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1. Introduction

In [3], [4], [5], [6] and [7], P. Lévy has introduced the notion of the con-
jugate sets associated with Gaussian random fields (G.r.f’s) and studied the
properties of these sets. Recently, in [1] and [2], we have also shown that
this notion is effective to discuss the independence structures of G.r.f.’s. In
this paper, we shall be concerned with the characterization of G.r.f.’s with
parameter space R? in terms of the conjugate sets associated with them.

Let S be the class of all the functions on [0, o) expressed in the form

(1.1) r(t) = cft + Sw(l—e“z")u“ldv(u) (t=>0),
0
where ¢ is a non-negative constant and v denotes a measure on (0, o) such that
g"(1+u)—ld«y(u)<oo and r(1)=1.
0

An important subclass of S is given by
(1.2) L= {r(t) = 1*; 0<a<2}.

Then it is well known that for every ()= S and every d >1 there exists a mean
zero G.rf. X={X(x); xR’ with homogeneous and isotropic increments
that is determined by the structure function r(2), i.e.,

E[(X(x)—X(»)))] =r(|x—y]|)  forevery x,ycR’
and
E[X(x)]=0 for every x&R?.

We can determine this G.r.f. X uniquely except for additional Gaussian random
variables with mean zero. We may identify two G.r.f.’s on R? which are de-
termined by the same structure function, because such G.r.f.s have the same
probabilistic structure related to conditional dependence. From this point
of view, we often use the notation (X, 7(¢)) instead of X. For details of these
G.r.f’s, see [2], [8], [9], [13] and Remark 2 in Section 2.
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We now consider a G.r.f. (X, 7(¢)) on R‘. For every ECR? (E #¢), the
symbol u,(x|E) denotes the conditional expectation of X(x) conditioned by
{X(2z); z€E} in the sense of [6]. In other words, choosing z,&EE arbitrarily,
we set

(x| B) = X(2+ E[X(x)— X(29)| X(2)— X(z); z€E]  (x&RY).
The conditional covariance function of (X, r(¢)) is defined by
R(x, y|E) = E[(X(x)— u (x| E)XW)—nW|E)]  (x, y=R?).

We can now define, after P. Lévy, the maximal conjugate set Fx(x|E) of x
relative to E as follows:

(13) Fx(x|E) = {y=R’; R,(x, y| E) = 0}.

Since (X, r(#)) is Gaussian, the set F x(x|E) proves to be the locus of y=R? for
which X(x) and X(y) are conditionally independent under the conditioning
by {X(z); z€E}. Throughout this paper the phrase “‘conjugate set” means
the phrase ‘“maximal conjugate set”. We also use the notation S, to indicate
the similar transformation on R’ defined by Sx=tx (>0, x&R?). We are
now in a position to state our problems:

ProBLEM 1. Let (X, 7(t)) be a G.r.f. on R. Suppose that, given another
G.r.f. (X, r(t)) on R?, the relation

(14) F x(x| E) CFx (x| E)

holds for certain pairs {x, E}, x&R?, ECR®. Then is it true that r\(t)=r(t)?
PROBLEM 2. Let (X, 7(2)) be a G.r.f. on R*. Suppose that the relation

(1.5) Fx(S;x|S,E) = S, Fx(x|E)  for every t>0

holds for certain pairs {x, E}, x&R’, ECR®. Then is it true that r({)E L?

Formerly we studied the special case that E contains at most two points
(11, [2]). The main purpose of this paper is to give affirmative answers to
these problems for more general finite sets E under certain reasonable condi-
tions (see Section 2). Generally speaking, if E is finite, Problems 1 and 2 will
be reduced to solve some functional equations for f(x)=r,(r"*(x)) and 7(¢) re-
spectively (see Section 5). Here we shall illustrate the intuitive meanings of
our problems. The inclusion (1.4) tells us the following: If a random vari-
able X(y) is conditionally independent of X(x) under the conditioning by
{X(2); z€E} in the G.r.f. (X, r(#)), the same statement holds also for the cor-
responding random variables in the G.r.f. (X, 7,(¢)). Therefore, if Problem
1 is solved affirmatively, the family {F x(x|E)} is thought of as a characteristic of
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the G.r.f. (X, 7(¢)), so far as the conditional independence is concerned. On
the other hand, if Problem 2 is solved affirmatively, we can claim that the scale
invariance of (X, 7(#)) in the sense of [9] (also see Remark 2 in Section 2) is
derived from the invariance property (1.5) of the family {<F x(x|E)}.

The organization of this paper is as follows. Our main results will be
stated in Section 2. In Section 3 we shall discuss the non-degeneracy of
Fx(x|E), which is guaranteed by the condition (R) mentioned in Section 2.
Next we prepare, in Section 4, several lemmas necessary for the proofs of the
results mentioned above. By using these lemmas, we shall prove our main re-
sults in Section 5. Section 6 is devoted to the proofs of all the propositions
stated in Section 3. Finally, in Section 7, we shall give some remarks about
Problems 1 and 2.

2. Main results

Let (X, r(¢)) be a G.r.f. on R? and E be a non-empty subset of R
Throughout this paper we promise that the parameter space R? is equipped
with the following orthogonal decomposition into subspaces G and H:

RE=GDH, d>3 and dmH=2.
We always assume that E is finite and expressed as follows:
(2.1) E = {a}} 1<icn and n=4E>1,
where #E denotes the cardinal number of E. Then the conditional expectation
u,(x|E) can be expressed in the form

(2.2) (x| E) = 3 X(@)y¥(x|E) (xR

with certain real numbers v}(x|E) (1 <k<n) satisfying the equation ‘Yn‘_,'yf(xlE)
k=1

=1. We are interested in the case that E satisfies one of the following con-
ditions:

(A.1) The points of E are independent, i.e., #E=1, or else the vectors a,—a,
(2<k<n) are linearly independent; and

(A.2) The points of E are symmetric, i.e., the set {|a;—a,|},<i< is independent
of j (1<j <), including the multiplicities.

Further we shall direct our attention to the case that E is contained in a sphere
S()={xeR*; |x|=I} (I>0). Now we can give answers to Problems 1 and
2 simultaneously.

Theorem 1. Let (X, r(t)) be a G.r.f. on R rigged with {a, E}, where
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r(t)ES, acH and ECG. Suppose that {a, E, r(t)} satisfies the conditions (A.1)
and

(R) a+0 and R,(a, —a|E)<O0; and further
(2.3) $E>2 and vi(a|E)yi(a|E)=%0 for some j, k (j*E) .

(i) For another G.r.f. (X,, r(t)) on R* with r(t)ES, the identity r,(t)=r(t)
holds if and only if

(2.4) Fx(a|E)CFx(alE).
(ii) 1t holds that r(t)€ L if and only if
(2.5) Fx(Sa|SE)= SFx(a|lE)  forany t>0.

