha' & 0 \\ 0 & \beta' \end{pmatrix}, \begin{pmatrix} \gamma' & 0 \\ 0 & \delta' \end{pmatrix}\right)
$$

if and only if they coinside or $\beta'=\alpha$, $\alpha'=\beta$, $\delta'=\gamma$ and $\gamma'=\delta$.

On the other hand, the space $EHEID(\nabla_0)$ is the space of harmonic sections of $\Lambda^1 \otimes \mathfrak{u}(2)$, and is isomorphic with $\mathbb{R}^2 \otimes \mathfrak{u}(2)$. Let $A \in EHEID(\nabla_0)$ and consider the connection $\nabla_0 + A$. Since $\nabla_0 A = 0$, we see that

$$
E_{EH}(\nabla_0 + A) = (0, 2 \left[\overline{A^{(0,1)}}, A^{(0,1)} \right]),
$$

and

$$
(\omega, d^{\nabla_0}B) = 2\sqrt{-1} \left(\nabla_0^{\vec{\alpha}} B_{\vec{\alpha}} - \nabla_0^{\alpha} B_{\alpha} \right),
$$

which implies that $\nabla_0 + A$ is an element of the support manifold of $\mathit{EHLPM}(\nabla_0).$ Thus we see that the support manifold is locally isomorphic with $\mathbb{R}^2 \otimes \mathfrak{u}(2)$. Moreover $\nabla_{\mathsf{o}}\text{+}A$ belongs to $\mathit{EHLPM}(\nabla_{\mathsf{o}})$ if and only if

$$
[\overline{A^{\textup{\tiny{(0,1)}}}}, A^{\textup{\tiny{(0,1)}}}] = 0\,.
$$

Therefore the space $EHLPM(\nabla_0)$ is a proper subset of the support manifold. Moreover, the group $\mathcal{Q}_{\mathbf{v_0}}{\cong}U(2)$ acts on the space $\mathit{EHLPM}(\nabla_0)$ analogously as (10.1), and we see that

$$
\mathcal{G}_{\nabla_0}\backslash \text{EHLPM}(\nabla_0)\!\simeq\!\boldsymbol{R}^2\!\times\!\boldsymbol{R}^2\!/\!\sim.
$$

By a similar way we see that the space $HEID(\overline{\partial}_0)$ is canonically isomorphic with the space $C \otimes \mathfrak{gl}(2,\mathcal{C})$, and $\bar{\partial}_0 + HEID(\bar{\partial}_0)$ is the support manifold of $HLPM(\bar{\partial}_0)$. In this case, the space $HLPM(\bar{\partial}_0)$ is an open set of the support manifold. We can see more details as follows. The group $\mathcal{Q}^c_{\bar{a}_0}$ acts on the space $HLPM(\overline{\partial}_0),$ and

$$
\mathcal{G}_{\overline{\delta}_0}^c \backslash HLPM(\overline{\delta}_0) \cong GL(2, \mathbf{C}) \backslash \mathfrak{gl}(2, \mathbf{C}),
$$

whose elements are classified using Jordan's normal form. An element of $\mathfrak{gl}(2,\mathbb{C})$ corresponds to an Einstein holomorphic connection if and only if it is diagonalizable. Thus

$$
\mathcal{G}_{\nabla_0}\backslash EHLPM(\nabla_0)\subsetneq \mathcal{G}_{\overline{a}}^C\backslash HLPM(\overline{\partial}_0).
$$

Remark that the space $\mathcal{Q}_{\bar{\delta}0}^C\backslash HLPM(\bar{\delta}_0)$ is *not* a Hausdorff space. In fact, any neighbourhood of the element $\begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix}$ in $U(2)$ implies some $\begin{pmatrix} \lambda & t \\ 0 & \lambda \end{pmatrix}$ $(t=0)$, $\binom{\lambda-1}{0-\lambda}$.