Theorem 2. Let (X, r(¢)) be a G.r.f. on R® rigged with {a, E}, where
r(t)ES, asH and ECS([)N G. Suppose that {a, E, r(t)} satisfies the condition (R).
(i) For another G.r.f. (X,, r(t)) on R* with r(t)ES, the identity r,(t)=r(t)
holds if and only if there exists an open interval (t,, t,) (t,<1<t,) such that

(2.6) Fx(Sa|EY\NHCT x(Sa|EYNH  for any tE(t, 1) .
(it) It holds that r(t)€ L if and only if
2.7 Fx(Sx|S,EYNH = (S, Fx(X|E))NH  for any xH and any t>0.

It is meaningful to restate the second parts of the above theorems by using
the notion of the projective invariance of G.r.f.’s in the sense of [8] (see Re-
mark 2). We denote by J(R?; E) the set of transformations on R? which con-
sists of all translations, orthogonal transformations, similar transformations
and inversions with respect to spheres with centers contained in E. Then
we can easily obtain the following corollaries.

Corollary 1. Let (X, r(t)) with {a, E} be a G.r.f. on R* satisfying the same
conditions stated in Theorem 1. Then it holds that r(t)eL if and only if

(2.8) Fx(Ta|TE) = TS x(a|E)  forany Te9(R'; E).

Corollary 2. Let (X, r(t)) with {a, E} be a G.r.f. on R? satisfying the same
conditions stated in Theorem 2. Then it holds that r(ty€ L if and only if
(2.9) F(Tx|TEYNH = (TS x(x|E))NH

for any x& H and any T€ 4(R*; E) .

As for the answer to Problem 1, we have also the following

Theorem 3. Let (X, r(t)) be a G.r.f. on R* rigged with {a, E}, where
r(t)e L, acS()NH and E CS()NG. Suppose that {a, E,r(t)} satisfies the con-
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ditions (A.2) and (R). Then, for another G.r.f. (X, r,(t)) on R* with r(t)E S,
the identity r\(t)=r(t) holds if and only if there exists an open interval (t,, t,) such
that

2.10)  Fx(SalSE)NHCFx(SalSEYNH forany tE(t,1,).

RemARK 1. As was stated above, our results are given under the assump-
tion that E is finite. But we can also show that Theorem 2 holds even if E
is infinite.

RemARk 2. We denote by S, the class of all the functions on [0, =) ex-
pressed in the form

(2.11) r(t) = c,,tz+g:{1— Yitu}ydLw) — (£=0),
(2.12) Yai(t) = T(d2)(2[t) ™27 Ju_np(t)  (220),

where J,(¢) is the Bessel function of order » and ¢, is 2 non-negative constant
and further L, denotes a measure on (0, o) such that

Swu2(1+u2)”1de(u)<oo and r(1)=1.

Then there exists a one-to-one correspondence between the class S; and the
class of those G.r.f.’s (X, 7(t)) (r(1)=1) on R? which are continuous in quadrat-
ic mean ([10], [13]). The class S defined by (1.1) is also characterized by the
relation S=NS,;. As for the class L, we note that a G.r.f. (X, r(¢)) is scale

d>1
invariant in the sense of [9] (and also projective invariant in the sense of [8])

if and only if r(¢)e L.

3. The non-degeneracy of Fx(x|E) and the classes of structure
functions

In the preceding section we have considered G.r.f.’s (X, r()) on R rigged
with {a, E}, for which {a, E, r(t)} satisfies the condition (R) stated in Theo-
rem 1. This assumption plays an important role in our discussion about the
non-degeneracy of the conjugate sets Fx(x|E) concerned. Precisely speaking,
the non-degeneracy of these sets is guaranteed by the following two proposi-
tions.

Proposition 1. Let (X, 7(t)) be a G.r.f. on R’ rigged with {a, E}, where
r(()eS, acH and ECG. Suppose that {a, E, r(t)} satisfies the conditions (A.1)
and (R). Then there exists a sequence {1} ,c,<, of open intervals such that

(3.1) @E(a)eglkc}i[l(]ak;, ) and
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(3.2) 1l L, c@(Fxal ),
where we set Dy(x)=(|x—a,|, -, |x—a,|) for xR".

Proposition 2. Let (X, r(t)) be a G.r.f. on R® rigged with {a, E}, where
r(t)ES, acH and ECS()NG. Suppose that {a, E, r(t)} satisfies the condition
(R).  Then there exists an open interval I such that

(3.3) V@)l C(l, ) and
(3.4) ICY(F(x|EYNH) forany x=¥VF(I)NH,
where we set ¥ z(x)=|x—a,| for x&R’.

In what follows we shall give some examples of {a, E, r(f)} satisfying the
condition (R). As for the case E= {0}, we have the following

Proposition 3. (i) Suppose that r(t)ES is strictly convex on (0, t,) for
some ty (0<<ty<<oo). Then {a, {0}, r(t)} satisfies the condition (R) for any ac H
with sufficiently small |a|>0.

(it) Suppose that r(t)e S is strictly concave on (0, &), strictly convex on (, o)
for some t, (0<t,<oo) and r'(40)<7'(c0). Then {a, {0}, r(t)} satisfies the
condition (R) for any ac H with sufficiently large |a|>0.

We now proceed to the more general case of finite sets E with £ >2. Let
{e;} 1<cica be the canonical orthonormal basis of R? and assume that the sub-
space G is spanned by {e;},.;c;_,.- Let us introduce the sets E/(l) (I>0, n>2,
1<j<4) defined as follows:
(3.5) E.()= {ak:l\/;z-/(n——l)(e,,—léej); 1<k<n};
n i=

i=1

(3.6) Ei(l) = {a, = l(—1)tergrnsa; 1<k<n} (n: even);
3.7 Ei(l) = {a(l) = ’g (N m)(—1)*¢FDe s TC{l, 2, -, m}} (n=2");
(3.8) E(l) = {a, = (I cos 2kn[n)e,+(I sin 2kr|n)e,; 1 <k<n},

where we set X(k|I)=1 for k1l and X(k|I)=0 otherwise. 'We note that each
set Ej(l) given above is contained in S(I) and satisfies the condition (A.2).
Moreover the set E(I) satisfies the condition (A.1). Since each set Ej(l)
(1<j<3) consists of all the vertices of a high-dimensional regular polyhedron,
the number n=4#E(l) should be dominated by some constant related to the
dimension d of R?’. In particular, when Ej(I) (1<;j<3) is contained in G,
we must assume the following:

d—2 for j=1,
(3.9) n=4Ei()<|2(d—2) for j=2,
[ 2472 for j=3.
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By using the sets Ej(/) given above, we can describe the condition (R) for
any 7(2)E 8.
Proposition 4. Let acS())NH and r(t)ES be given arbitrarily. Then,

for each j (1<j<3), {a, Ei(l), r(t)} satisfies the condition (R) provided thai n is
chosen to be sufficiently large under the restriction (3.9).

Before stating the results on the class L, we shall introduce here the real
number p[E] which corresponds to each set ECS(]) (I>0, $£>2). When
we set

(310 Fl@)=Fla; B) =2V 2" ~2"— 1 S (la—al)*  (0<a<2),

we see that the function F(a) is strictly concave on (0, 2] and satisfies the in-

equalities F(—l—0)=l>0>F(2). Then the real number p[E] is defined as the
n

unique solution of F(a)=0 in (0, 2). Obviously the equality p[S,E]=p[E]
holds for each t>0. Further we see that F(a)>0 on (0, p[E]) and F(a)<<0
on (p[E], 2]. Thus setting

(3.11) L(B) = {r(t) = t*; B<a<2} (0<p<?),
we have the following

Proposition 5. Let acS())NH, ECS())NG and r(t)E L be given. Sup-
pose that E satisfies the conditions (A.2) and $E>2. Then {a, E, r(t)} satisfies
the condition (R) if and only if r(t)e L(p[E1).

We can extend this result to the case of regularly varying functions, which
correspond to G.r.f.’s with non-degenerate scaling limits (see [9] and [11]).
In general, a function 7(¢) is called a regularly varying function with exponent
(r.v.f. (a)) for some >0 if 7(t) is a positive continuous function defined on
some interval (0, ,) and satisfies the equality

(3.12) lhrr% r(xt)[r(t) = x* forany x>0.

We denote by L the class of r.v.f.’s 7(£)& S with exponent & for some a& (0, 2].
Obviously we have LC L. More general examples of subclasses of L will be
given in the next section. Now setting

(3.13)  L(B) = {r(t)ES; r(t) is a r.v.f. () for some a€(B, 2]} (0<B<2),
we have the following

Proposition 6. Let acS()NH, ECS()NG and r(t)c L(p[E]) be given.
Suppose that E satisfies the conditions (A.2) and $E >2. Then {S,a, S, E, r(¢)}
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satisfies the condition (R) for sufficiently small p>0.

Consequently, we can describe the condition (R) for the classes L and
L by using Propositions 5, 6 and the following

Proposition 7. When we set a,;=p[Ei(])] (n>2, 1<j<4), we have
(3.14) lime,; =0 (1<j<4); and so
(3.15) L=UL(a,) and L= UL(a,;) (1<j<4).

It is difficult in general to describe the value of p[E] explicitly. In the

special case of E=E(I), however, we can find an analogue a, of a,,=p[E(!)]
defined by

(3.16) a, =g (et D)n)} oy
log (2(n+1)/n)

Proposition 8. Suppose that aES(\/(n.{_l)/(n_l)l)ﬂH, >0 and 2<n
<d—2. Then the following assertions hold :
(1) Given r(t)E L, {a, E(l), (2)} satisfies the condition (R) if and only if r(t)E
L(a,).
(i) Given r(t)eL(a,), {S.a, S,EXD), r(t)} satisfies the condition (R) for suffi-
ciently small p>0.

Obviously we see that lim ¢,=0 and so
L=UL(e,) and L= UL(a,).
n>2 n>2
We also note that, inspired by the defining condition (3.12) of r.v.f. (&), we
can similarly discuss the case that 7(¢) €S satisfies the equality lim r(xz)/r(t)=x"
typoo
for any x>0. All the propositions stated in this section will be proved in

Section 6.

4. Lemmas

In this section, we shall provide some preliminary lemmas. Let (X, 7(2))
be a G.r.f. on R? and E be a subset of R’ given by (2.1). First we see that
(x| z)=X(z) and so

R(x, yl2) = {(lx—z)+r(ly—z))—r(lx—p)} |2 (x, y, zERY).

In general, we can employ the expression (2.2) of w,(x|E) (§E>2). Strictly
speaking, the coefficients v,=v%(x|E) (1<k<n) satisfy the following equa-
tions:
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$7k=1

k=1

(4.1) ”
k;l Rr(aj) akla1)7k=R,(aj, xlal) (2<] <1’l) .

Moreover, if we assume that 7(¢) S (r(¢)=#), the solution of these equations
can be determined uniquely on account of the property (iv) of Lemma 5. It is
convenient to introduce the following notations:

(4.2) A(x,y|E) = g’( ly—a,|)yi(x|E) (x,y=R?) and
(43)  A(r; E)= A0, a,|E) :kg"l: (lai—a,|)v*(0|E).

Then we immediately obtain the following expression: For any x, y=R?,
(44) 2R,(x, y|E) = r(|x—a,|)+A,(x, y| E)—r(|x—y|)—A(x, a,|E).

Lemma 1. Let (X, 7(2)) be a G.r.f. on R? and let ECS()NG be given
arbitrarily. Then the coefficients v;(x|E) (1<k<n) in the expression (2.2) may
be chosen to satisfy the relation
45)  vXx|E)=2}0|E) (xeH, 1<k<n).

Moreover R,(x, y|E) has the following expression: For any x, y € H,

(4.6) 2R(x, y|E) = r(|x—a,|)+r(ly—a;|)—7(|x—y|)—A(r; E); and
47)  O0<A(r; E)<2r(]).

Proof. It follows from the assumption on E that
R(a;, x|a)) = r(|a;—a,]|)/2 forany xeH (2<j<n).

Therefore the solution y,=v%x|E) (1<k<n) of (4.1) for each x& H depends
only on E, which implies the relation (4.5). The expression (4.6) immediately
follows from (4.4). The inequalities (4.7) are derived from the following:
A(r; E)=2{r())—R,(0,0|E)} and 0<R,(0,0|E)<R,(0,0]|a,)=r(l). The proof

is thus completed.

Now we shall consider the roles of the conditions (A.1) and (A.2) to be
imposed on E. For the sake of convenience, we assume that the space R? is
realized by row vectors. Then we shall employ the expression a,=(a, ***, @)
(1<k<mn) and assume that 1<n<d. On the other hand, given a=(q, -,
a;)ER and I=(3, -+, 1,) (1<4<-+-<i,<d), we set a;=(a;, -, a;,) and

¢ U ,
al[y] = (ab Yy Y ad) for every y = (3’1» "')yn)eR .

Further we shall introduce the following notations: For every y=(y,, -,
¥.) ER", we set
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Fi.5(y) = (lafy]l—ail, -, la;[y]—a,l)
and

........................

Vi Cuip 5 YV iy | -

Given yR" and §>0, we denote by Vy(y) the open ball in R” with center
y and radius §. Then we see that the Jacobian of the mapping F;, ;: R"—>R"
for each y (a,[y] €& E) is given by

(+8) ($Fr.er)®) = (1L ladyl—ai)) " ()

By using this relation, we can discuss the regularity of F;, » under the assump-
tion (A.1) on E.