11. Example II

Let (M, g) be an Einstein-Kahler manifold with Ricci tensor= $e \cdot g$, ∇ an Einstein holomorphic connection and $\bar{\partial}=\Psi(\nabla)$. Then we can see that

(11.0.1)
$$
\{(\bar{\partial}^*\bar{\partial}+2\bar{\partial}\bar{\partial}^*) A\}_{\bar{a}}=(\nabla^*\nabla A)_{\bar{a}}+eA_{\bar{a}}+2[R^{\nabla\bar{\beta}}_{\bar{a}},A_{\bar{\beta}}] = 2\{-\nabla^{\bar{\beta}}\nabla_{\bar{\beta}}A_{\bar{a}}+eA_{\bar{a}}+[R^{\nabla\bar{\beta}}_{\bar{a}},A_{\bar{\beta}}]\}
$$

for g^c -valued (0,1)-form A ,

(11.0.2)
$$
\{(\frac{2}{3}\overline{\partial}^*\overline{\partial}+2\overline{\partial}\overline{\partial}^*)A\}_{\overline{\alpha}\overline{\beta}} = (\nabla^*\nabla A)_{\overline{\alpha}\overline{\beta}}+2eA_{\overline{\alpha}\overline{\beta}}+2[R^{\nabla^7}_{\overline{\alpha}},A_{\overline{\gamma}\overline{\beta}}]+2[R^{\nabla^7}_{\overline{\beta}},A_{\overline{\alpha}\overline{\gamma}}]
$$

for g_F^c -valued (0,2)-form A. Therefore, to see whether $H^1_{\bar{\theta}}$ and $H^2_{\bar{\theta}}$ vanish, we have to get eigenvalues of these operators.

Let *M* be a homogeneous space K/H and *P* the principal *G*-bundle $K \times_{\rho} G$, where ρ is a homomorphism: $H\rightarrow G$. Then we have

$$
G_P=K\overline{\times}_{\mathrm{Ad}_p}G\,,\ \ \, \mathfrak{g}_P=K\overline{\times}_{\mathrm{Ad}_p}\mathfrak{g}\,.
$$

As usual, we identify $C^{\infty}(\mathfrak{g}_P)$ with $C^{\infty}(K, \mathfrak{g})_H$. Let $\mathfrak{k}=\mathfrak{h}+\mathfrak{m}$ be an *H*-invariant decomposition and define a differential operator $D\colon C^\infty(K,\mathfrak{g})_H{\rightarrow} C^\infty(K,\mathfrak{m}^*\otimes\mathfrak{g})_H$ by

$$
(D\hat{s})(X) = (X\hat{s}).
$$

Then this operator D gives a covariant derivative of g_P , which is identified with the standard connection ∇ of *P*. Let C_K (resp. C_H) be the Cassimir operator of the *K*-module (resp. *H*-module) $C^{\infty}(K, g)$ _{*H*}. We can check that

$$
\nabla^*\nabla = C_K - C_L
$$

and

$$
R^{\nu}(X, Y) = -\rho[X, Y] \quad \text{for} \quad X, Y \in \mathfrak{m}.
$$

(See e.g., [10, Proposition 5.3].)

Therefore the eigenvalues of operators (11.0.1) and (11.0.2) are calculated explicitly by the representation theory. The calculation is easy but complicated, and we omit the detail. See e.g. [10, §7].

Let $M = P^*(C) = SU(n+1)/S(U(n) \times U(1))$ and P the unitary frame bundle of T^+M . Then $g = m^- \otimes m^+$, and the operator (11.0.1) has only positive eigenvalues. Thus $H^1_{\bar{a}}(M, g^c) = 0$.

Proposition 11.1. *The standard connection of the unitary frame bundle of T + P*(C) is isolated in the moduli space.*

Next, let *P* be the unitary frame bundle of the symmetric tensor product S^2T^+M of T^+M . Then $g = (S^2m^-) \otimes (S^2m^+)$. In this case the operator (11.0.1) has 0 as an eigenvalue, ard all eigenvalues of the operator (11.0.2) are poitive. Moreover, we can easily check that $H^0_{\bar{\mathfrak{g}}}(M, g^c) = g^c$. Thus by Theorem 6.10, we get the following

Proposition 11.2. *The local pre-moduli space around the standard connection of the unitary frame bundle of* $S^2T^+P^*(C)$ *(n* \geq *2) forms a non-trivial manifold.*

12. Regularity of Yang-Mills connections

In this section we consider not a family of connections but one connection. Let ∇ be a Yang-Mills $C^{2+\omega}$ -connection of $P(0<\alpha<1)$. I.e., if we represent ∇ by a local frame *{ξ^p }* of *Q^P* as

$$
\nabla_{{\mathfrak d}_i} \, \xi_{\mathfrak{p}} = \Gamma^q_{i\mathfrak{p}} \, \xi_{\mathfrak{q}}
$$

then Γ_{i}^{q} are $C^{2+\alpha}$. A local section ξ of g_{P} is said to be harmonic if $\nabla^*\nabla \xi = 0$. The defining equation of harmonic section is a linear elliptic differential equation with $C^{1+\alpha}$ -coefficients. Therefore we can take a local frame by harmonic sections, which are $C^{3+\omega}$ ([2, p. 228 Theorem 1]). The coefficients $\Gamma^q_{i\rho}$ with respect to the frame are $C^{2+\omega}$. But we know that $\{\Gamma^q_{i\ell}\}$ satisfies Yang-Mills equation:

$$
g^{kl}\partial_k(\partial_e\Gamma^q_{i\,p} - \partial_i\Gamma^q_{i\,p}) + \text{lower terms} = 0\,,
$$

and harmonic equation

$$
g^{kl}\partial_k\Gamma^q_{l\rho}+\text{lower terms}=0\,,
$$

which is quasi-linear elliptic system with C^{∞} -coefficients. Thus Γ_{i}^{q} are $C^{\infty}([11,$ Theorem 6.8.1]). If (M, g) is a C^ω-riemannian manifold, then Γ^q_{ip} are C^{ω} ([11, Theorem 6.7.6]).

Theorem 12.1. Let (M, g) be a C^{∞} (resp. C^{∞}) riemannian manifold and ∇ *a Yang-Mills C³ -connection. Then there exists a C³ -gauge transformation* 7 *so that* $\gamma^* \nabla$ *is* C^{∞} (resp. C^{ω}).

Corollary 12.2. Let (M, g) be a simply connected C^{ω} -riemannian manifold. Let ∇_1 and ∇_2 be Yang-Mills connections on M. Assume that there is an open set U of M and a gauge transformation γ on U such that $\gamma^*\nabla_1=\nabla_2$. Then γ extends to a global gauge transformation $\tilde{\gamma}$ so that $\tilde{\gamma}^* \nabla_1 {=} \nabla_2$ on $M.$

Proof. We may assume that $\gamma = id$ on U and ∇_1 is C^{ω} . For $x \in U$ and $y \in$ *M*, take a joining geodesic $c: [0, 1] \rightarrow M$ and a C^* -tubular neighbourhood $V \approx$ $(-\varepsilon, 1+\varepsilon) \times D^{n-1}$ of $c[0, 1]$. Take a C^{∞} -frame of g_P on $\{0\} \times D^{n-1}$ and take the parallel extension *{ξ^p }* (resp. {!/,}) for the direction (— £, 1+f) with respect to ∇_1 (resp. ∇_2). Let $\tilde{\gamma}$ be the gauge transformation on *V* which transforms $\{\xi_p\}$ to $\{\xi_p\}$. Since ∇_2 is C^{ω} with respect to $\{\xi_p\}$, $\tilde{\gamma}^{-1*}\nabla_2$ is C^{ω} with respect to $\{\xi_p\}$ But here $\tilde{\gamma} = id$ on U, which implies that $\tilde{\gamma}^{-1*}\nabla_2 = \nabla_1$ on V by analyticity. Moreover the extension of γ to $\tilde{\gamma}$ is unique and well-defined since M is simply connected. Q.E.D.

REMARK 12.3. This is an analogy of the unique extension theorem of Einstein metrics in [3, Section 5].

13. Some basic lemmas

Lemma 13.1 ([8, Lemma 4.3]). Let v_t be a family of volume elements on M, E_t , F_t families of vector bundles over M with fiber metrics g_t^E , g_t^F and Q_t : $C^{\infty}(E_t) \rightarrow$ $C^{\infty}(F_t)$ a family of differential operators of order k with injective symbol. Assume *that* v_t , E_t , F_t , g_t^E , g_t^F and Q_t , depend C^{∞} -ly (resp. real analytically) on t. That is, there are bundle isomorphism e_t : $E_0 \rightarrow E_t$ and f_t : $F_0 \rightarrow F_t$ such that the coef*ficients of e** g_t^E , f_t^* g_t^F and $(f_t^{-1})_* \circ Q_t \circ (e_t)_*$ depend C^{∞} -ly (resp. real analytically) *on t. Then the dimension of the space* Ker *Q^t is upper semicontinuous. If the dimension of the space* Ker *Q^t is constant, then the decompositions*