Lemma 2. Let acR’ and E CR* (1<4E <d) be given such that the points
a, a, -, a, are independent, i.e., the vectors a—a, (1<<k<n) are linearly inde-
pendent. Then there exist I=(iy, -, 1,) (1<i,<--<i,<d) and §>0 such that
the mapping

(4.9) Fi a5 Vila)) = Ugl, a, E)
provides a homeomorphism, where we set Uy(I, a, E)=F , (Vs(a;)).

Proof. Because of the assumption on the arrangement of @ and E, there
exists I=(3y, -+, 1,) (1<4<---<i,<d) such that ff(a;)==0. This implies that
there exists §>0 such that

(4.10) f(@)*0 and a,]y]lEE  forany y&Vya;).

It follows from (4.8) and (4.10) that the mapping F;, ;. is regular on Vy(a;).
Thus we see by using the inverse mapping theorem that the mapping (4.9)
provides a homeomorphism for a sufficiently small 8.

It is notable that, if EC S(I) N G satisfies the condition (A.2), we may choose
the real numbers y¥(x|E) (1<k<n) as follows:

YxE)=L  (xeH 1<k<n).
n

In the preceding section we have introduced several sets E which satisfy the
conditions (A.2) and ECS(l) for some [>0. We note that such sets will be
also constructed by using the following lemma.

Lemma 3. Let E; (=1, 2) be two finite subsets of R* satisfying the condi-
tions (A.2) and E;,CS(l;) (=1, 2). Suppose that (x, y)=0 for any xEE, and
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any y=E,. Then the set
E = {xty; x€E, ycE;}
satisfies the conditions (A.2) and EC S(\/IZ+12).

The proof is elementary, and so is omitted. We shall now discuss the
properties of functions in the class S.

Lemma 4. Suppose that r(t) S is given by (1.1). Then r(t) admits the
following expression:

*.11) r(t) = B+ S:{l Yt} flwpt e (10),
where fi(u) is defined by
fiw) = @R ey () @>0).
Proof. Let us introduce the formula
(#.12) o= S: Ya(tu0) (2 T(d)2)] s Pt~ e ody. (430, 5>0).
"This will be easily shown by using the following alternative expression of Y,(#):
Y,(t) = Ssd_le"("‘)do-d(z) (t=|x|, x&RY),

where o, is the uniform probability measure on the unit sphere S¢'={z&R’;
|z|=1}. We now immediately obtain the desired expression (4.11) by com-
bining (1.1) and (4.12).

Lemma 5. Each function r(t)E S satisfies the following properties:
(1) #(2) is strictly increasing and analytic on (0, o0);
(i1) 77Y(x) is strictly increasing and analytic on (0, r(0));
(i) #(\/'t) is strictly concave on (0, o) except the case r(t)=t*;
(iv) For any n distinct points x,&R\{0} (d>1, n>1, 1<k<n), the positive
definit . quadratic form

0.8) = SIR(x;, xil0Ef, &= (6 E)ER,

is non-degenerate except the case r(t)=t*. In other words, Q (8)=0 implies
that 8=0.

Proof. Suppose that 7(¢) is given by (1.1). Then we have

r(t) = 2t{c+- S:e"z“d'y(u)}>0 for any #>0.
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It follows that r(¢) is strictly increasing on (0, o). Further we can extend
this function analytically to the function 7(2) on the complex domain {zEC;
|argz| <<z/4} ([12]). Therefore we obtain the assertions (i) and (ii). The
assertion (iii) will be seen by the following fact: If r(¢#)==#, we have

gzr(vT)=—j"e-f"udy(u)<o forany #>0.
0

We shall now proceed to the proof of the assertion (iv). On account of the
expression (4.11) of 7(t), we see that

Hlxl) = elxl+] oo —11%20) U121z (xRY,
where we set w;=27%?%|T'(d|2). Further we have, for any x, y=R’,
Ry, 410) = o, p)+ (¢ —1)(e7 /02— 1)(20,) (| 21)dz .
Thus we obtain the following representation of Q,(&):
0.(8) = eI B e+ | 1 |35 £iler 0 —1) [2200) fK( |21

Now we assume that r(t)=%# and Q,(8)=0. Then we have ((0, c))>0 and
so the function fJ(u) is positive and continuous on (0, o0). This implies that

(4.13) SIE(ee9—1)=0 forany zeR‘.
Now we set

V ={z&€R%; (x;, 2)*0 (1<k<n) and (x;, 2)F(x,, 2)
for any j, k (1<j<k<n)}.

It is easy to see that V' is a non-empty open subset of R? and satisfies the rela-
tion S,V=V for any t>0. Let us choose a point z,& ¥V N.S?* arbitrarily and
set ¢,=i(x}, 2) (1<<k<<m). Then, setting z=17z, in (4.13), we have the equality

)3 Eer—1)=10 for any t>0.
k=1
Further differentiating in #, we have
i Ecie® =0 for any t>0.
k=1

By the way, the constants ¢, (1<<k<n) satisfy the following conditions: ¢,#0
(1<k<mn) and c;=*¢, for any j, k (1<j<k<mn). Therefore we can easily show
that £,=0 (1<<k<#), which completes the proof.
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Before stating the next lemma, we shall introduce some notations. For
every r(t) €S, and every probability measure A on (0, 1], we set sx[A]=inf {sup-
port of A} and further

A(8) = S:r(t)"dx(p) and  7,(f) = S:r(t")dx(p) (t>0).

The following lemma provides various examples of r.v.f.’s r()ES.

Lemma 6. Let \ be a probability measure on (0, 1].
(1) Assume that s¢[N]>0 and r(t)E S, is a r.v.f. () for some a>>0. Then r\(t)
and r\(t) are r.v.f.’s (sx[\]a).
(ii) For every r(t)E S, it holds that r(t)E S and r\(t)ES.

The details of the proof are omitted. We can obtain the assertion (i)
by elementary calculation. As for the assertion (ii), we may employ the theory
of the inner transformations of completely monotone functions ([10]). We
shall next consider an interesting functional equation related to Problem 2.

Lemma 7. Let p(t), q(t), f(t) and g(t) be functions on (0, oo) such that
p(&)£0 and q(t)=£0, and let h(u, v) be a positive function on IX J, where I and
J are open intervals contained in (0, o). Assume that these functions satisfy the
functional equation

(4.14) f(th(u, v)) = p(&)f(tu)+q(O)f(tv)+8(2)

for any (t, u, v)E(0, o)X IX ], and further assume that f(t) is twice differentiable
and strictly monotone on (0, oo). Then f(t) admits the following expression:

(4.15) ft) = Ct*4-C, or f(t)= Blogt+C; (t>0),
where o, B and C; (1<i<3) are arbitrary real constants (aC,=+0, B+0).

Proof. First we can show by using the equation (4.14) and the assumption
on f(¢) that A(u, v) is twice differentiable on I x J. By differentiating the
both sides of (4.14) in u or v, we have the following two equations: For any
(t, u, v)E€(0, o)X IX ],

f(th(w, 9) 2% (0, v) = p)f (1) and

£ th(u, o) 2, 0) = g()f't0)

Therefore we see that g—h(u, 'v)g—h(u, 0)==0 for any (u, v)1X ], because there
u v

exist t,, £,&(0, oo) such that p(t,)¢(z,)#=0. Now differentiating the both sides of
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the last equation in %, we have the following: For any (¢, 4, v)€(0, o) x I X ],
oh oh y o%h
" th ) t— H] ] tk ) ~ A % -
£ eh(t, 0002, ), o) ehtu, 0) D2, 0) = 0

and further
f(h(u, v))¢ _ 1" (h(u, v))
f'@h(w, 0))  f'(k(u, 0))
By the change of variables this equation can be replaced by the following:

'@t _ f(h(w, 0)h(u, v)
'@ J'(h(u, ©))
Therefore the both sides of this equation are identically equal to a certain real

constant a which is independent of the variables #, # and ». It follows that,
for any #>0,

for any (¢, u, v)€(0, o)X IXJ.

;,,((tz)) = % or equivalently (_Z— log f'(t) = _‘ti .

Then we have the expression f'(¢)=5t* (b+=0) and further
() = {/(a+ 1)}t +C or f(t)=blogt+C’'  (>0)

according as a#—1 or a=—1 respectively. Thus we obtain the desired ex-
pression (4.15).

ReMARK 3. As for the assumptions on f(¢) in Lemma 7, the phrase
“strictly monotone’ may be replaced by the phrase “non-constant”’ provided that
IN J=#¢ and p(2)q(¢)==0 for each t>0.

5. Proofs of main results

Proof of Theorem 1. Without loss of generality, we may assume that
vHa|E)vi(a|E)=+0. It follows from Proposition 1 that there exists a sequence
{I,} 1<s<n Of open intervals, for which the conditions (3.1) and (3.2) hold. 'There-

fore, for each u=(u, -, u,,)ef[ I, there exists ylu]eFx(a|E) such that
k=1

O (y[u]) = u or equivalently |y[u]—a,| = u, (I<k<n).

In order to show the part (i), it suffices to prove the “if”’ part. We note
that the sets 7(I;) (1<k<#) are non-empty open intervals contained in (0, o)

and we set A (p)=(r"Y(p), ---,r7(p,)) for every p=(p,, ---,p,,)efI r(I;). Then
k=1
we see that, for every thH (1), we have A, (p)E ]I I, and
=1 k=1
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{ y[A(p)|€EF x(a| E)CFx(alE),
ly[AD)]—al =77 (p)  (I1<k<n).

Therefore we can show by (4.4) the following two equations: For every

pell (),

(A (p)—al) = S it M,
(5.1) { -

r(|ulap]—al) = Sne (p)7it My,

where we set v,=7;(a|E), vi=7: (| E) (1<k<n), M=r(|la—a,|)—A,(a, a,|E)
and M,=r(|la—a,|)—A,(a, &,|E). Let f(x) be the function on [0, r(c0))
defined by f(x)=ry(r"}(x)). Then we obtain from (5.1) the following functional

equation: For any (p,, -, P")Ekﬁ (1),

(5.2) A pevit-M) = S fp)vi+M;
We note that f(x) is analytic on (0, 7(c0)) and the range of the function
x=3prtM (P 2 ETL (L)

contains an interior point because of the assumption v,v,#0. Now differ-
entiating the both sides of (5.2) in p; and p, successively, we have the following:

F(SpntM) =0 forany (py -, p)EIL (L)

Therefore we see by the analyticity of f”(x) that f/(x)=0 on (0, 7(c)). Fur-
ther we have f(x)=x on [0, (o)) by using the conditions f(0)=0 and f(1)=1.
This implies that, for any t>0, r,(t)=r,(r"'(r(¢)))=f(r(¢))=7(t). The proof
of the part (i) is thus completed.

We now proceed to the proof of the part (ii). It suffices to prove the

“if” part. Let us again use the notation y[u] for every uc]lI I, which was
k=1

introduced above. Then we see by the assumption (2.5) that
(5.3) S,yuleF (S| SE)  forany (¢, u)e(0, oo)x 11 I, .
k=1

For the sake of convenience, we shall introduce the following functions:

P(t) = vi(Sa|S,E) (>0, 1<k<n),
gt) = rtla—a,)) =S r(tla—a;])pi(t)  (£>0) and
My, oy ) = r (S rw)pu(D (D) (@ s )T L)
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Then we can derive from (5.3) the following functional equation: For any

(t) Uy oy un) E(O’ oo) X k:[i[l Iln
(54) r(thin, -+, w) = 33 r(tus)pa(t) +8(0)

It should be noted that p,(1)p,(1)=0 and A(w, ---, %,)>0 on 11 I,. By apply-
k=1

ing Lemma 7 to the equation (5.4), we see that 7(f) can be expressed in the

form

r(t) = Ct*+C, or r(t)= Blogt+C; t>0),

where a, B and C; (1<i<3) are real constants (¢C,#0, 840). Therefore we
obtain the desired expression 7(#)=t" (0<<ear<2) by using the conditions 7(0)=0
and 7(1)=1 and also the concavity of 7(n/ ¢ ). The proof of the part (ii) is
thus completed.

Proof of Theorem 2. It follows from Proposition 2 that there exists an
open interval I such that the conditions (3.3) and (3.4) hold. If we set a=|a|
and a(u)=(v12—PEla)a (1>1), we have a(u)€¥Y5'(I) N H for any ucI. There-
fore, for any u, v 1, there exists b(u, v)EF x(a(x)| E) N H such that

Wi(b(u, v)) = v or equivalently |b(u, v)—a,| =v.

In order to show the part (i), it suffices to prove the “if”’ part. Without
loss of generality, we may assume that I C(V#&+ B V@ + ). Then
r(I) is a non-empty open interval contained in (0, o). Further we set, for

every p, gr(I),
a[p] = a(r™(p)) and B[p, g] = b(r™X(p), r"'(9)) -
Then it follows from the assumption (2.6) that, for any p, g=r(1),

b[p, JEF (a[p]|EYN HCFx(a[p]|E)NH .