 $(13.1.1)$ Q_t) = $Q_t^*(H^{s+k}(F_t)) \oplus \text{Ker } Q_t$,

 $(13.1.2)$ $f(F_t) = Q_t(H^{s+k}(E_t)) \oplus \text{Ker } Q_t^{\sharp}$

depend C^{∞} -ly (resp. real analytically) on t, where Q_t^* is the formal adjoint operator *of Q^t with respect to gf , gf and v^t . Moreover the isomorphisms*

(13.1.3)
$$
Q_t^* + 1 : Q_t(H^{s+2k}(E_t)) \oplus \text{Ker } Q_t \to H^s(E_t),
$$

(13.1.4) $Q_t + 1 : Q_t^*(H^{s+2k}(F_t)) \oplus \text{Ker } Q_t^* \to H^s(F_t)$

also depend C°°-ly (resp. *real analytically) on t.*

Lemma 13.2 ([4, Theorem 3.12]). *In the real analytic category in Banach spaces, the implicit function theorem holds.*

Lemma 13.3 ([8, Lemma 13.7]). *Let E and F be vector bundles over M and* E^c , F^c their complexifications. Let f be a C^{∞} -cross section of E and ψ : $E\rightarrow F$ a *fiber preserving C°°-map defined on an open set of E which contains the image of f. Assume that* ψ *has an extension to a fiber preserving map* ψ^c : $E^c \rightarrow F^c$ *defined on* an open set of $E^{\textbf{c}}$ such that the restriction $\psi^{\textbf{c}}_i$ to each fiber $E^{\textbf{c}}_i$ is holomorphic. Then $the \mapsto \Psi : H^s(E) \rightarrow H^s(F)$ defined by

$$
\Psi(u) = \Psi \circ u \,,
$$

defined on an open neighbourhood of f, is real analytic provided that s $>[n/2]+1$.

References

- [1] M.F. Atiyah, NJ. Hitchin and I.M. Singer: *Self-duality in four-dimensional riemannian geometry,* Proc. Roy. Soc. London A. 362 (1978), 425-461.
- [2] L. Bers, F. John and M. Schechter: Partial differential equations, Interscience Publishers, New York, 1964.
- [3] D.M. DeTurck and J.L. Kazdan: *Some regularity theorems in riemannian geo-*

metry, Ann. Sci. Ecole Norm. Sup. 14 (1981), 249-260.

- [4] D.G. Ebin: *The manifold of riemannian metrics,* Global Analysis, Proc. Sympos. Pure Math. 15 (1968), 11-40.
- [5] S. Fučík, J. Nečas, J. Souček and V. Souček: Spectral analysis of nonlinear operators, Lecture Notes in Math., vol. 346, Springer, Berlin-Heidelberg-New York, 1973.
- [6] M. Itoh: *The moduli space of Yang-Mills connections over a Kahler surface is a complex manifold,* Osaka J. Math. 22 (1985), 845-862.
- [7] S. Kobayashi: *Curvature and stability of vector bundles,* Proc. Japan Acad. A. 58 (1982), 158-162.
- [8] M. Kuranishi: *New proof for the existence of locally complete families of complex structures,* Proc. of the conference on complex analysis, Minneapolis, 1964, 142-154, Springer-Verlag, New York.
- [9] N. Koiso: *Einstein metrics and complex structures,* Invent. Math. 73 (1983), 71-106.
- [10] N. Koiso: *Rigidity and stability of Einstein metrics-the case of compact symmetric spaces,* Osaka J. Math. 17 (1980), 51-73.
- [11] C.B. Morrey, Jr.: Multiple integrals in the calculus of variations, Springer-Verlag, Berlin, 1966.
- [12] R.S. Palais: Foundation of global non-linear analysis, Benjamin, New York, 1968.
- [13] D. Sundararaman: Moduli, deformations and classifications of compact complex manifolds, Research Notes in Math., Pitman Advanced Publishing Program, Boston-London-Melbourne, 1980.

Department of Mathematics College of General Education Osaka University Toyonaka, Osaka 560 Japan