Therefore we can show by (4.6) the following two equations: For every
p q&r(Q),
{ 7(|a[p]—bp, 4]1) = p+9—A,
n(la[p]—b[p, 1) = r(r™(p)) +7(r (@) — A
where we set A=A(r; E) and Aj=A(r,; E). Now setting f(x)=r,(r"'(x)) for

&[0, (o)), we can derive from the above equations the following functional
equation:

f(p+9—A) = f(p)+/(9—A,  forany p,g&r(]).
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Therefore we see that f(x)=x on [0, 7(c0)) by using the analyticity of f(x) and
the conditions f(0)=0 and f(1)=1. Thus we have the desired identity

r(t)=r(2).

We now proceed to the proof of the part (ii). It suffices to prove the
“gf” part. Let us again use the notations a(x) and b(x, v) for every u, vel,
which were introduced above. Then we see by the assumption (2.7) that

(5.5) Sb(u, v)EF(S;a(u)|SLEYNH  forany (¢, u, v)&(0, c0o)XIXI.
Therefore setting
{g(t) = —A(r; SE)  (¢>0),
W, ) = o) +ro)+e() (@ vel),
we can derive from (5.5) the following functional equation: For any (Z, u, v)E
(0, o0) X IXI,
r(th(u, v)) = r(tu)-+r(tv)-+g(t) .

Thus we obtain the desired expression 7()=1" (0<a<2) by the same discus-
sion as the proof of Theorem 1.

Proof of Theorem 3. It suffices to prove the “if” part. We see by Pro-
position 2 that there exists an open interval I such that ¥ (a)el C(l, o) and
IcY(Fx(a| E)NH). Therefore, for any u I, there exists b[u]eF x(a| E)N H
such that

Y(b[u]) =u or equivalently |b[u]—a,| =u.
By using the assertion (ii) of Theorem 2 and the assumption (2.10), we have
the following: For any (4, t)€1X ],
ShluleF(Sa| SSEYNHCFx(S,a|S,E)NH,

where we set J=(¢,, ;). Therefore we obtain by (4.6) the following two equa-
tions: For every (u, t)eIXJ,
{ r(t|la—b[u]|) = r(ut)+r(\/ 2 lIt)—A(r; S,E),

r(t|la—blu]|) = r,(ut)+r(N/ 2 lt)—A(r,; S.E) .

For the sake of convenience, we set Ay=r(\/ 2[) and A,=r(|a;—a,|) (1<k<n).
Then we have

(5.6)

” r t n
r(ta—ta,)) = "D 4,
k=1 n k=1

~—"

(5.7 A(r; S,E) =

Q|-

because the set S,E satisfies the condition (A.2). Now setting f(x)=r,(r""(x))
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for x&[0, 7(o0)), we can derive from (5.6) and (5.7) the following functional
equation: For any (s, g)=r(I) X 7(]),

flsg+-0q) = flsg) +f (o) — - 331(Mvg)

where A=A0—L é A,. Further setting p=sgq, this equation can be replaced
n k=1

by the following: For any (p, ¢)€ U,

n

58) fp+09) = (D) +hag)— - 31/ 0e0),

k=1
where U denotes a domain of R? defined by

U=A(p, 9ER* g=r(J)), plgEr(D)} -
On the other hand, by using the property (iii) of Lemma 5 and (4.7), we have

(5.9) A3 B) = L 3 [ay—ay )

< r( % éla,-aklz>

<r(V2P) = A,
Then combining (5.7) and (5.9), we have A>0. In the special case A=0,
we have r(¢)=# and %éAk:Ao. Therefore, if we assume that 7,(¢)==r(t),

the function f(x)=r,(\/ "« ) is strictly concave. Thus we see by (5.8) that
1 & 12
fao) =L S0 <f(-- 310a) = i)
n k=1 n k=1

Consequently we have the desired identity r,(t)=r(f) by contradiction. As
for the case A>0, we can easily obtain the expression f(x)=x on [0, 7(o0))
from (5.8) by using the analyticity of f(x) and the conditions f(0)=0 and
f(1)=1. Thus we have the identity ,(¢)=r(¢), which completes the proof.

6. Proofs of Propositions in Section 3

In Section 3, we have assumed that {e;},.;c; is the canonical orthonormal
basis of R? and further the subspaces G and H are spanned by {e;},c;<,-, and
{e,_,, e;} respectively. In order to prove Proposition 1 we shall introduce the
family {T,; 0<@< =} of orthogonal transformations on R? defined as follows:

Tee; = e; (1<i<d-2),
Tee,_, = e;_, cos 0+e;sinf
T.e; = —e,_ sinf-t+e,; cos b .
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Proof of Proposition 1. It immediately follows from the assumption
that the points @, @,, -, @, are independent and 1<n<<d—1. Therefore we
see by Lemma 2 that there exist /=(3, -, 7,) (1<4<--<7,<d), >0 and a
domain Uy(1, a, E) of R" such that the mapping

Fia5: Vslar) > U], a, E)

provides a homeomorphism. In particular, we have ®y(a)=F;, (a;)E
Us(I,a, E). Therefore there exists a sequence {I;},<;<, of open intervals satis-

fying the conditions (3.1) and IEII,,C Uy, a, E). We denote by Vs(a,) the
k=1
inverse image of I] I, by the mapping F;, . 'Then the mapping
k=1

Fr .5 Vs(a,) - kli_[l I,
is also a homeomorphism. Now we shall introduce a continuous function
f(8, x) on [0, #] x R* defined by
(6, x) = R,(a, Tyx|E) (8, x)<[0, #] X RY).
Because of the property (iv) of Lemma 5 and the assumption (R), we have
f0, @) = R,(a, a|E)>0 and f(=, a)= R,(a, —a|E)<0.

Further by choosing the above-mentioned & sufficiently small, we have the
following: For any y= I%(a,),

f(0, a;[y))>0 and f(z, a:[y])<0.

Therefore we see by using the intermediate value theorem that, for any y = Vs(a,),
there exists O(y)<(0, z) such that f(O(y), a;[y])=0. In other words, we
have

Towa[y]€Tx(a|E)  forany yeVia).
Then we see that, for any yE Vs(a,),

F0.:(y) = @p(a:[y]) = Pp(Topa:[y]) EP(F x(a|E)),

and so we have F ,,,'E(Vs(a,))CQDE(EZ’ x(@a|E)). Thus we obtain the relation
(3.2), which completes the proof.

Before we proceed to the proof of Proposition 2, we shall introduce an
alternative expression of R,(x, y|E) restricted to HX H. Suppose that EC
S(I)NG. Then we have, for any x, yE H,

(6.1) 2R,(x, ¥y |E) = f7(Ix], lyl, L(x,9)),
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where (x, y) denotes the angle between the vectors x and y (0< /(x,y)<=)
and f7 (&, 5, 6) denotes a continuous function on [0, o)X [0, o)X [0, ] defined
by

ff(f, 7l 6) = r(\/m)“"r(\/nz—l—lz)—r(\/fz—i—7]2—2577 Ccos 9)‘—1\(”; E) .

Proof of Proposition 2. Because of the property (iv) of Lemma 5 and
the assumption (R), we have

fr(a, a,0) = 2R(a, a|E)>0 and fZ(a, a, ) = 2R(a, —a|E)<0,

where we set a=|a|. Further there exists an open interval (¢, £,) (0<t,<<1<t,)
such that we have, for any s, tE(¢,, t,),

fr(as, at,0)>0 and fZ(as, at, )<O0.

Then we see by using the intermediate value theorem that, for any s, & (1, t,),
there exists O(s, £)e (0, =) such that fF(as, at, ©(s, £))=0. It follows that,
given x(s) € H satisfying |x(s)| =as, there exists y(s, {)EF x(x(s)| E) N H such
that

(6.2) ly(s, ) = ar and  /(x(s), (s, 1)) = O(s, 1).

If we set I=(V@2+ B, \V/a*i+ ), we immediately obtain (3.3): ¥i(a)=
Va@FPelC(l, o). Therefore we have only to prove (3.4). Given x€&
V()N H and u€l, we set s=\/W (x)’—Fla and t=+/47—[P|a. Then we
have s, t&(¢,, t;) and |x|=as. Therefore setting x(s)=x, there exists y(s, ) E
Fx(x(s)|E)N H such that the condition (6.2) holds. Then we see that u=
Yi(y(s, 1)) EV(Fx(x|E)N H), which implies the property (3.4).

Proof of Proposition 3. Let us consider the function g(¢) on [0, oo) de-
fined by g(¢#)=2r(t)—r(2f). Then we have

2R,(x, —x|0)=g(|x|)  forany x&R‘.

Therefore, given a€ H (a=+0), {a, {0}, r(¢)} satisfies the condition (R) if and
only if g(a)<<0, where we set a=|a|. Under the assumption stated in the
part (i), we have g(0)=0 and g'(¢)<<0 on (0, #/2). Then we have g(a)<<0 for
any a&(0, £,/2), which completes the proof of the part (i). We now proceed
to the proof of the part (ii). We may assume that a>#,. Because of the strict
convexity of 7(¢) on (,, o) we see that G(¢)=r(¢-+a)—r(t) is strictly increasing
on (t, o). It follows that G(¢,)<G(a) and so we have

g(a)<—r(ty+a)tr(a)+r(t) = —tyr'(a+0ty)+r(ty)

for some 6 (0<<6<1). On the other hand, '(f) and g(¢) are strictly decreasing
on (0, %) and on (¢, o) respectively. Therefore we see that
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lim g(a) < —27'(0) +7(t0) < — 7' (4-0)+-7(to)
- §;°{r'(t)—r'(+0)}dt<0 .
Consequently we have g(a)<<0 for a sufficiently large @, which completes the
proof of the part (ii).

Proof of Proposition 4. First we note that we have
Y x|Eil) =~ (x€H, 1<k<n),
n

because of the property (A.2) of Ej(l) (1<j<3). Then we obtain the follow-

ing equalities:

(6.3) 2R (a, —a|Ej(l)) = 2r(\/ 2 1)—r(2)—A(r; Ei(1)) (1<5<3);
(V20 (n—1)) (n—D))n  (j=1),

A Eil) = | F@D)+Ha—2r (VDN (G=2),

Srevam) () (j=3,n=2";

(6.4) Lm A(r; Ej(D))=7r(~/21) (1<j<3).

As for the equalities (6.4), the cases j=1 and j=2 are obvious. We can show

the case j=3 by using the following formula derived from the de Moivre-
Laplace theorem: For any p, ¢ (0<p<g<1),

Ui 12e(p ),
lim K%@(’@/z'": 12 if p=120rq=1/2,
0 if 1/2€[p, q].

Therefore we obtain from (6.3) and (6.4) that
lim 2R, (a, —al|Ei)=r(vV21)—r2D)<0  (1<j<3).

Consequently we have the inequalities R(a, —a|Ej(l))<0 (1<j<3) if n is
chosen to be sufficiently large under the restriction (3.9).

Proof of Proposition 5. In what follows we shall employ the notation
7,(1)=1t" (0<a<2). Then we see by (3.10) and (6.1) that

2R, (a, —a|E) = fE(l, I, z) = I°F(a; E)  (0<a<2).

Therefore we see by using the property of p[E] that the inequality R, ,(a, —a|E)
<0 holds if and only if p[E]<a <2, which means the assertion of Proposition
5.
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Proof of Proposition 6. Assume that 7(¢) is a r.v.f. (&) for some a =(p[E], 2].
Then we see by (3.10) and (6.1) that

lim 2R,(S,a, —S,a| S,B)/r(p)

= lim 2r(+/ 21p)}r(p)—r(2p)r(p) - 3 r(las—au p)Ir(e)}
= I*F(a; E)<0.

Therefore the inequality R/(S,a, —S,a|S,E)<<0 holds for sufficiently small
p>0, which means the assertion of Proposition 6.

Proof of Proposition 7. We see by (3.10) and (4.3) that
F(a; Ei(l)) = 2(V 2)*—2°—A(r,; EiD)I® (0<a<2,1<j<4).
Therefore by using the property (6.4) and the approximation property of the

T,

[2
definite integral S sin® xdx, we can show that, for each j (1<<j<4), the func-
0

tions F,;(a)=F(a; Ej(l)) (n=>2) converge to a certain function F(a) on (0, 2]
as n—>oo, In fact, we have

V2)y{1—-(v2)% (1<j<3),

F@) =1 ey ZT(@+1)2) ) i
vy Y =

Since we have F;(a)<0 on (0, 2] (1<j <4), we immediately obtain the equalities
lim e, ;=0 (1<j <4) and also the relations in (3.15).

Proof of Proposition 8. First we have, for any e (0, 2],
2R, (@, —a|E;(1))=1(\/2n|(n—T1))*{(n+1)/n—(V/2(n +1)/n)"} -

Therefore the inequality R,,(a, —a|E;(!))<<0 holds if and only if a,<a<2,
which means the assertion (i). In order to prove the part (ii) we assume that
r(f)eS is a r.v.f. (a) for some a(a,, 2]. Then we see by using the assertion
(i) that

lim R,(S,a, —S,al S,EXL))/r(p)=Rrala, —al EX1)<0.

Therefore the inequality R,(S,a, —S,a|S,E;(1))<0 holds for sufficiently small
p>0, which means the assertion (ii).
7. Additional results

In this section we shall be concerned with certain modifications of our
problems stated in Section 1. Let (X, (r)) be an arbitrary G.r.f. on R?. In
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[2], we have introduced a family of subsets of R? defined as follows: For every
a, beR? and every ¢ER. we set

Cx(a, b; q) = {xER’; p,(x|a, b) = X(a)(1—g)/2+X(b)(1+9)/2} -

It is interesting to see that the sets Cx(a, b; ¢) and F x(x | E) have some properties
in common. In particular, the increments X(x)—X(y) and X(a)—X(b) are
mutually independent if and only if there exists ¢ & R such that x, y €Cx(a, b; q).
It is obvious to see that Cx{a, b; 1)=F x(a|b), Cx(a, b; )=Cx(b,a ; —q) and

(7.1) Cx(a, b; q) = {xeR*; r(|x—a|) = r(|x—b|)+qr(|a—b|)}
= {x=R% R,(x, alb) =r(|la—b|)(1—q)/2}.

Therefore the set Cx(a, b; ¢q) proves to be a solid of revolution with axis con-
taining @ and b. For this reason, we shall consider the set Cx(a, b; ¢) under
the following restriction: a, b H and ¢>0. Now setting, for every r(2)ES
and every ¢>0,

D! = {(u, v)ER?; u>0, v>0, r(|u—v|) <r(u)+qr(v) <r(u+o)},
we have the following results.

Theorem 4. Let (X, 7(¢)) be a Gr.f. on R, where r(t)c8S. Suppose
that D} contains an inlerior point for some ¢>0.
(i) For another G.r.f. (X,, r(t)) on R* with r(t)ES, the identity r,(t)=r(t)
holds if and only if there exists ¢,>0 such that

(7.2) Cx(a, b; )N HCCx(a, b; ¢)NH  forany a,bEH.
(it) It holds that r(t)E L if and only if

(7.3)  Cx(Sia, Sb; 9N H= (S,Cx(a, b; )N H
for any a, b= H and any t>0 .

In order to prove this theorem we shall employ the following lemma.

Lemma 8. Let (X, 7(t)) be a G.r.f. on R?, where r(t)ES. Suppose that
D} contains an interior point for some g>0. Then there exist open intervals I
and J contained in (0, o), for which the following statement holds: For any
(v, v)EIX] and any a, b= H satisfying |a—b|=v, there exists x[u, v]E
Cx(a, b; 9) N H such that | x[u, v]—b|=u.

Proof. We see by the assumption that there exist open intervals I and J
contained in (0, oo) such that /X JcD? Let us choose (4, v)€IXJ and
a, beH (|a—b|=v) arbitrarily. Then we have r(u)+g¢r(v)E1,, where we
set I, ,=[r(lu—v]|), r(u+v)]. If x&H runs over the circle with center b and
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radius u, the range of the function r(|x—a|) coincides with the interval I, ,.
It follows from the intermediate value theorem that there exists x[u, v]E H
such that |x[u, v]—b|=u and 7(|x[u, v]—a|)=r(u)+gr(v). In other words,
we see by (7.1) that x[u, v]€Cx(a, b; q), which completes the proof.

Proof of Theorem 4. Let I and J be the open intervals stated in Lemma
8. Then, for any (4, v)€IxJ and any a< H (|a|=v), there exists x[u, v]E
Cx(a, 0; ¢) N H such that |x[u, v]|=u. In order to show the part (i), it suf-
fices to prove the “if” part. To this end, setting f(x)=r(r"'(x)) for x&
[0, 7(oo)), we have only to prove that f(x)=x on [0, 7(c0)). We can show by
(7.1) and (7.2) the following two equations: For any (u, v)€IXJ and any
acH (|a|=v),

{ (1 x[u, v]—al) = r(u)+gr(v),
r(| x[u, v]—al) = r(w)+qr(v) .

Then we obtain from these equations the following functional equation:

f(x+qy) = f(x)+qf(y)  forany (x,y)Er(l)Xr(]).

Thus we can easily show that f(x)=x on [0, 7(o0)) in the same way as the proof
of Theorem 1. In order to show the part (ii), it suffices to prove the “if” part.
We see by (7.3) that

S,x[u, v]1€Cx(S,a, S,0; Q)N H  for any (¢ u, v)E(0, c0)XIX].

Therefore, setting A(u, v)=r""(r(u)+qr(v)) for (u, v)EIXJ, we obtain by (7.1)
the following functional equation:

r(th(u, v)) = r(tu)+qr(tv) for any (¢, u, v)e(0, o) XIX]J.

Consequently we obtain the desired expression r(#)=t* (0<a<2) by using
Lemma 7.

Finally we shall give a result about the existence of interior points in D?.

Proposition 9. Assume that r(t) S and ¢>0. In order that there exists an
interior point in D}, it is sufficient that the pair {r(t), q} satisfies one of the follow-
tng four conditions:

(i) 0<q<1 and r(t) is arbitrary;

(1) ¢=>1 and r(t) is strictly convex on (0, t)) with qr'(+0)<<r'(t,/2) for some
tp (0<ty<<eo);

(iii) g>1 and 7(t) is strictly convex on (t, o) with g¥'(+0)<<r'(c) for some
to (0<ty<< o), where we set 7'(-+0)=Im r'(t); and

(iv) g=1 and r(t)=t. e
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Proof. Because of the continuity of r(¢), it suffices to prove that there
exist #>0 and >0 such that

(7.4) r(|u—o|)<r(u)+qr(v)<r(u+v).

Let us consider the case (i). For any v>0, we have 0<<(1—g)r(v)<<r(v). Then
there exists # such that 0<u<<v and r(u)=(1—g¢)r(v) or equivalently r(v)=
7(u)+gr(v), from which we obtain (7.4). By the way, the first inequality of (7.4)
holds for each ¢>1, #>>0 and >0, since we have r(|u—v|)<<max{r(u), r(v)} <
r(u)+gr(v). Therefore, in the case g>1, we have only to show the second
inequality of (7.4). We now proceed to the proof of the case (ii). Noting
that 7'(¢) is strictly increasing on (0, £,) and ¢r'(4-0)<<7'(%,/2), we can choose
v satisfying 0<<v<<t,/2 and 7'(4-0)<<qr'(v)<<7'(f,/2). Then there exists # such
that 0<u<t,/2 and r'(u)=gr'(v). Therefore we have ¢r'(t)<gr'(v)=r'(u)<
r'(u+t) for any t&(0, v). It follows that

(7.5) r(u--0)—r(u)—gr(v) = S:{r’(u+t)—qr'(t)}dt>0 ,

which completes the proof of the case (ii). In the case (iii), we can choose u
satisfying #>#, and ¢7'(4+0)<<r'(#). Then there exists v>0 such that the
inequalities gr'(t)<<r'(u)<r'(u-+t) hold on (0, v). Thus we again obtain (7.5),
which completes the proof of the case (iii). The proof of the case (iv) is ob-
vious, since we have D;=(0, c0)x (0, o).
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